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Abstract-We consider a Gelfand-Pinsker discrete memoryless
channel (DMC) model and provide a strong converse for its
capacity. The strong converse is then used to obtain an upper
bound on the reliability function. Instrumental in our proofs is a
new technical lemma which provides an upper bound for the rate
of codes with codewords that are conditionally typical over large
message dependent subsets of a typical set of state sequences. This
technical result is a nonstraightforward analog of a known result
for a DMC without states that provides an upper bound on the
rate of a good code with codewords of a fixed type (to be found
in, for instance, the Csiszar-Korner book).

I. INTRODUCTION

We consider a state dependent discrete memoryless channel
(DMC), in which the underlying state process is indepen­
dent and identically distributed (i.i.d.) with known probability
mass function (pmf). The transmitter is provided access at
the outset to the entire state sequence prevailing during the
transmission of a codeword. The capacity of this DMC with
noncausal channel state information (CSI) at the transmitter
was determined in [1]. Known popularly as the Gelfand­
Pinsker channel, it has been widely studied for a broad range
of applications which include fingerprinting, watermarking,
broadcast communication, etc.

In this paper, we are concerned with the strong converse for
this channel as well as its reliability function, i.e., the largest
exponential rate of decay, with block codeword length, of the
decoding error probability. Even for a DMC without states, the
reliability function is not fully characterized for all rates below
channel capacity. Our main contributions are the following.
First, we provide a strong converse for the capacity of the
Gelfand-Pinsker DMC model, that is of independent interest.
Second, using this strong converse, we obtain an upper bound
for the reliability function; the later constitutes a line of attack
described earlier (see, for instance, [2]). Instrumental in the
proofs of both is a new technical result which provides an
upper bound on the rate of codes with codewords that are
conditionally typical over large message dependent subsets
of a typical set of state sequences. This technical result is
a non straightforward analog of [2, Lemma 2.1.4] for a DMC
without states; the latter provides a bound on the rate of a
good code with codewords of a fixed type.
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II. PRELIMINARIES

Consider a state dependent DMC W : X x S -----* Y
with finite input, state and output alphabets X, Sand y,
respectively. The S-valued state process {St}~1 is i.i.d. with
known pmf Ps. The probability law of the DMC is specified
by

n

Wn(y I x, s) == IIW(Yt I Xt, St),
t=1
x E X n

,S E S": y E yn.

We consider the Gelfand-Pinsker model [1] in which the
encoder possesses perfect CSI in a noncausal manner, i.e., the
entire state sequence prior to transmission. A (M, n )-code is
a pair of mappings (j, ¢) where the encoder j is a mapping

j: M x s- -----* X n

with M == {1, ... ,M} being the set of messages, while the
decoder ¢ is a mapping

¢:yn-----*M.

The rate of the code is (1/ n) log M. The corresponding
(maximum) probability of error is

e(j, ¢) == max ""' ps(s) X
mEM L..J

sESn

W n ( (¢ -1 ( m ))C I j (m, s), s) (1)

where ¢-1(m) == {y E yn : ¢(y) == m} and (.)C denotes
complement.

We restrict ourselves to the situation where the receiver has
no CSI. When the receiver, too, has (full) CSI, our results
apply in a standard manner by considering an associated DMC
with augmented output alphabet y x S.

Definition 1. Given 0 < E < 1, a number R > 0 is E­

achievable if for every 8 > 0 and for all n sufficiently large,
there exist (M, n )-codes (j, ¢) with (lin) log M > R - 8 and
e(j, ¢) < E; R is an achievable rate if it is e-achievable for
all 0 < E < 1. The supremum of all achievable rates is the
capacity C of DMC.
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For a random variable U with values in a finite set U, let
P denote the set of all pmfs PUSXY on U x 5 x X x Y with

Furthermore, let (I,¢) satisfy one of the following two con­
ditions

W n(¢- l (m ) I I(m, s), s) 2:: 1 - E, S E A(m), (8a)

IIA(~)II L W
n

(¢- l (m) I f(m, s), s)
sEA(m)

x == h(U,S)

for some mapping h,

U -G-S,X -0- Y,

PylX,s == W.

As is well-known [1]

C == maxI(U 1\ Y) - I(U 1\ S).
P

When the receiver, too, has (full) CSI it is known [3] that

(2)

(3)

(4)
2:: 1 - E.

Then, for' n 2:: N(IIXII, 11511, IIYII,T, E), it holds that

1
-logM:S I(U 1\ Y) - I(U 1\ S)
n

where PUSXy E P(PSPxl s, W).

(8b)

(9)

E(R) :S Esp(l + <5) + <5,

Esp == min max min [D(PsIIPs)
Ps PX\S VEV(R,PsPx\s)

+ D(VIIW I PSPxls)]

. 1
lim sup - log M n :S C.

n n

Proof ofLemma 1:
Our proof below is for the case when (8a) holds; the

case when (8b) holds can be proved similarly with minor
modifications. Specifically, in the latter case, we can find

This lemma plays an instrumental role In proving the
following two main results.

Theorem 2. (Strong Converse) Given 0 < E < 1 and a
sequence of (Mn,n) codes (In, ¢n) with e(In, ¢n) < E, it
holds that

1Inourassertions, we indicate the validity ofa statement "foralln 2:: N (.)"
by showing the explicit dependency of N; however the standard picking of
the"largest such N" from (finitely-many) such N s is not indicated.

Theorem 3. (Sphere Packing Bound) Given <5 > 0, for 0 <
R < C, it holds that

Remark 1. For the case when the receiver, too, possesses
(full) CSI, the sphere packing bound above coincides with
that obtained earlier in [4] for this case.

Remark 2. In (9), the terms D(psllps) and D(VIIW I
PsPx IS) account, respectively, for the shortcomings of a given
code for corresponding "bad" state pmf and "bad" channel.

(5)

(6)

(7)

A(m) ~ 7[~s]'

IIA(m)11 2> exp [n (H(Ps) ~ D],
I(m,s) E 7[~X\s](s), S E A(m).

C == maxI(X 1\ Y IS).
Px ls

III. STATEMENT OF RESULTS

Definition 2. The reliability function E(R), R 2:: 0, of the
DMC W with noncausal CSI, is the largest number E 2:: 0
such that for every <5 > 0 and for all sufficiently large n, there
exist n-Iength block codes (I,¢) as above of rate greater than
R - <5 and ei], ¢) :S exp [-n(E - <5)] (see for instance [2]).

For a given pmfPsx on 5 x X, denote by P(Psx, W) the
subset of P with Psx == Psx.

An upper bound for the reliability function E(R), 0 < R <
C, of a DMC without states, is derived in [2] using a strong
converse for codes with codewords of a fixed type. For a state where
dependent DMC with causal CSI at the transmitter and no
receiver CSI, a strong converse is given in [3]. An analogous
result is not available for the case of noncausal transmitter
CSI. For the latter situation, the following key lemma serves,
in effect, as an analog of [2, Corollary 2.1.4] and gives an with
upper bound on the rate of codes with codewords that are
conditionally typical over large message dependent subsets V(R, psx) = {V : X x S ----> y :
of the typical set of state sequences. We note that a direct max I(U 1\ Y) - I(U 1\ S) < R}.

PusxyEP(Psx,V)
extension of [2, Corollary 2.1.4] would have entailed a claim
over a subset of typical state sequences not depending on the
transmitted message; however, its validity is unclear.

For a DMC without states, the result in [2, Corollary 2.1.4]
provides, in effect, an image size characterization of a good
codeword set; this does not involve any auxiliary rv. In the
same spirit, our key technical lemma below provides an image
size characterization for good codeword sets for the non causal
DMC model, which now involves an auxiliary rv. IV. PROOFS OF RESULTS

Lemma 1. Let E, T > 0 be such that E + T < 1. Given a pmf We provide below the proofs of Lemma 1 and Theorems 2
~ and 3.

Ps on S and conditional pmf Px ls, let (I,¢) be a (M, n)-
code as above. For each m E M, let A( m) be a subset ofS"
which satisfies the following conditions

1955



rsrr 2009, Seoul, Korea, June 28 - July 3, 2009

subsets A'(m) of A(m), m E M, that satisfy (5)-(7) and
(8a) for some E', T' > 0 with E' + T' < 1 for all n sufficiently
large.

Set

B(m) == {(f(m, s), s) E X n x S" : s E A(m)}, m E M.

Let Py == PSX 0 W be a pmf on Y defined by

Py(y) == L psx(s, x)W(y I x, s), Y E y.
s,x

Consequently,

wn(7[~y] I f(m, s), s) > E + T, S E A(m), (10)

for all n ~ N(IIXII, ISII, IYII,T,E) (not depending on m and
s in A(m)). Denoting

C(m) == ¢-l(m) n 7[~y],

we see from (8a) and (10) that

Wn(C(m) I f(m, s), s) > T > 0, (f(m, s), s) E B(m),

so that

IIC(m)1I ~ gwn(B(m),T),

where Ilw» (B (m ), T) denotes the smallest cardinality of a
subset D of yn with

Wn(D I (f(m, s), s)) > T, (f(m, s), s) E B(m). (11)

With nu, == argminl:S;m:S;M IIC(m)II, we have

using the definition of B (m ). Using the image size character­
ization [2, Theorem 3.3.11], there exists an auxiliary rv U and
associated pmf PUSXy == PUlsxPSX W such that

J~ log gvn(B(mo), T) - H(SIU) - tJ < i,
I~ loggwn(B(mo),T) - H(YIU) - tl < i' (15)

where 0 ::; t ::; min{I(U 1\ Y), I(U 1\ S)}. Then, using (12),
(14), (15) we get

lIT
~ log M ::; I(U 1\ Y) + H(S I U) - ~ log IIA(ma) II + 2'

which by (6) yields

1
- log M ::; I(U 1\ Y) - I(U 1\ S) + T.
n

In (15), PUSXy belongs to P(PSPxls, W) but need not
satisfy (2). Finally, the asserted restriction to PuSXy E

P(PSPxls, W) follows from the convexity of I(U 1\ Y) ­
I(U 1\ S) in PXluS for a fixed Pus (as observed in [1]). •

Proof of Theorem 2:
Given 0 < E < 1 and a (M, n)-code (f, ¢) with ei], ¢) ::; E,

the proof involves the identification of sets A(m), m E M,
satisfying (5)-(7) and (8a). The assertion then follows from
Lemma 1. Note that ei], ¢) ::; E implies

L Ps (s) Wn(¢-l(m) I f(m, s), s) ~ 1 - E

sESn

for all m E M. Since Ps (7[;s]) ----> 1 as n ----> 00, we get that
for every m E M,

Consequently,

1 - T 1
-log M ::; H(Py) + - - -log gwn(B(ma),T).
n 6 n

Define a stochastic matrix V : X x S ----* S with

V (s' I x, s) == 1(s' == s),

Ps ( {s E 1[;s] : W n(¢- l (m) I f(m, s), s) > 1 ; E})
l-E

>-­- 3
(16)

(12) for all n ~ N ( II S II ,E). Denoting the set {.} in (16) by A(m),
clearly for every m E M,

l-E
Wn(¢-l(m) I f(m, s), s) ~ -2-' s E A(m),

In particular, if E satisfies

Vn(E I f(m, s), s) == l(s E E), s E S",

Vn(E I f(m, s), s) > T, S E A(m), (13)

it must be that A(m) ~ E, and since E == A(m) satisfies
(13), we get that

f(m, s) E T~(s), s E A(m),

IIA(m)1I ~ exp [n(H(Ps) - 2<5)],

and

ps(A(m))::"l;E

for n ~ N(IISII, E), whereby for an arbitrary <5 > 0, we get

IIA(m)1I ~ exp [n(H(Ps) - <5)]

for n ~ N(IISII, <5). Partitioning A(m), m E M, into sets
according to the (polynomially many) conditional types of
f(m, s) given s in A(m), we obtain a subset A(m) of A(m)
for which

(14)IIA(m)1I == gvn(B(m),T)

and let gvn be defined in a manner analogous to gwn above
with S" in the role of yn in (11). For any m E M and subset
E of S"; observe that
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for n 2 N(IISII, IIXII,b), where T;:(s) represents a set of
those sequences in xn that have the same conditional type
(depending only on m).

Once again, the polynomial size of such conditional types
yields a subset M' of M such that f(m, s) has a fixed
conditional type (not depending on m) given s in A(m), and
with

1 1
-log 11M' II 2 -logM-b
n n

for all n 2 N(IISII, IIXII,b). Finally, the strong converse
follows by applying Lemma 1 to the subcode corresponding
to M' and noting that b > 0 is arbitrary. •

Proof of Theorem 3:
Consider sequences of type Ps in S": Picking A(m)

Tpn, m E M, in the proof of Theorem 2, and following the
s A

arguments therein to extract the subset A(m) of A(m), we
have for a given b > 0 that for n 2 N(IISII, IIXII,b), there
exists a subset M' of M and a fixed conditional type, say
PXls (not depending on m), such that for every m EM',

A(m) ~ A(m) == Tp~,

IIA(m)II 2 exp [n(H(Ps) - b)],
f(m, s) E Tt (s), s E A(m),

XIS

1
-logllM'II2R-b.
n

Then for every V E V(R,PSPxls), we obtain using Lemma
1 (in its version with condition (8b)), that for every b' > 0,
there exists m E M' (possibly depending on b' and V) with

1
IIA(m)11 L V

n
((¢- l (mW I f(m, s), s) 2: 1 - 8'

sEA(m)

for all n 2 N(IISII, IIXII, IIYII, b'). For this m, apply [2,
Theorem 2.5.3, (5.21)] with the choices

Z == y n
X A(m),

S == (¢-l(m))c x A(m),

Q ( )
_ Vn(y I f(m,s),s)

1 y,s - IIA(m) II '
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Q ( )
_ wn(y I f(m,s),s)

2 y,s - IIA(m) II '

for (y, s) E Z, to obtain

IIA(~)II L W
n

((¢- l (mW I f(m,s),s)
sEA(m)

[
nD(VIIW I PXlsPS) + 1]

2 exp - 1 _ b' .

Finally,

ei], ¢) 2 L Ps (s)Wn((¢-l(m))C I f(m, s), s)
sEA(m)

2 exp[-n(D(Psllps)

+ D(VIIW I PXlsPs)(l + b) + b)]

for n 2 N(IISII, IIXII, IIYII, b, b'), whereby it follows that

. 1
lim sup - -log ei]: ¢)

n n
::; min max min [D(PsIIPs)

Ps PXIS VEV(R,PsPxls)

+ D(VIIW I PXlsPs)(l + b) + b]

for every b > O. •
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