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When Is a Function Securely Computable?
Himanshu Tyagi, Prakash Narayan, Fellow, IEEE, and Piyush Gupta, Fellow, IEEE

Abstract—A subset of a set of terminals that observe correlated
signals seek to compute a function of the signals using public com-
munication. It is required that the value of the function be con-
cealed from an eavesdropper with access to the communication.
We show that the function is securely computable if and only if its
entropy is less than the capacity of a new secrecy generationmodel,
for which a single-letter characterization is provided.

Index Terms—Aided secret key, balanced coloring lemma, func-
tion computation, maximum common function, omniscience, se-
cret key capacity, secure computability.

I. INTRODUCTION

I N an online auction, bidders acting independently of
each other, randomly place one of bids on a secure server.

After a period of independent daily bidding, the server posts a
cryptic message on a public website. We shall see that such a
message exists from which each bidder can deduce securely the
highest daily bids, but for no message exists so as
to allow any of them to identify securely the daily winners.
In general, suppose that the terminals in

observe correlated signals, and that a subset of
them are required to compute “securely” a (single-letter) func-
tion of all the signals. To this end, the terminals in are
allowed to communicate interactively over a public noiseless
channel of unlimited capacity, with the communication being
observed by all the terminals. The terminals in seek to com-
pute in such a manner as to keep its value information theo-
retically secret from an eavesdropper that observes the public
interterminal communication. Throughout, we assume that the
eavesdropper is passive, i.e., unable to tamper with the public
communication. A typical application arises in a wireless net-
work of colocated sensors which seek to compute a given func-
tion of their correlated measurements using public communica-
tion that does not give away the value of the function.
We formulate a new Shannon theoretic multiterminal source

model that addresses the elemental question: When can a func-
tion be computed so that its value is independent of the public
communication used in its computation? We do not tackle the
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difficult problem of determining the minimum rate of public
communication needed for the secure computation of , which
remains open even in the absence of a secrecy constraint [12].
Nor do we fashion efficient protocols for this purpose. Instead,
our mere goal in this work is to characterize necessary and suf-
ficient conditions for the existence of such protocols.
The study of problems of function computation, with and

without secrecy requirements, has a long and varied history in
multiple disciplines, to which we can make only a skimpy al-
lusion here. Examples include: algorithms for exact function
computation by multiple parties (cf., e.g., [21], [9], [11]); algo-
rithms for asymptotically accurate (in observation length) func-
tion computation (cf., e.g., [19], [14]); and problems of obliv-
ious transfer [17], [2]. In contrast, our requirement of secure
computation1 is to protect the value of a given function; an in-
stance is [18] where exact function computation with secrecy
was sought.
We establish that the answer to the question posed above is

connected innately to a problem of secret key (SK) generation in
which all the terminals in seek to generate “secret common
randomness” of maximum rate, by means of public communi-
cation from which an eavesdropper can glean only a negligible
amount of information about the SK. The public communication
from a terminal can be any function of its own observed signal
and of all previous communication. Additionally, side informa-
tion is provided to the terminals in in the form of the value
of , and can be used only for recovering the key. Such a key,
termed an aided secret key (ASK), constitutes a modification of
the original notion of an SK in [15], [1], [6], and [7]. The largest
rate of such an ASK is the ASK capacity . Since a securely
computable function for will yield an ASK (for ) of rate
equal to the entropy of , it is clear that necessarily must
satisfy .We show that surprisingly, is a sufficient
condition for the existence of a protocol for the secure compu-
tation of by . When all the terminals in seek to compute
securely, the corresponding ASK capacity reduces to the stan-
dard SK capacity for [6], [7]. Furthermore, we show that a
function that is securely computed by can be augmented by
residual secret common randomness to yield an SK for of op-
timum rate.
We also present the capacity for a general ASK model in-

volving arbitrary side information at the secrecy-seeking set of
terminals; such side information is not available for commu-
nication and can be used for key recovery alone. Its capacity
is characterized in terms of the classic concept of “maximum
common function” [8]. Although this result is not needed in full
dose for characterizing secure computability, it remains of inde-
pendent interest.

1Unlike in [21] and allied literature, no key is available apriori for secure
computation but may be devised as a part of the computation procedure.
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Fig. 1. Secure computation of .

Our results in Section III are organized in three parts: ca-
pacity of the ASK model; characterization of the secure com-
putability of ; and a decomposition result for the total entropy
of the model. Proofs are provided in Section IV and concluding
remarks in Section V.

II. PRELIMINARIES

Let , be rvs with finite alpha-
bets , respectively, and with a known joint
probability mass function (pmf). For any nonempty set

, we denote .
Similarly, for real numbers and , we
denote . Let be the set . We denote
i.i.d. repetitions of with values in

by with values in
. Following [6], given , for rvs

we say that is -recoverable from if
for some function of . All logarithms and exponentials
are with respect to the base 2.
We consider a multiterminal source model for secure compu-

tation with public communication; this basic model was intro-
duced in [6] in the context of SK generation with public trans-
action. Terminals observe, respectively, the sequences

, of length . Let be a given map-
ping, where is a finite alphabet. For , the mapping

is defined by

For convenience, we shall denote the rv by
, and, in particular, simply by . The terminals
in a given set wish to “compute securely” the function

for in . To this end, the terminals are allowed
to communicate over a noiseless public channel, possibly in-
teractively in several rounds. Randomization at the terminals is
permitted; we assume that terminal generates a rv ,
such that and are mutually independent.While
the cardinalities of range spaces of are unrestricted,
we assume that .

Definition 1: Assume without any loss of generality that the
communication of the terminals in occurs in consecutive
time slots in rounds; such communication is described in terms
of the mappings

with corresponding to a message in time slot by terminal
; in general, is allowed to yield any

function of and of previous communication described
in terms of . The corre-
sponding rvs representing the communication will be depicted
collectively as

where . A special form of such commu-
nication will be termed noninteractive communication if

, where .

Definition 2: For , we say that is -securely
computable ( - SC) by (the terminals in) a given set
with from observations of length , randomization
and public communication , if
(i) is -recoverable from for every , i.e.,
there exists satisfying

(1)

and
(ii) satisfies the “strong” secrecy condition2

(2)

By definition, an -SC function is recoverable (as ) at
the terminals in and is effectively concealed from an eaves-
dropper with access to the public communication .

Definition 3: We say that is securely computable by if
is -SC by from observations of length , suitable random-
ization and public communication , such that .

Fig. 1 shows our setup for secure computing.

2The notion of strong secrecy for SK generation was introduced in [16], and
developed further in [4], [5].
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III. WHEN IS SECURELY COMPUTABLE?

We consider first the case when all the terminals in wish
to compute securely the function , i.e., . Our result
for this case will be seen to be linked inherently to the standard
concept of SK capacity for a multiterminal source model [6],
[7], and serves to motivate our approach to the general case
when .

Definition 4: [6], [7] For , a function of
is an -secret key ( -SK) for (the terminals in) a given

set3 with , achievable from observations of
length , randomization and public communication

as above if
(i) is -recoverable from for every ;
(ii) satisfies the “strong” secrecy condition

(3)

where denotes the set of possible values of
. The SK capacity for is the largest rate

of -SKs for as above,4 such that

.

Remark: The secrecy condition (3) is tantamount jointly to
a nearly uniform distribution for (i.e., is
small) and to the near independence of and (i.e.,
is small).
A single-letter characterization of the SK capacity is

provided in [6], [7].

Theorem 1: [6], [7] The SK capacity equals

(4)

where

(5)

with

(6)

Furthermore, the SK capacity can be achieved with noninterac-
tive communication and without recourse to randomization at
the terminals in .

Remarks: (i) For the trivial case , say with
, we have that . Clearly, attains

. On the other hand, if is an SK for ter-
minal 1, it is also an SK for a relaxed model where terminal 1

3For reasons of notation that will be apparent later, we distinguish between the
secrecy seeking set and the set pursuing secure computation.
4In [6], [7], a secret key was defined, in general, as and

SK capacity was shown to be achieved by a function of . Also, in view of

(3), SK rate can be defined as .

remains the same while terminals coalesce and have
additional access to . The SK capacity for the latter model
with two terminals, which is no smaller than , equals

[15], [1]. Hence, .
(ii) The SK capacity is not increased if the secrecy con-
dition (3) is replaced by the following weaker requirement [15],
[6]:

(7)

We recall from [6] that has the operational signifi-
cance of being the smallest rate of “communication for omni-
science” for , namely the smallest rate

of suitable communication for the terminals in whereby
is -recoverable from at each terminal
, with ; here denotes the cardinality

of the set of values of . Thus, is the smallest
rate of communication among the terminals in that enables
every terminal in to reconstruct with high probability all
the sequences observed by all the other terminals in , with
the cooperation of the terminals in . The resulting om-
niscience for corresponds to total “common randomness”
of rate . The notion of omniscience was introduced
in [6], where it played a central role in SK generation for the
multiterminal source model; it will play a material role in the
secure computation of as well.
A comparison of the conditions in (2) and (7) that must be met

by a securely computable and an SK , respectively, shows
for a given to be securely computable, it is necessary that

(8)

Remarkably, it transpires that is a sufficient
condition for to be securely computable, and constitutes our
first result.

Theorem 2: A function is securely computable by if

(9)

Conversely, if is securely computable by , then
.

Theorem 2 is, in fact, a special case of our main result in
Theorem 5 below.

Example 1: Let , and let and be -valued
rvs with

Let .
From [15], [1] (and also Theorem 1),
, where . Since ,

by Theorem 2 is securely computable if

(10)

We give a simple scheme for the secure computation of
when , that relies on Wyner’s well-known method
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for Slepian-Wolf data compression [20] and a derived SK
generation scheme in [23], [24], and [22]. When , we
can write

(11)

with being independent separately of and . We ob-
serve as in [20] that there exists a binary linear code, of

, with parity check matrix such that , and so
, is -recoverable from at terminal 2, where the

Slepian-Wolf codeword constitutes public commu-
nication from terminal 1, and where decays to 0 exponen-
tially rapidly in . Let be the estimate of thereby formed
at terminal 2. (We can take to have been compressed loss-
lessly to rate .) Further, let be the location of

in the coset of the standard array corresponding to . By the
previous observation, too is -recoverable from at
terminal 2. From [23], [24], [22], constitutes a “perfect” SK
for terminals 1 and 2, of rate , and
satisfying

(12)

Also, observe from (11) that and
. Since is independent of

, it follows that conditioned on each fixed value ,
the (common) argument of and , namely , has a
conditional pmf that equals the pmf of which, in turn,
coincides with the pmf of , i.e., a permutation of the
pmf of . Hence by (12),

(13)

since .
Then terminal 2 communicates in encrypted form as

(all represented in bits), with encryption feasible since

by the sufficient condition (10). Terminal 1 then decrypts
using to recover . The computation of is secure since

is small; specifically, the first term equals 0 since
, while the second term is bounded according

to

where the intermediate step uses Fano’s inequality and the ex-
ponential decay of to 0, and the last equality is by (13).

Example 2: Consider the setup of Example 1 for the case
, but now with terminal 1 alone seeking to compute

. Since is independent of , secure computation of at
terminal 1 is possible with terminal 2 simply communicating
, even when and are independent. Note that

for .

We now turn to the general model for the secure com-
putability of by a given set . Again in the manner of
(8), it is clear that a necessary condition is

In contrast, when , the condition is not
sufficient for to be securely computable by as seen by the
following simple example.

Example 3: Let and consider rvs
with , where is independent of

and . Let be defined by
. Clearly, . Therefore,

. However, for to be computed
by the terminals 1 and 2, its value must be conveyed to them
necessarily by public communication from terminal 3. Thus,
is not securely computable.

We observe in Example 2 that if the value of is given
to terminal 2 after it has communicated to terminal 1, then
both terminals attain omniscience, with terminal 1 doing so from
communication that is independent of . Terminal 1 then com-
putes from its omniscience. Interestingly, the secure com-
putability of can be examined in terms of a new SK generation
problem that contains these features and is formulated next.

A. Secret Key Aided by Side Information

We consider an extension of the SK generation problem in
Definition 4, which involves additional side information
that is correlated with and is provided to the terminals in
for use in only the recovery stage of SK generation; how-

ever, the public communication remains as in Definition 1.
Formally, the extension is described in terms of generic rvs

, where the rvs too take values
in finite sets . The full force of this extension will not
be needed to characterize the secure computability of ; an ap-
propriate particularization will suffice. Nevertheless, this con-
cept is of independent interest.

Definition 5: A function of is an - se-
cret key aided by side information ( -ASK) for the
terminals , achievable from observations
of length , randomization and public communication

if it satisfies the conditions in Definition 4
with in the role of in condition
(i). The corresponding ASK capacity is defined
analogously as in Definition 4.
In contrast with the omniscience rate of that appears

in the passage following Theorem 1, now an underlying anal-
ogous notion of omniscience will involve total common ran-
domness of rate exceeding . Specifically, the enhanced
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common randomness rate will equal the entropy of the “max-
imum common function” (mcf) of the rvs , intro-
duced for a pair of rvs in [8] (see also [3, Problem 16.27]).

Definition 6: [8] For two rvs with values in finite sets
, the equivalence relation in holds if there exist
and sequences in with

and in satisfying
and . Denote the cor-
responding equivalence classes in by . Similarly,
let denote the equivalence classes in . As argued
in [8], and for ,

The mcf of the rvs is a rv with values in
, defined by

For rvs taking values in finite alphabets, we define
the recursively by

(14)

with as above.

Definition 7: With denoting i.i.d. repetitions of the rv
, we define

(15)

Note that is a function of each individual
.

Remark: As justification for the definition in (14), consider a
rv that satisfies

(16)

and suppose for any other rv satisfying (16) that
. Then Lemma 3 below shows that must satisfy

.
The following result for the mcf of rvs is a simple

extension of the classic result for [8, Theorem 1].

Lemma 3: Given , if is -recoverable from
for each , then

(17)

Proof: The proof involves a recursive application of [8,
Lemma, Sect. 4] to in (14), and is provided
in Appendix A.
We are now in a position to characterize ASK capacity. In

a manner analogous to Theorem 1, this is done in terms of
and the smallest rate of communication

for each terminal in to attain omniscience
that corresponds to i.i.d. repetitions of .

Theorem 4: The ASK capacity equals

where

with

(18)

The proof of Theorem 4 is along the same lines as that of
Theorem 1 [6] and is provided in Appendix B.
The remark following Theorem 1 also applies to the ASK ca-

pacity , as will be seen from the proof of Theorem 4.

B. Characterization of Secure Computability

If is securely computable by the terminals in , then
constitutes an ASK for under the constraint (7), of rate

, with side information in the form of provided only
to the terminals in in the recovery stage of SK generation.
Thus, a necessary condition for to be securely computable by
, in the manner of (8), is

(19)

where with

(20)

By particularizing Theorem 4 to the choice of as above, the
right-hand side (RHS) of (19) reduces to

(21)

where

with

(22)

Our main result says that the necessary condition (19) is tight.
Consider a protocol that enables the terminals in to attain
omniscience using communication that is independent of ,
when is provided only as “decoder side information” to the
terminals in but cannot be used for communication. Our
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proof shows that (23) below is sufficient for such a protocol to
exist. Clearly, this protocol also serves for the secure computa-
tion of by the terminals in upon disregarding the decoding
tasks in (so that the protocol does not depend on a knowl-
edge of ).

Theorem 5: A function is securely computable by
if

(23)

Furthermore, under the condition above, is securely com-
putable with noninteractive communication and without
recourse to randomization at the terminals in .
Conversely, if is securely computable by , then

.

Remarks: (i) As in the proof of achievability of SK capacity
in [6], our proof of the sufficiency of (23) for the secure com-
putability of holds with in (1), (2) decaying to zero expo-
nentially rapidly in .
(ii) It is easy to see that , where

is as in (20). In particular, the second inequality holds by
noting that an SK for is also an SK for , and that the side
information for recovery in (20) is not provided to the ter-
minals in .
(iii) Observe in Example 3 that and
so, by Theorem 5, is not securely computable as noted earlier.

Example 4: For the auction example in Section I,
and are i.i.d. rvs distributed

uniformly on , while .
Let and

. Then, straightforward computation yields that

and for both that

where, by Theorem 1

(24)

Hence, by Theorem 5, is securely computable. Since

is securely computable if . However, for
is not securely computable by any terminal
. This, too, is implied by Theorem 5 upon noting

that for each and a restricted choice
and as in (20)

where the first equality is a consequence of remark (ii) following
Theorem 5, (24) and remark (i) following Theorem 1.

C. A Decomposition Result

The sufficiency condition (23) prompts the following two nat-
ural questions: Does the difference possess
an operational significance? If is securely computable by the
terminals in , clearly forms an SK for . Can be aug-
mented suitably to form an SK for of maximum achievable
rate?
The answers to both these questions are in the affirmative. In

particular, our approach to the second question involves a char-
acterization of the minimum rate of communication for omni-
science for , under the additional requirement that this com-
munication be independent of . Specifically, we show below
that for a securely computable function , this minimum rate re-
mains [see (5) and (6)].
Addressing the first question, we introduce a rv

such that constitutes an -ASK for with
side information as in (20) and satisfying the additional
requirement

(25)

Let the largest rate of such an ASK be
. Observe that since is required to be nearly

independent of , where is the public communication in-
volved in its formation, it follows by (25) that is nearly
independent of .
Turning to the second question, in the same vein let be a

rv such that constitutes an -SK for
and satisfying (25). Let denote the largest rate of . As
noted above, will be nearly independent of , where
is the public communication involved in the formation of .

Proposition 6: If satisfies (23), for it holds that

Remarks: (i) For the case , both (i) and (ii) above
reduce to .
(ii) Theorem 1 and Proposition 6 (ii) lead to the observation

which admits the following heuristic interpretation. The “total
randomness” that corresponds to omniscience decomposes
into three “nearly mutually independent” components: a min-
imum-sized communication for omniscience for and the in-
dependent parts of an optimum-rate SK for composed of
and .

IV. PROOFS OF THEOREM 5 AND PROPOSITION 6

A. Proof of Theorem 5

The necessity of (19) follows by the comments preceding
Theorem 5.
The sufficiency of (23) will be established by showing the

existence of noninteractive public communication comprising
source codes that enable omniscience corresponding to at
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the terminals in , and thereby the computation of . Further-
more, the corresponding codewords are selected so as to be si-
multaneously independent of , thus assuring security.
First, from (23) and (21), there exists such that

, using .
For each and , consider a (map-valued) rv
that is uniformly distributed on the family of all mappings

. The rvs
are taken to be mutually independent.
Fix , with and . It follows from the

proof of the general source network coding theorem [3, Lemma
13.13 and Theorem 13.14] that for all sufficiently large ,

-

(26)

provided , where van-
ishes exponentially rapidly in . This assertion follows exactly
as in the proof of [6, Proposition 1, with ] but with
there equal to rather than . In particular, we
shall choose such that

(27)

Below we shall establish that

(28)

for all sufficiently large, to which end it suffices to show that

(29)

since

Then it would follow from (26), (28) and definition of in
(20) that

-

This shows the existence of a particular realization of
such that is -SC from for each

.

It now remains to prove (29). Fix and note that for
each , with denoting the cardinality of the (image)
set

(30)

where the RHS above denotes the (Kullback-Leibler) diver-
gence between the joint pmf of

, and the product of the uni-

form pmf on and the pmf of

. Using [6, Lemma 1], the RHS of
(30) is bounded above further by

(31)

where is the
variational distance between the pmfs in the divergence above.
Therefore, to prove (29), it suffices to show that

(32)

on account of the fact that , and the ex-
ponential decay to 0 of . Defining

-

we have by (26) that . It follows that

since is independent of . Thus, (32), and hence (29),
will follow upon showing that

(33)
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for all sufficiently large. Fix .We take recourse to
Lemma C2 in Appendix C, and set

, and

for some mapping . By the definition of

so that condition (C2) (i) preceding LemmaC2 ismet. Condition
(C2) (ii), too, is met since conditioned on the events in (C2) (ii),
only those can occur that are determined uniquely by
their components .
Upon choosing

in (C3), the hypotheses of Lemma C2 are satisfied with
for an appropriate exponentially vanishing . Then, by

Lemma C2, with

and with in the role of , we get from (C4) and (27) that

decays to 0 doubly exponentially in , which proves (33). This
completes the proof of Theorem 5.

B. Proof of Proposition 6

(i) Since the rv , with nearly independent compo-
nents, constitutes an ASK for with side information as
in (20), it is clear that

(34)

In order to prove the reverse of (34), we show that
is an achievable ASK rate for

that additionally satisfies (25). First, note that in the proof
of Theorem 5, the assertions (26) and (29) mean that for all
sufficiently large , there exists a public communication ,
say, such that and is -recoverable
from for every , with . Fix

, where is as in the proof of Theorem 5. Apply
Lemma C2, choosing

(35)

whereby the hypothesis (C2) of Lemma C2 is satisfied for all
sufficiently large. Fixing

by Lemma C2 a randomly chosen of rate

will yield an ASK which is nearly in-
dependent of (and, in particular, satisfies (25)) with
positive probability, for all sufficiently large.
(ii) The proof can be completed as that of part (i) upon showing
that for a securely computable , for all and sufficiently
large, there exists a public communication that meets the
following requirements: its rate does not exceed

; and is -recoverable from
for every . To that end, for

as in the proof of Theorem 5, consider
that satisfies for all

and

noting that . Further, for and
as in that proof, define a (map-valued) rv that is uni-
formly distributed on the family of all mappings from

to . The
rvs are taken to be mutually
independent. Define as the set of mappings for
which there exists a such that is -recoverable
from for every . By the general
source network coding theorem [3, Lemma 13.13 and Theorem
13.14], applied to the random mapping , it follows
that for all sufficiently large ,

This, together with (26) and (29) in the proof of The-
orem 5, imply that for a securely computable there exist

and for which the public communication
satisfies the aforementioned requirements.

Finally, apply Lemma C2 with and as in (35)
but with and

As in the proof above of part (i), an SK of rate

which is nearly independent of (and, hence, satisfies
(25)) exists for all sufficiently large.
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V. DISCUSSION

We obtain simple necessary and sufficient conditions for se-
cure computability expressed in terms of function entropy and
ASK capacity. The latter is the largest rate of an SK for a new
model in which side information is provided for use in only the
recovery stage of SK generation. This model could be of inde-
pendent interest. In particular, a function is securely computable
if its entropy is less than the ASK capacity of an associated se-
crecy model. The difference is shown to correspond to the max-
imum achievable rate of an ASK which is independent of the
securely computed function and, together with it, forms an ASK
of optimum rate. Also, a function that is securely computed by
can be augmented to form an SK for of maximum rate.
Our results extend trivially to functions defined on a block of

symbols of fixed length in an obvious manner by considering
larger alphabets composed of supersymbols of such length.
However, they do not cover sequences of functions of symbols
of increasing length (in ), e.g., a running average (in ).
In our proof of Theorem 5, was securely computed from

omniscience at all the terminals in that was attained
using noninteractive public communication. However, omni-
science is not necessary for the secure computation of , and
it is possible to make do with communication of rate less than

using an interactive protocol. A related unresolved
question is: What is the minimum rate of public communica-
tion for secure computation?
A natural generalization of the conditions for secure com-

putability of by given here entails a characteri-
zation of conditions for the secure computability of multiple
functions by subsets of , respectively.
This unsolved problem, in general, will not permit omniscience
for any . For instance with

, and and being independent, the functions
, are securely computable trivially, but not

through omniscience since, in this example, public communica-
tion is forbidden for the secure computation of .
Yet another direction involves a model in which the terminals

in securely compute , and the eavesdropper has
additional access to correlated side information that may not be
available to the terminals in . Specifically, the eavesdropper
observes i.i.d. repetitions of a -valued rv that has a
given joint pmf with , in addition to the public communi-
cation of the terminals in . The secrecy condition (3) is
replaced by

(36)

noting that need not be independent of . Having computed
securely, the terminals in can extract a rv ,

of rate , that is (nearly) independent of . To-
gether with (36), this means that is similarly independent of

. Since constitutes a “wiretap secret key” (WSK), its
rate necessarily cannot exceed the corresponding
WSK capacity [15], [1], [6]. A single-letter characterization of
WSK capacity remains unresolved in general (cf. [10]). The
sufficiency of the previous necessary condition is unclear even
when WSK capacity is known. In the special circumstance in
which the terminals in , too, have access to , a single-letter

characterization of WSK capacity is known [6]. In this case, our
proof technique shows that the aforementioned necessary con-
dition is also sufficient.

APPENDIX A

The proof of Lemma 3 is based on [8, Lemma, Sect. 4], which
is paraphrased first. Let the rvs and take values in the finite
set and , respectively. For a stochastic matrix ,
let be the ergodic decomposition (into communi-
cating classes) (cf. e.g., [13]) of based on . Let denote
a fixed ergodic class of (the -fold Cartesian product of )
on the basis of (the -fold product of ). Let and

be any (nonempty) subsets of and , respectively.

Lemma GK: [8] For as above, assume that

(A1)

where . Then (as stated in [8, bottom of p. 157])

(A2)

for a (positive) constant that depends only on the pmf of
and on .

A simple consequence of (A2) is that for a given ergodic
class and disjoint subsets of it, and sub-
sets (not necessarily distinct) of , such that

, satisfy (A1), it holds that

(A3)

Note that the ergodic decomposition of on the basis of
for the specific choice

corresponds to the set of values of defined by (15)
[8]. Next, pick , and define the
stochastic matrix by

(A4)

The ergodic decomposition of on the basis of
(with as in (A4)) will correspond to the set of values of

, recalling (14). Since is -recoverable
from , note that

also is -recoverable in the same sense, recalling Definition 7.
This implies the existence of mappings ,
satisfying

(A5)
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For each fixed value of , let

Let denote the set of ’s such that

(A6)

Then, as in [8, Proposition 1], it follows from (A5) that

(A7)

Next, we observe for each fixed , that the disjoint sets
lie in a fixed ergodic class of (determined by ). Since (A6)
are compatible with the assumption (A1) for all sufficiently
large, we have from (A3) that

(A8)

where depends on the pmf of and in (A4),
and where . Finally

where by (A7) and (A8).

APPENDIX B

Considering first the achievability part, fix . From the
result for a general source network [3, Theorem 13.14] it fol-
lows, as in the proof of [6, Prop. 1], that for
and all sufficiently large, there exists a noninteractive com-
munication with

such that is -recoverable from .
Therefore, is -recoverable
from . The last step takes recourse
to Lemma C2 in Appendix C. Specifically, choose

, whereby the

hypothesis (C2) of Lemma C2 is satisfied for all sufficiently
large. Fixing

Lemma C2 implies the existence of a , and thereby an ASK
, of rate

In particular, we can choose

Since was arbitrary, this establishes the achievability part.
We shall establish a stronger converse result by requiring the

ASK as in Definition 5 to satisfy the weaker secrecy condition
(7), or by allowing the ASK to depend explicitly on the ran-
domization but enforcing the strong secrecy condition (3).
Let be an -ASK for , achiev-
able using observations of length , randomization , public
communication and side information .
Then, by (7)

(B1)

Let denote the random value of the
ASK for a fixed . Since is -recoverable
from the rvs for each ,

-

(B2)

Also, for each

by the independence of and , and therefore, by
Lemma 3, for in the set in (B2),

(B3)

for all sufficiently large and where . Then,

(B4)
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by (B2) and (B3). The proof is now completed along the lines
of [6, Lemma 2 and Theorem 3]. Specifically, denoting the set
of positive integers by ,

where

(B5)

Consider . For , we have

Furthermore, since is -recoverable from
and for

with ,

(B6)

where

It follows from (B1) and (B4)–(B6) that

(B7)

where from (B6), and therefore

(B8)

Then, (B7), (B8) imply

(B9)

If as in Definition 5, then
and the converse part follows from (B9). On

the other hand, for , the proof is
completed using (3) in the manner of [6, Theorem 3]. This
completes the converse part.

APPENDIX C

Our proof of achievability in Theorem 4 and sufficiency in
Theorem 5 rely on a “balanced coloring lemma” in [1]; we state
a version of it from [6].

Lemma C1: [1, Lemma 3.1] Let be any family of pmfs
on a finite set , and let be such that satisfies

(C1)

for some . Then the probability that a randomly
selected mapping fails to satisfy

simultaneously for each , is less than .
In contrast with the application of Lemma C1 in [6, Lemma

B.2], our mentioned proofs call for a balanced coloring of a
set corresponding to a rv that differs from another rv for which
probability bounds are used. However, both rvs agree with high
probability when conditioned on a set of interest.
Consider rvs with values in finite sets , re-

spectively, where is a function of , and a mapping
. For , let be a subset of such that

(i) ;
(ii) given the event ,
there exists satisfying

(C2)

for and . Then the following holds.

Lemma C2: Let the rvs and the set be as above.
Further, assume that

(C3)
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Then, a randomly selected mapping fails
to satisfy

(C4)

with probability less than for a constant
.
Proof: Using the condition (i) in the definition of , the

left-hand side (LHS) of (C4) is bounded above by

Therefore, it is sufficient to prove that

(C5)

with probability greater than for a
constant .
Let

Then, since

we get from the extremities above that

(C6)

For and satisfying

we have that

Therefore, by (C6) and (C3), it follows that (see the first in-
equality at the bottom of the page), which is the same as

(C7)

The bound in (C7) will now play the role of [6, ineq. (50), p.
3059] and the remaining steps of our proof, which are parallel
to those in [6, Lemma B.2], are provided here for completeness.
Setting to be the set of those that satisfy the second

inequality at the bottom of the page, we get that

(C8)
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Next, defining

it holds for that

(C9)

Also,

(C10)

Further, for , if

(C11)

then from (C9), we have

(C12)

Therefore, denoting by the event
, and recalling the conditions that define in (C2),

we have for that

(C13)

where the first equality is by (C2), the second equality is due
to being a function of , and the previous inequality is by
(C11), (C12) and the definition of the set . Also, using (C8),
(C10), we get

(C14)

Now, the LHS of (C5) is bounded, using (C14), as

(C15)

Using (C13), the family of pmfs
satisfies the hypothesis (C1)

of Lemma C1 with replaced by and replaced by
; assume that so as to meet the condition

following (C1). The mentioned family consists of at most
pmfs. Therefore, using Lemma C1,

with probability greater than

for a constant . This completes the proof of (C5), and thereby
the lemma.
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