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How Many Queries Will Resolve Common
Randomness?

Himanshu Tyagi and Prakash Narayan†

Abstract—A set of m terminals, observing correlated signals,
communicate interactively to generate common randomness for
a given subset of them. Knowing only the communication, how
many direct queries of the value of the common randomness
will resolve it? A general upper bound, valid for arbitrary signal
alphabets, is developed for the number of such queries by using
a query strategy that applies to all common randomness and
associated communication. When the underlying signals are in-
dependent and identically distributed repetitions of m correlated
random variables, the number of queries can be exponential in
signal length. For this case, the mentioned upper bound is tight
and leads to a single-letter formula for the largest query exponent,
which coincides with the secret key capacity of a corresponding
multiterminal source model. In fact, the upper bound constitutes
a strong converse for the optimum query exponent, and implies
also a new strong converse for secret key capacity. A key tool,
estimating the size of a large probability set in terms of Rényi
entropy, is interpreted separately, too, as a lossless block coding
result for general sources. As a particularization, it yields the
classic result for a discrete memoryless source.

Index Terms—Common randomness, Gaussian secret key ca-
pacity, interactive communication, query, query exponent, secret
key capacity, strong converse.

I. INTRODUCTION

A set of terminals observing correlated signals agree on
common randomness (CR), i.e., shared bits, by communicating
interactively among themselves. What is the maximum number
of queries of the form “Is CR = l?” with yes-no answers, that
an observer of (only) the communication must ask in order to
resolve the value of the CR? As an illustration, suppose that
two terminals observe, respectively, n independent and identi-
cally distributed (i.i.d.) repetitions of the finite-valued random
variables (rvs) X1 and X2. The terminals agree on CR Xn
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with terminal 1 communicating to terminal 2 a Slepian-Wolf
codeword of rate H (X1 | X2) obtained by random binning.
An observer of the bin index can ascertain the value of CR with
large probability in approximately exp [nI (X1 ∧X2)] queries
(corresponding to bin size). Our results show that more queries
cannot be incurred by any other form of CR and associated
interactive communication.
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In a general setting, terminals 1, ...,m observe, respectively,
n i.i.d. repetitions of the rvs X1, ..., Xm, and communicate
interactively to create CR, say L, for the terminals in a
given subset A ⊆ {1, ...,m}. For appropriate CR L and
communication F, the number of queries of the form “Is
L = l?” that an observer of F must ask to resolve L is
exponential in n. We find a single-letter formula for the largest
exponent E∗. Remarkably, this formula coincides with the
secret key (SK) capacity for a multitermial source model
with underlying rvs X1, ..., Xm [9], [10]. The latter is the
largest rate of nearly uniformly distributed CR for A that
meets the security requirement of being nearly independent
of the communication used to generate it. While it is to be
expected that E∗ is no smaller than SK capacity, the less-
restricted E∗ may seem a priori to be larger. But it is not so.
The coincidence brings out, in effect, an equivalence between
inflicting a maximum number of queries on an observer of F
on the one hand, and imposing the explicit secrecy constraint
above on the other hand. In fact, as in the achievability proof
of SK capacity in [9], the exponent E∗ is achieved by the
terminals in A attaining “omniscience,” i.e., by generating
CR L = (Xn

1 , ..., X
n
m) for A, using communication F of

minimum rate.
Alternatively, E∗ can be interpreted as the smallest rate of a

list of CR values produced by an observer of F which contains
L with large probability.

Our main contribution is a new technique for proving
converse results involving CR with interactive communication.
It relies on query strategies for L given F that do not depend
explicitly on the form of L or F, and do not require the
rvs (X1t, ..., Xmt)

n
t=1 to be finite-valued or i.i.d. In fact, our

converse results hold even when the underlying alphabets
are arbitrary, but under mild technical assumptions. Jointly
Gaussian rvs are treated as a special case. Furthermore, our
converses are strong in that the characterization of E∗ does not
depend on the probability of recovery of the CR. This, in turn,
leads to a new strong converse result for the SK capacity of
the multiterminal source model [9], [10]. A byproduct of our
technique is a simple lossless block coding result for general
finite sources, in terms of Rényi entropies. A particularization
recovers the classic lossless block coding result for i.i.d.
sources [24] without recourse to the asymptotic equipartition
property (AEP).

The number of queries above can be interpreted as a
measure of the correlation among the random signals observed
by the terminals: A stronger correlation necessitates more
queries for resolving the CR that can be generated by them.
Such a measure of correlation is in the spirit of the body of
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work on “guessing” the value of an rv based on a correlated
observation [21], [2], [3], [14].

The problem formulation and our main result characterizing
the optimum query exponent are given in the next section.
Simple and essential technical tools which also may be of
independent interest are presented in Section III. Achievability
is proved in Section IV. The less complex converse proof for
the case A = {1, ...,m} is given in Section V. However, this
proof does not extend to an arbitrary A ⊆ {1, ...,m}, for
which a different converse is provided in Section VI. Section
VII contains the strong converse result for SK capacity. A
converse for the optimum query exponent for rvs with arbitrary
alphabets is proved in Section VIII, with jointly Gaussian rvs
as a special case. The discussion in Section IX includes the
mentioned lossless block coding result for general sources.

II. MAIN RESULT

Let X1, . . . , Xm, m ≥ 2, be rvs with finite alphabets
X1, . . . ,Xm, respectively, and with a known joint probabil-
ity mass function (pmf) PX1,...,Xm . For any nonempty set
A ⊆ M = {1, . . . ,m}, we denote XA = (Xi, i ∈ A).
We denote n i.i.d. repetitions of XM = (X1, . . . , Xm) with
values in XM = X1×. . .×Xm by Xn

M = (Xn
1 , . . . , X

n
m) with

values in XnM = Xn1 × . . . × Xnm. Given ε > 0, for rvs U, V,
we say that U is ε-recoverable from V if P (U 6= f(V )) ≤ ε
for some function f(V ) of V . The cardinality of the range of
the rv U is denoted by ‖U‖, and the complement of a set A
by Ac. All logarithms and exponentials are with respect to the
base 2.

We consider a multiterminal source model for generating
CR using interactive communication. Terminals 1, . . . ,m ob-
serve, respectively, the sequences Xn

1 , . . . , X
n
m, of length n.

The terminals in a given set A ⊆ M wish to generate
CR using communication over a noiseless channel, possibly
interactively in several rounds.

Definition 1. Assume without any loss of generality that the
communication of the terminals in M occurs in consecutive
time slots in r rounds, where r can depend on n but is finite
for every n. Such communication is described in terms of the
mappings

f11, . . . , f1m, f21, . . . , f2m, . . . , fr1, . . . , frm,

with fji corresponding to a message in time slot j by terminal
i, 1 ≤ j ≤ r, 1 ≤ i ≤ m; in general, fji is allowed to yield
any function of Xn

i and of previous communication

φji = {fkl : k < j, l ∈M or k = j, l < i}

The corresponding rvs are termed collectively as interactive
communication

F = {F11, . . . , F1m, F21, . . . , F2m, . . . , Fr1, . . . , Frm},

where F = F(n)(Xn
M); the rv corresponding to φji is

denoted by Φji. Local randomization at the terminals is not
considered here for ease of exposition. In fact, allowing such
randomization does not improve our result; see Section IX-B.

Definition 2. Given interactive communication F as above,
an rv L = L(n) (Xn

M) is ε-common randomness (ε-CR) for
A from F if it is ε-recoverable from (Xn

i ,F), i ∈ A, i.e., if
there exist rvs Li = L

(n)
i (Xn

i ,F), i ∈ A, satisfying

P (Li = L, i ∈ A) ≥ 1− ε. (1)

The rv Li will be called an estimate of L at terminal i ∈ A.

A querier observing the communication F wants to resolve
the value of this CR L by asking questions of the form “Is
L = l?” with yes-no answers. While queries of this form
have been termed “guessing” [21], [2], [3], [14], we use the
terminology “query” since our approach covers a broader class
of query strategies; see Section IX-B.

Definition 3. For rvs U, V with values in the sets U ,V , a
query strategy q for U given V = v is a bijection q(·|v) :
U → {1, ..., |U|}, where the querier, upon observing V = v,
asks the question “Is U = u?” in the q(u|v)th query.

Thus, a query strategy q for resolving a CR L on the basis
of an observed communication F = i is an ordering of the
possible values of L. The terminals seek to generate a CR L
for A using communication F so as to make the task of the
querier observing F as onerous as possible. For instance, if
L were to be independent of F, then the querier necessarily
must search exhaustively over the set of possible values of L,
which can be exponentially large (in n).

Definition 4. Given 0 < ε < 1, a query exponent E > 0 is
ε-achievable if for every 0 < ε′ < 1, there exists an ε-CR L =
L(n) (Xn

M) for A ⊆ M from communication F = F (Xn
M)

such that for every query strategy q for L given F,

P
(
q(L | F) ≥ exp(nE)

)
> 1− ε′, (2)

for all n ≥ N(ε, ε′). The ε-optimum query exponent, denoted
E∗(ε), is the supremum of all ε-achievable query exponents;
E∗(ε) is nondecreasing in ε. The optimum query exponent E∗

is the infimum of E∗(ε) for 0 < ε < 1, i.e.,

E∗ = lim
ε→0

E∗(ε).

Remark. Clearly, 0 ≤ E∗ ≤ log |XM|.
Condition (2) forces any query strategy adopted by the querier
to have an exponential complexity (in n) with large probabil-
ity; E∗ is the largest value of the exponent that can be inflicted
on the querier.

Our main result is a single-letter characterization of the
optimum query exponent E∗. Let

B = {B (M : B 6= ∅,A * B} . (3)

Let Λ(A) be the set of all collections λ = {λB : B ∈ B} of
weights 0 ≤ λB ≤ 1, satisfying∑

B∈B:B3i
λB = 1, i ∈M. (4)

Every λ ∈ Λ(A) is called a fractional partition of M (see
[10], [18], [19], [20]).
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Theorem 1. The optimum query exponent E∗ equals

E∗ = E∗(ε) = H (XM)− max
λ∈Λ(A)

∑
B∈B

λBH (XB | XBc) ,

0 < ε < 1. (5)

Remarkably, the value of E∗ coincides with the secret key
(SK) capacity of a multiterminal source model [9], [10]. The
latter is the largest rate of a CR K = K (Xn

M) for A from
communication F, with K satisfying the “secrecy constraint”
of [9]:

lim
n
sin(K;F) = 0, (6)

where the security index sin is given by

sin(K;F) = log ‖K‖ −H(K | F) = D (PK,F ‖Punif × PF) ,
(7)

with Punif being the uniform pmf on {1, ..., ‖K‖}. In fact,
the achievability proof of Theorem 1 is straightforward and
employs, in effect, an SK in forming an appropriate CR L. We
show that for such a CR L, any query strategy is tantamount to
an exhaustive search over the set of values of the SK, a feature
that is apparent for a “perfect” SK with I(K ∧ F) = 0. The
difficult step in the proof of Theorem 1 is the converse part
which involves an appropriate query strategy, for arbitrary L
and F, that limits the incurred query exponents. Our strong
converse yields a uniform upper bound for E∗(ε), 0 < ε < 1.

We shall see that while the expression for E∗ in (5) lends
itself to the achievability proof of Theorem 1 in Section IV,
alternative forms are suited better for the converse proof. For
the latter, denoting

λsum =
∑
B∈B

λB , (8)

the expression (5) can be written also as

E∗ = min
λ∈Λ(A)

[∑
B∈B

λBH (XBc)− (λsum − 1)H (XM)

]
,

(9)

which is used in the converse proof for an arbitrary A ⊆ M
in Section VI. The converse proof for the case A = M is
facilitated by the fact that the right-side of (9) can be expressed
equivalently as [7] (see also [9, Example 4])

min
π

1

|π| − 1
D

(
PXM‖

|π|∏
i=1

PXπi

)
, (10)

where the minimum is over all (nontrivial) partitions π =
(π1, ..., πk) of M with |π| = k parts, 2 ≤ k ≤ m.

III. TECHNICAL TOOLS

The following simple observation relates the number of
queries in a query strategy q to the cardinality of an associated
set.

Proposition 2. Let q be a query strategy for U given V = v,
v ∈ V . Then,

|{u ∈ U : q(u|v) ≤ γ}| ≤ γ.

Proof. The claim is straightforward since q(·|v) is a bijec-
tion.
For rvs U, V , finding a lower bound for q(U |V ) involves
finding a suitable upper bound for the conditional probabilities
PU |V (· | ·). This idea is formalized by the following lemma.

Lemma 3. Given γ > 0 and 0 < δ < 1/2, let the rvs U, V ,
satisfy

P

({
(u, v) : PU |V (u|v) ≤ δ

γ

})
≥ 1− δ. (11)

Then for every query strategy q for U given V ,

P (q(U |V ) ≥ γ) ≥ 1− ε′, (12)

for all ε′ ≥ 2δ.
Conversely, if (12) holds for every query strategy q for U

given V , with 0 < ε′ ≤ (1−
√
δ)2, then

P

({
(u, v) : PU |V (u|v) ≤ 1

γ

})
≥ δ. (13)

Proof. Suppose (11) holds but not (12). Then there exists q
with

P (q(U |V ) < γ) > ε′. (14)

From (11) and (14)

P

({
(u, v) : PU |V (u|v) ≤ δ

γ
, q(u|v) < γ

})
> 1− δ + ε′ − 1 = ε′ − δ. (15)

On the other hand, the left side of (15) equals∑
v

PV (v)
∑

u:q(u|v)<γ, PU|V (u|v)≤ δγ

PU |V (u|v)

≤ γ. δ
γ
, by Proposition 2

= δ,

which contradicts (15) since ε′ ≥ 2δ.
For the converse, suppose that (13) does not hold; then, we

show that a query strategy q0 exists which violates (12) when
0 < ε′ ≤ (1−

√
δ)2. The negation of (13) is

P

({
(u, v) : PU |V (u|v) >

1

γ

})
> 1− δ,

which, by a reverse Markov inequality1 [17, p. 157] (see also
[12, p. 153]), gives a set V0 ⊆ V with

PV (V0) > 1−
√
δ, (16)

and

PU |V

({
(u : PU |V (u|v) >

1

γ

} ∣∣∣∣ v) > 1−
√
δ, v ∈ V0.

(17)

Denoting by Uv the set {·} in (17), we have

1 ≥ PU |V (Uv | v) >
|Uv|
γ
,

1The reverse Markov inequality states that for rvs U, V with
P ((U, V ) ∈ S) ≥ 1−ε for some S ⊆ U×V , there exists V0 ⊆ V such that
P ((U, V ) ∈ S | V = v) ≥ 1−

√
ε, v ∈ V0, and P (V ∈ V0) ≥ 1−

√
ε.
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so that

|Uv| < γ, v ∈ V0. (18)

For each v ∈ V0, order the elements of U arbitrarily but with
the first |Uv| elements being from Uv . This ordering defines
a query strategy q0(·|v), v ∈ V0; for v /∈ V0, let q0(·|v) be
defined arbitrarily. Then for v ∈ V0, u ∈ Uv ,

q0(u|v) < γ

by (18), so that

P (q0(U |V ) < γ) ≥
∑
v∈V0

∑
u∈Uv

PU,V (u, v)

> (1−
√
δ)2, (19)

by (16) and (17). So, q = q0 violates (12) when ε′ ≤ (1 −√
δ)2.
The next result relates the cardinalities of large probability

sets to Rényi entropy. The first part is used in the converse
proofs of Theorem 1. The mentioned result is of independent
interest. For instance, in Section IX it is shown to yield an
elementary alternative proof of the source coding theorem for
an i.i.d. (finite-valued) source.

Definition 5. [23] Let µ be a nonnegative measure on U . For
0 ≤ α 6= 1, the Rényi entropy of order α of µ is defined as

Hα(µ) =
1

1− α
log
∑
u∈U

µ(u)α.

Lemma 4. (i) For every 0 < δ < µ(U), there exists a set
Uδ ⊆ U such that

µ (Uδ) ≥ µ(U)− δ, (20)

and

|Uδ| ≤ δ−α/(1−α) exp (Hα(µ)) , 0 ≤ α < 1. (21)

(ii) Conversely, for δ, δ′ > 0, δ + δ′ < µ(U), any set Uδ ⊆ U
with µ (Uδ) as in (20) must satisfy

|Uδ| ≥ (δ′)
1/(α−1)

(µ(U)− δ − δ′) exp (Hα(µ)) , α > 1.
(22)

Proof. (i) For 0 ≤ α < 1, defining

Uδ =
{
u ∈ U : µ(u) > δ

1
1−α exp [−Hα(µ)]

}
,

we get

µ(U) = µ(Uδ) +
∑

u: µ(u)≤ δ
1

1−α exp[−Hα(µ)]

µ(u).

Writing the summand in the right-side above as µ(u) =
µ(u)αµ(u)1−α, we obtain

µ(U) ≤ µ(Uδ) + δ exp [−(1− α)Hα(µ)]
∑
u∈U

µ(u)α

= µ (Uδ) + δ,

which is (20). Furthermore,

exp [(1− α)Hα(µ)] =
∑
u∈U

µ(u)α

≥
∑
u∈Uδ

µ(u)α

≥ |Uδ|δ
α

1−α exp [−αHα(µ)] ,

which gives (21).
(ii) By following the steps in the proof of (i), for α > 1, it
can shown that the set

U0 =
{
u ∈ U : µ(u) < (δ′)

1/(1−α)
exp[−Hα(µ)]

}
(23)

has
µ(U0) > µ(U)− δ′,

which, with (20), gives

µ(U0 ∩ Uδ) > µ(U)− δ − δ′.

Since by (23)

µ(U0 ∩ Uδ) < |U0 ∩ Uδ| (δ′)
1/(1−α)

exp[−Hα(µ)],

(22) follows.
Finally, the following simple observation will be useful.

Proposition 5. For pmfs Q1, Q2, on V ,

Q1 ({v : Q1(v) ≥ δQ2(v)}) ≥ 1− δ, 0 < δ < 1.

Proof. The claim follows from∑
v∈V:Q1(v)<δQ2(v)

Q1(v) <
∑

v∈V:Q1(v)<δQ2(v)

δ Q2(v) ≤ δ.

IV. ACHIEVABILITY PROOF OF THEOREM 1

Denoting the right-side of (5) by C, we claim, for 0 < ε < 1,
0 < δ < 1/2, β > 0, the existence of an ε-CR L = Xn

M for
A from F with

P
({

(xnM, i) : PL|F (xnM | i) ≤ δ exp [−n(C − β)]
})
≥ 1− δ,

(24)

for all n sufficiently large. Then the assertion of the theorem
follows by applying the first part of Lemma 3 with U = L,
V = F, γ = exp[n(C − β)], to conclude from (12) that

E∗(ε) ≥ C,

since β > 0 was chosen arbitrarily.
Turning to the mentioned claim, it is shown in [9, Proposi-

tion 1], [10, Theorem 3.1] that there exists communication F
such that L = Xn

M is ε-CR for A from F with

1

n
log ‖F‖ ≤ max

λ∈Λ(A)

∑
B∈B

λBH (XB | XBc) +
β

3
, (25)

for all n sufficiently large. Using Proposition 5 with Q1 = PF

and Q2 being the uniform pmf over the range of F, we get

PF

({
i : PF (i) ≥ δ

2‖F‖

})
≥ 1− δ

2
. (26)
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Also, for xnM in the set Tn of PXM -typical sequences with
constant δ [11, Definition 2.8], we have

PXnM (xnM) ≤ exp

[
−n
(
H (XM)− β

3

)]
(27)

and

PXnM (Tn) ≥ 1− δ

2
,

for all n sufficiently large. Denoting by I0 the set on the left-
side of (26), it follows that

P (Xn
M ∈ Tn,F ∈ I0) ≥ 1− δ. (28)

The claim results from (26)-(28) upon observing that for
(xnM, i) ∈ T n × I0,

PXnM|F (xnM | i) =
PXnM ((xnM))1 (F (xnM) = i)

PF (i)

≤
2 exp

[
−n
(
H (XM)− β

3

)]
‖F‖

δ
≤ δ exp[−n(C − β)],

for all n large enough, where the last inequality is by (25).

Remark. The achievability proof brings out a connection
between a large probability uniform upper bound κ for PL, the
size ‖F‖ of the communication F, and the associated number
of queries needed. Loosely speaking, the number of queries
is approximately 1

‖F‖κ , which reduces to ‖L‖‖F‖ if L is nearly
uniformly distributed.

V. CONVERSE PROOF OF THEOREM 1 FOR A =M

Recalling the expression for E∗ in (10), given a partition
π of M with |π| = k, 2 ≤ k ≤ m, we observe that for a
consolidated source model with k sources and underlying rvs
Y1, ..., Yk where2 Yi = Xπi , the ε-optimum query exponent
E∗π(ε) can be no smaller than E∗(ε) (since the terminals in
each πi coalesce, in effect).

Theorem 6. For every partition π of M with |π| = k,

E∗π(ε) ≤ 1

k − 1
D

(
PY1,...,Yk‖

k∏
i=1

PYi

)
, 0 < ε < 1,

and so

E∗(ε) ≤ min
π
E∗π(ε) ≤ min

π

1

|π| − 1
D

(
PXM‖

|π|∏
i=1

PXπi

)
.

Theorem 6 establishes, in view of (10), the converse part of
Theorem 1 when A =M.

The proof of Theorem 6 relies on the following general
result, which holds for queries of CR generated in a multiter-
minal source model with underlying rvs Y1, ..., Yk for n = 1.

2For specificity, the elements in each πi are arranged in increasing order.

Theorem 7. Let L = L (Y1, ..., Yk) be ε-CR for {1, ..., k} from
interactive communication F = F (Y1, ..., Yk), 0 < ε < 1.
Given δ > 0 such that δ +

√
δ + ε < 1, let θ be such that

P

({
(y1, ..., yk) :

PY1,...,Yk (y1, ..., yk)∏k
i=1 PYi (yi)

≤ θ

})
≥ 1− δ.

(29)

Then, there exists a query strategy q0 for L given F such that

P

(
q0(L | F) ≤

(
θ

δ2

) 1
k−1

)
≥ (1− δ −

√
δ + ε)2. (30)

Proof of Theorem 6. We apply Theorem 7 to n i.i.d.
repetitions of the rvs Y1, ..., Yk. Denoting by T ′n the set of
PY1,...,Yk -typical sequences with constant δ, we have

PY n1 ,...,Y nk (T ′n) ≥ 1− δ,

and for (yn1 , ..., y
n
k ) ∈ T ′n,

PY n1 ,...,Y nk (yn1 , ..., y
n
k )∏k

i=1 PY ni (yni )

≤ exp

[
n

( k∑
i=1

H (Yi)−H (Y1, ..., Yk) + δ

)]

= exp

[
n

(
D

(
PY1,...,Yk‖

k∏
i=1

PYi

)
+ δ

)]
,

for all n large enough. Thus, the hypothesis of Theorem 7
holds with

θ = θn = exp

[
n

(
D

(
PY1,...,Yk‖

k∏
i=1

PYi

)
+ δ

)]
.

If E is an ε-achievable query exponent (see Definition 4), then
there exists an ε-CR L = L (Y n1 , ..., Y

n
k ) from communication

F = F (Y n1 , ..., Y
n
k ) such that (2) holds for the query strategy

q0 of Theorem 7 for this choice of L and F. In particular for
ε′ < (1− δ −

√
δ + ε)2, we get from (30) and (2) that

P

(
exp(nE) ≤ q0(L | F) ≤ δ−2/(k−1)×

exp

[
n

(
1

k − 1
D

(
PY1,...,Yk‖

k∏
i=1

PYi

)
+

δ

k − 1

)])
≥ (1− δ −

√
δ + ε)2 − ε′ > 0, (31)

for all n sufficiently large. It follows that

E ≤ 1

k − 1
D

(
PY1,...,Yk‖

k∏
i=1

PYi

)
+

2δ

k − 1
.

Since E was any ε-achievable query exponent and δ > 0 was
chosen arbitrarily, the assertion of Theorem 6 is established.

Proof of Theorem 7. Denote by L the set of values of the CR
L. Using the hypothesis (29) of the Theorem, we shall show
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below the existence of a set Io of values of F and associated
sets L(i) ⊆ L, i ∈ I0, such that for every i ∈ I0

PL|F (L(i) | i) ≥ 1− δ −
√
ε+ δ, (32)

|L(i)| ≤
(
θ

δ2

) 1
k−1

, (33)

and PF (I0) ≥ 1− δ −
√
ε+ δ. (34)

Then, we consider a query strategy q0 for L given F as in
the proof of converse part of Lemma 3, with L, F, I0, L(i)
in the roles of U, V, V0, Uv , respectively. Thus, for all i ∈ I0,
l ∈ L(i),

q0(l | i) ≤ |L(i)| ≤
(
θ

δ2

) 1
k−1

,

and so, as in (19), we get by (32)-(34),

P

(
q0(L | F) ≤

(
θ

δ2

) 1
k−1

)
≥ (1− δ −

√
δ + ε)2,

thereby establishing the assertion (30).
The existence of the sets I0 and {L(i), i ∈ I0} satisfying

(32)-(34) is argued in three steps below.
Step 1. First, we note the following simple property of interac-
tive communication: if rvs Y1, ..., Yk are mutually independent,
they remain mutually independent when conditioned on an
interactive communication F.

Lemma 8. Let the pmf P̃Y1,...,Yk be such that

P̃Y1,...,Yk =

k∏
j=1

P̃Yj . (35)

Then, for i = F (y1, ..., yk), we have

P̃Y1,...,Yk|F (y1, ..., yk | i) =

k∏
j=1

P̃Yj |F (yj | i) . (36)

Proof. The proof follows upon observing that

IP̃ (Yj ∧ Y1, ..., Yj−1, Yj+1, ..., Yk | F)

≤ IP̃ (Yj ∧ Y1, ..., Yj−1, Yj+1, ..., Yk)

= 0, j = 1, ..., k, (37)

where the first inequality is by [1, Lemma 2.2] upon choosing
U = Yj , V = (Y1, ..., Yj−1, Yj+1, ..., Yk), Φ to be the com-
munication from terminal j, and Ψ to be the communication
from the remaining terminals.

Hereafter in this proof, we shall select

P̃Yj = PYj , j = 1, ..., k. (38)

Step 2. In this step, we select the aforementioned set of
communication values I0. Let Lj = Lj (Yj ,F) denote an
estimate of CR L at terminal j, j = 1, ..., k (see Definition
2). Denote by T0 the set {·} on the left side of (29). For each
realization (l, i) of (L,F), denote by Al,i ⊆ Y1× ...×Yk the
set

Al,i =T0 ∩ {(y1, ..., yk) : F (y1, ..., yk) = i,

Lj (yj , i) = L (y1, ..., yk) = l, j = 1, ..., k} . (39)

Since L is ε-CR from F, we have from (1) and (29) that

P ((Y1, ..., Yk) ∈ AL,F) ≥ 1− ε− δ.

By a reverse Markov inequality, there exists a set I1 of values
of F with

PF (I1) ≥ 1−
√
ε+ δ, (40)

and

P ((Y1, ..., Yk) ∈ AL,F | F = i) ≥ 1−
√
ε+ δ, i ∈ I1. (41)

Next, denote by I2 the set of values of F such that

δP̃F (i) ≤ PF (i) , i ∈ I2, (42)

where P̃F is, as usual, the distribution of F under P̃. From
Proposition 5 with Q1 = PF, Q2 = P̃F, we have

PF (I2) ≥ 1− δ. (43)

Thus, by (40) and (43), I0 , I1 ∩ I2 satisfies (34).
Step 3. In this step, we identify sets L(i) that satisfy (32) and
(33). For each i ∈ I0, the sets Al,i corresponding to different
values l are disjoint. Upon defining the nonnegative measure3

µ on L for each i ∈ I0 by

µ(l) , PY1,...,Yk|F (Al,i | i) , l ∈ L, (44)

we get

µ(L) =
∑
l∈L

PY1,...,Yk|F (Al,i | i)

= P ((Y1, ..., Yk) ∈ AL,i | F = i)

≥ 1−
√
ε+ δ,

by (41). Applying Lemma 4 (i) with L in the role of U , we
set L(i) = Uδ , and so

µ(L(i)) ≥ µ(L)− δ
≥ 1− δ −

√
ε+ δ (45)

and

|L(i)| ≤ δ−α/(1−α) exp (Hα(µ)) , 0 ≤ α < 1. (46)

It follows from (45) that

PL|F (L(i) | i) ≥
∑
l∈L(i)

PY1,...,Yk|F (Al,i | i)

= µ(L(i))

≥ 1− δ −
√
ε+ δ, (47)

which establishes (32).
Finally, we obtain an upper bound on exp (Hα(µ)) for α =

1
k , which will lead to (33). Denote by Ajl,i ⊆ Yj the projection
of the set Al,i ⊆ Y1 × ... × Yk along the jth coordinate,
j = 1, ..., k. The sets Ajl,i are disjoint for different values of

3Although µ depends on i, our notation will suppress this dependence.
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l, by definition (see (39)). Thus, for the pmf P̃Y1,..,Yk in (35),
(38), we have

1 ≥
k∏
j=1

[∑
l∈L

P̃Yj |F

(
Ajl,i | i

)]

≥

∑
l∈L

 k∏
j=1

P̃Yj |F

(
Ajl,i | i

) 1
k

k , (48)

where the last step follows from Hölder’s inequality4 [16,
Section 2.7]. Using (36), the right-side of (48) is the same
as [∑

l∈L

P̃Y1,...,Yk|F
(
A1
l,i × ...×Akl,i | i

) 1
k

]k
,

which is bounded below by[∑
l∈L

P̃Y1,...,Yk|F (Al,i | i)
1
k

]k
, (49)

since

Al,i ⊆ A1
l,i × ...×Akl,i. (50)

Upon noting that Al,i ⊆ T0, for all (y1, ..., yk) ∈ Al,i, it
follows that

P̃Y1,...,Yk|F (y1, ..., yk | i) =
P̃Y1,...,Yk (y1, ..., yk)

P̃F (i)

=

∏k
j=1 P̃Yj (yj)

P̃F (i)

=

∏k
j=1 PYj (yj)

P̃F (i)

≥ PY1,...,Yk (y1, ..., yk)

θ P̃F (i)

≥
PY1,...,Yk|F (y1, ..., yk | i)

δ−1 θ
,

where the third equality and the subsequent inequalities are by
(38), (29) and (42), respectively. Combining the observations
above with (48) and (49), we get

1 ≥

[∑
l∈L

(
PY1,...,Yk|F (Al,i | i)

δ−1 θ

) 1
k

]k
,

=
δ

θ

[∑
l∈L

µ(l)
1
k

]k
,

which, recalling Definition 5, further yields

exp
(
H 1

k
(µ)
)

=

[∑
l∈L

µ(l)
1
k

] k
k−1

≤
(
θ

δ

) 1
k−1

.

The previous bound, along with (46), gives (33).

4See [25, equation (33)] for an early use of Hölder’s inequality in a CR
converse proof.

VI. CONVERSE PROOF OF THEOREM 1 FOR ARBITRARY
A ⊆M

The converse technique of the previous section for A =M
can be extended to an arbitrary A ⊆M, yielding an analogous
upper bound for E∗(ε) in terms of divergences. However, the
resulting upper bound is inadequate as it is known to exceed
the expression in the right-side of (9) (see [6]). In this section,
we develop a new converse technique that targets directly the
latter.

The main steps of the general converse proof for the case
A ⊆ M are analogous to those in the previous section. The
central step is the counterpart of Theorem 7, which is given
next. Given a fractional partition λ as in (4), its dual partition
is λ = λ(λ) =

{
λBc , B ∈ B

}
with

λBc =
λB

λsum − 1
, B ∈ B, (51)

where B is defined in (3) and λsum is given by (8). It is known
from [20], and can be seen also from (4) and (8), that∑

B∈B:Bc3i
λBc =

1

λsum − 1

∑
B∈B:Bc3i

λB

=
1

λsum − 1

[∑
B∈B

λB −
∑

B∈B:B3i
λB

]

=
1

λsum − 1
[λsum − 1] = 1, i ∈M, (52)

so that λ, too, is a fractional partition of M.

Theorem 9. Let L = L (Y1, ..., Ym) be ε-CR for A from
interactive communication F = F (Y1, ..., Ym), 0 < ε < 1.
Given δ > 0 such that δ +

√
δ + ε < 1 and a fractional

partition λ ∈ Λ(A), let θBc , B ∈ B, and θ0 be such that

P

({
yM : PYM (yM) ≤ 1

θ0
, PYBc (yBc) ≥

1

θBc
, B ∈ B

})
≥ 1− δ. (53)

Then, with

θ =

∏
B∈B

θλBcBc

θ0
, (54)

there exists a query strategy q0 for L given F such that

P

(
q0(L | F) ≤

(
θ

κ(δ)

)λsum−1
)
≥ (1− δ −

√
δ + ε)2,

(55)

where κ(δ) = (m2m)
−m

δm+1.

Proof. As in the proof of Theorem 7, the assertion (55) will
follow upon showing the existence of sets I0 and L(i) ⊆ L,
i ∈ I0, such that (32) and (34) are satisfied, along with the
following replacement for (33):

|L(i)| ≤
(

θ

κ(δ)

)λsum−1

, i ∈ I0. (56)

To this end, we provide here appropriate replacements for the
three steps in the proof of Theorem 7.
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Step 1. For each B (M, consider the pmf P̃BYM defined by

P̃BYM (yM) = PYB (yB) PYBc (yBc) (57)

Note that P̃B ≡ P̃B
c

. The collection of pmfs
{

P̃B
c

, B ∈ B
}

serve as a replacement for the pmf P̃ in (35).
For the pmf P̃B in (57), we note that

IP̃B (YB ∧ Fkj | Φkj) = 0, j ∈ Bc, (58)

since Fkj = fkj (Yj ,Φkj) and YBc is independent of YB
conditioned on Φkj . The following Lemma serves the role
of Lemma 8.

Lemma 10. For B (M and i = F (yM), we have

P̃BYB |F (yB | i) =
PYB (yB)∏r

k=1

∏
j∈B P̃BFkj |Φkj

(
ikj | i−kj

) , (59)

where i−kj denotes the past values of communication in i for
round k and terminal j.

Proof. Note that

P̃BYB |F (yB | i) =
P̃BF|YB (i | yB) P̃BYB (yB)

P̃BF (i)

=
P̃BF|YB (i | yB) PYB (yB)

P̃BF (i)
, (60)

where the previous step is by (57). Furthermore,

P̃BF|YB (i | yB) =

r∏
k=1

m∏
j=1

P̃BFkj |YB ,Φkj

(
ikj | yB , i−kj

)
=

r∏
k=1

∏
j∈Bc

P̃BFkj |YB ,Φkj

(
ikj | yB , i−kj

)
=

r∏
k=1

∏
j∈Bc

P̃BFkj |Φkj

(
ikj | i−kj

)
, (61)

where the last step uses (58). Next,

P̃BF (i)

=

r∏
k=1

m∏
j=1

P̃BFkj |Φkj

(
ikj | i−kj

)

=

r∏
k=1

∏
j∈B

P̃BFkj |Φkj

(
ikj | i−kj

) ∏
j∈Bc

P̃BFkj |Φkj

(
ikj | i−kj

) .

(62)

Then (60), along with (61) and (62), gives (59).
Step 2. Denoting by T0 the set {·} on the left-side of (53), for
each L = l,F = i, define

Al,i =T0 ∩ {yM : F (yM) = i,

Lj (yj , i) = L (yM) = l, j ∈ A} . (63)

Analogous to the proof of Theorem 7, the set I1 of values of
F with

P (YM ∈ AL,F | F = i) ≥ 1−
√
ε+ δ, i ∈ I1,

satisfies

PF (I1) ≥ 1−
√
ε+ δ.

For j ∈M and B (M, denote by Ij,B the set of i such that

(m2m)
−1
δ

r∏
k=1

P̃BFkj |Φkj

(
ikj | i−kj

)
≤

r∏
k=1

PFkj |Φkj

(
ikj | i−kj

)
. (64)

The following simple extension of Proposition 5 holds:

PF

(
Icj,B

)
=
∑

i∈Icj,B

PF (i)

=
∑

i∈Icj,B

m∏
l=1

r∏
k=1

PFkl|Φkl
(
ikl | i−kl

)

=
∑

i∈Icj,B

∏
l 6=j

r∏
k=1

PFkl|Φkl
(
ikl | i−kl

)×
r∏

k=1

PFkj |Φkj

(
ikj | i−kj

)

< (m2m)
−1
δ
∑

i∈Icj,B

∏
l 6=j

r∏
k=1

PFkl|Φkl
(
ikl | i−kl

)×
r∏

k=1

P̃BFkj |Φkj

(
ikj | i−kj

)

≤ (m2m)
−1
δ
∑
i

∏
l 6=j

r∏
k=1

PFkl|Φkl
(
ikl | i−kl

)×
r∏

k=1

P̃BFkj |Φkj

(
ikj | i−kj

)
= (m2m)

−1
δ, (65)

where the first inequality is by (64), and (65) holds since the
summand is a pmf for F, as can be seen by directly computing

the sum. Defining I2 =

m⋂
j=1

⋂
B(M

Ij,B , we get

PF (I2) ≥ 1− δ.

The set I0 is defined as I1 ∩ I2, and satisfies (34).
Step 3. Finally, we define sets L(i) ⊆ L, i ∈ I0 that satisfy
(32) and (56). For each i ∈ I0, let

µ(l) = PYM|F (Al,i | i) , l ∈ L. (66)

Then, the sets L(i) satisfying (32) are obtained by an appli-
cation of Lemma 4 (i) as in (45) and (46) above.

The condition (56) will be obtained upon showing that for

α =
λsum − 1

λsum
, (67)

it holds that

δ−α/(1−α) exp (Hα(µ)) ≤
(

θ

κ(δ)

)λsum−1

. (68)
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To do so, first note that for each B ∈ B, the set Bc ∩ A is
nonempty. Thus, by (63), the projections AB

c

l,i of Al,i along
the coordinates in Bc (M are disjoint across l ∈ L. Thus,

1 ≥
∏
B∈B

(∑
l∈L

P̃B
c

YM|F

(
AB

c

l,i | i
))λB

.

Using Hölder’s inequality [16, Section 2.7], and recalling (51)
and (8) we get

1 ≥

[∑
l∈L

(∏
B∈B

P̃B
c

YM|F

(
AB

c

l,i | i
)λBc)α ] 1

1−α

. (69)

Next, note from Lemma 10 that

P̃B
c

YM|F

(
AB

c

l,i | i
)

=

∑
yBc∈AB

c

l,i

PYBc (yBc)

r∏
k=1

∏
j∈Bc

P̃B
c

Fkj |Φkj

(
ikj | i−kj

) ,
which, since the order of products can be interchanged, and
upon using (64), is bounded below by∑

yBc∈AB
c

l,i

PYBc (yBc)

∏
j∈Bc

(m2m) δ−1
r∏

k=1

[
PFkj |Φkj

(
ikj | i−kj

)] .
It follows that∏

B∈B
P̃B

c

YM|F

(
AB

c

l,i | i
)λBc

≥

∏
B∈B

 ∑
yBc∈AB

c

l,i

PYBc (yBc)


λBc

∏
B∈B

∏
j∈Bc

[
(m2m) δ−1

r∏
k=1

PFkj |Φkj

(
ikj | i−kj

)]λBc .
(70)

The right-side of (70) can be simplified by noting that

∏
B∈B

∏
j∈Bc

[
(m2m) δ−1

r∏
k=1

PFkj |Φkj

(
ikj | i−kj

)]λBc

=

m∏
j=1

[
(m2m) δ−1

r∏
k=1

PFkj |Φkj

(
ikj | i−kj

)]∑B∈B:Bc3j λBc

=

(
m2m

δ

)m
PF (i) , (71)

where the previous step uses (52). The definition of T0, along
with (70) and (71), gives∏

B∈B
P̃B

c

YM|F

(
AB

c

l,i | i
)λBc

≥ δm

(m2m)
m

PF (i)

∏
B∈B

(∣∣ABcl,i ∣∣
θBc

)λBc
. (72)

Also, since Al,i ⊆ T0, we have

PYM (Al,i) ≤
∣∣Al,i∣∣
θ0

,

which, with (54) and (72), gives∏
B∈B

P̃B
c

YM|F

(
AB

c

l,i | i
)λBc

≥ δm

(m2m)
m
θ

∏B∈B
∣∣ABcl,i ∣∣λBc∣∣Al,i∣∣

PYM|F (Al,i | i) . (73)

Since λ is a fractional partition, [19, Corollary 3.4] implies∏B∈B
∣∣ABcl,i ∣∣λBc∣∣Al,i∣∣

 ≥ 1, (74)

which combined with (69)-(74) yields

1 ≥
(

δm

(m2m)
m
θ

) α
1−α

[∑
l∈L

µ(l)α

] 1
1−α

.

The previous inequality implies (68) since
α

1− α
= λsum − 1.

VII. STRONG CONVERSE FOR SECRET KEY CAPACITY

A byproduct of Theorem 1 is a new result that establishes a
strong converse for the SK capacity of a multiterminal source
model, for the terminals in A ⊆M. In this context, we shall
consider – without loss of effect – a weaker notion of security
index than in (7), defined in terms of variational distance:

svar(K;F) =
∑
i

PF (i)

‖K‖∑
k=1

∣∣∣∣PK|F (k | i)− 1

‖K‖

∣∣∣∣ . (75)

However, the requirement (6) on sin will be replaced now by

lim
n
nsvar(K;F) = 0. (76)

Definition 6. Given 0 < ε < 1, R ≥ 0 is an ε-achievable SK
rate for A ⊆M if for every ρ > 0, there is an N = N(ε, ρ)
such that for every n ≥ N , there exists an ε-CR K = K (Xn

M)
for A from F satisfying

1

n
log ‖K‖ ≥ R− ρ, (77)

and

svar(K;F) ≤ ρ

n
. (78)

The supremum of ε-achievable SK rates is the ε-SK capac-
ity, denoted C(ε). The SK capacity is the infimum of C(ε) for
0 < ε < 1. We recall the following.

Theorem 11. [9] The secret key capacity for A ⊆M is

C = E∗ = H (XM)− max
λ∈Λ(A)

∑
B∈B

λBH (XB | XBc) ,

0 < ε < 1.
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Remark. The (new) secrecy requirement (76) is not unduly
restrictive. Indeed, the achievability proof of Theorem 11 [9]
holds with sin(K;F) vanishing to zero exponentially rapidly
in n, which, by Pinsker’s inequality (cf. [11]), implies (76).
The converse proof in [9] was shown under the “weak secrecy”
condition

lim
n

1

n
I(K ∧ F) = 0, (79)

which, in turn, is implied by (76) by a simple application of
[9, Lemma 1].

The strong converse for SK capacity, valid under (76), is
given next.

Theorem 12. For every 0 < ε < 1, it holds that

C(ε) = C. (80)

Remark. It is not known if the strong converse in Theorem 12
holds under (79).

Proof. Theorem 11 [9] already provides the proof of achiev-
ability, i.e., C(ε) ≥ C. The converse proof below shows that if
R is an ε-achievable SK rate, then R is an ε-achievable query
exponent. Therefore,

R ≤ E∗(ε) = C, 0 < ε < 1, (81)

where the equality is by (5). Specifically, for every ρ > 0,
suppose that there exists K = K (Xn

M) and communication F
satisfying (77) and (78) for all n sufficiently large. We claim
that the hypothesis (11) of Lemma 3 holds with U = K,
V = F and γ = exp[n(R − 2ρ)] for every 0 < δ < 1/2,
when ρ is sufficiently small. Therefore, by (12), R− 2ρ is an
ε-achievable query exponent which leads to (81) since ρ can
be chosen arbitrarily small.

Turning to the claim, observe that

P

({
(k, i) : PK|F (k | i) > 2

exp[n(R− ρ)]

})
≤ P

({
(k, i) : PK|F (k | i) > 2

‖K‖

})
≤ P

({
(k, i) :

∣∣ log ‖K‖PK|F (k | i)
∣∣ > 1

})
≤ E

[∣∣ log ‖K‖PK|F (K | F)
∣∣] ,

where the first and the last inequality above follow from (77)
and the Markov inequality, respectively.

Next, we show that

E
[∣∣ log ‖K‖PK|F (K | F)

∣∣] ≤ svar(K;F) log
‖K‖2

svar(K;F)
.

(82)

Then, the right-side can be bounded above by
ρ

n
log

n

ρ
+ 2ρ log

∣∣XM∣∣, (83)

for all n sufficiently large; the claim follows upon taking n→
∞ and ρ→ 0. To see (82), note that for t1, t2, |t1 − t2| < 1,
f(t) , −t log t satisfies (cf. [11, Lemma 2.7])∣∣f(t1)− f(t2)

∣∣ ≤ ∣∣t1 − t2∣∣ log
1∣∣t1 − t2∣∣ . (84)

Then, for F = i,∑
k

PK|F (k | i)
∣∣log ‖K‖PK|F (k | i)

∣∣
=
∑
k

∣∣PK|F (k | i) log PK|F (k | i) + PK|F (k | i) log ‖K‖

+
1

‖K‖
log ‖K‖ − 1

‖K‖
log ‖K‖

∣∣∣∣
≤
∑
k

[∣∣∣∣PK|F (k | i) log PK|F (k | i)− 1

‖K‖
log

1

‖K‖

∣∣∣∣
+

∣∣∣∣PK|F (k | i)− 1

‖K‖

∣∣∣∣ log ‖K‖
]

≤
∑
k

∣∣∣∣PK|F (k | i)− 1

‖K‖

∣∣∣∣ log
‖K‖∣∣∣PK|F (k | i)− 1

‖K‖

∣∣∣ ,
(85)

where the previous inequality uses (84) with t1 = PK|F (k | i)
and t2 = ‖K‖−1 for every value k of K. Finally, (82) follows
upon multiplying both sides by PF (i), summing over i and
using the log-sum inequality [11].

Observe that the proof of Theorem 12 does not rely on the
form of the rvs K,F, and is, in effect, a statement relating
the size of any achievable SK rate under the svar-secrecy
requirement (76) to the query exponent. As a consequence,
also the SK capacity for more complex models in which the
eavesdropper has additional access to side information can
be bounded above by the optimum query exponent when the
querier, too, is given access to the same side information.

VIII. GENERAL ALPHABET CONVERSE FOR A =M

In this section, we present a converse technique for the
optimum query exponent for rvs with general alphabets, with
jointly Gaussian rvs as a special case. No corresponding
general claim is made regarding achievability of the exponent.
Our technique also leads to a new strong converse for Gaussian
SK capacity [22].

Let Yi be a complete separable metric space, with associated
Borel σ-field σi, 1 ≤ i ≤ k; a special case of interest is
Yi = Rni . Denote by Yk the set Y1 × ...×Yk and by σk the
product σ-field5 σ1 × ...× σk on Yk. Let P = PY1,...,Yk be a
probability measure on

(
Yk, σk

)
. The interactive communica-

tion {Fji : 1 ≤ j ≤ r, 1 ≤ i ≤ k} is specified as in Definition
1, with the rv Fji taking values in, say, (Zji,Fji), and
being σi-measurable for each fixed value of the preceding
communication

Φji = (Fst : 1 ≤ s < j, 1 ≤ t ≤ k or s = j, 1 ≤ t < i) .

Then, there exists a unique regular conditional probabil-
ity measure on

(
Yk, σk

)
conditioned on σ(F), denoted

PY1,...,Yk|F (cf. [4, Chapter 6]). The notation Qi will be used
interchangeably for the probability measure PY1,...,Yk|F (· | i).

5Hereafter, the term “product σ-field” of σ-fields σ1, ..., σk , will mean the
smallest σ-field containing sets from σ1× ...×σk , and will be denoted, with
an abuse of notation, simply as σk = σ1 × ...× σk .
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We make the following basic assumption of absolute continu-
ity:

Qi << PY1,...,Yk , PF a.s. in i, (86)

i.e., (86) holds over a set of i with PF-probability 1. As-
sumption (86) is satisfied by a large class of interactive
communication protocols including F taking countably many
values. Moreover, we can assume the following without loss
of generality:

Qi

(
F−1(i)c

)
= 0, PF a.s. in i, (87)

dQi

dP
(yk) = 0, for yk ∈ F−1(i)c, PF a.s. in i. (88)

Next, we define ε-CR L from F and its local estimates Li,
respectively, as rvs taking countably many values, measurable
with respect to σk and σi × σ(F), 1 ≤ i ≤ k, and satisfying

P (L = Li, 1 ≤ i ≤ k) ≥ 1− ε.

The main result of this section, given below, extends Theorem
7 to general measures as above.

Theorem 13. For 0 < ε < 1, let L be ε-CR from interactive
communication F. Let P̃ = P̃Y1,...,Yk be a probability measure
on
(
Yk, σk

)
with

P̃ (A1 × ...×Ak) =

k∏
i=1

PYi (Ai) Ai ∈ σi, 1 ≤ i ≤ k.

(89)

Assuming that P << P̃, and given δ > 0 such that δ +√
δ + ε < 1, let θ be such that

P

({
yk :

dP

d P̃
(yk) ≤ θ

})
≥ 1− δ. (90)

Then, there exists a query strategy q0 for L given F such that

P

(
q0(L | F) ≤

(
θ

δ2

) 1
k−1

)
≥ (1− δ −

√
δ + ε)2. (91)

The proof of Theorem 13 is deferred to the end of this
section. At this point, we present its implications for a Gaus-
sian setup. Let X(n)

i be an Rn-valued rv, i = 1, ...,m, and
let X(n)

M =
(
X

(n)
1 , ..., X

(n)
m

)
be jointly Gaussian N (0,Σ(n)),

where Σ(n) is a positive definite matrix. We remark that X(n)
M

need not be independent or identically distributed across n.
The notion of an ε-optimum query exponent E∗(ε), 0 < ε < 1,
is exactly as in Definition 4, even though the underlying CR
now can take countably many values. Also, given a partition
π of M with |π| = k, 2 ≤ k ≤ m, the quantity E∗π(ε) is
defined as in Section V.

Proposition 14. For X
(n)
M ∼ N (0,Σ(n)) with Σ(n) being

positive definite, it holds that

E∗(ε) ≤ min
π
E∗π(ε)

≤ min
π

1

2(|π| − 1)
lim sup

n

1

n
log

∏|π|
i=1

∣∣Σ(n)
πi

∣∣
|Σ(n)|

, 0 < ε < 1,

where Σ
(n)
πi is the covariance matrix of X(n)

πi , i = 1, ..., |π|,
and | · | denotes determinant.

Corollary. When X(n)
M is i.i.d. in n with XM ∼ N (0,Σ),

E∗(ε) ≤ min
π

1

2(|π| − 1)
log

∏|π|
i=1

∣∣Σπi∣∣
|Σ|

, 0 < ε < 1.

Proof. Proceeding as in the proof of Theorem 6, we apply
Theorem 13 to the rvs Yi = X

(n)
πi , 1 ≤ i ≤ |π|. Specifically,

we show that the hypothesis (90) is satisfied with

θ = θn =

(∏|π|
i=1

∣∣Σnπi∣∣
|Σ(n)|

)1/2

exp(nδ), (92)

where 0 < δ < 1/2 is arbitrary. Then, the Proposition
follows from the definition of E∗(ε) and (92) as in the proof
of Theorem 6. The Corollary results by a straightforward
calculation. It remains to verify that (90) holds for θ in (92).
For B (M, B 6= ∅, let gB denote the density of the Gaussian
rv X

(n)
B . From the AEP for Gaussian rvs [8, equation (47)]

(see also [5]),

P

( ∣∣∣∣− 1

n
log gB

(
X

(n)
B

)
− 1

n
h
(
X

(n)
B

)∣∣∣∣ > τ,

for some ∅ 6= B ⊆M
)

< 2m exp(−c(τ)n), τ > 0, (93)

where h denotes differential entropy and c(τ) > 0 is a positive
constant that does not depend on n. Since

dP

d P̃
=

gM∏|π|
i=1 gπi

, P a.s.

and

h
(
X

(n)
M

)
=

1

2
log(2πe)mn|Σ(n)|,

h
(
X(n)
πi

)
=

1

2
log(2πe)|πi|n

∣∣Σ(n)
πi

∣∣, 1 ≤ i ≤ |π|,

using the upper and lower bounds from (93) that hold with
significant probability for all n sufficiently large, we get that
(90) holds with θ as in (92), for 0 < δ < 1/2.

As an application of the Corollary above, we establish a
new strong converse for SK capacity when the underlying rvs
X

(n)
M are i.i.d. Gaussian in n; for this model, the SK capacity

was established in [22]. The notions of ε-achievable SK rate,
ε-SK capacity C(ε) and SK capacity C are as in Definition 6,
with condition (77) replaced by

range(K) = {1, ..., bexp(nR)c}, (94)

which rules out such rvs K as take infinitely many values.

Proposition 15. When X
(n)
M is i.i.d. in n with XM ∼

N (0,Σ),

C(ε) = min
π

1

2(|π| − 1)
log

∏|π|
i=1

∣∣Σπi ∣∣
|Σ|

, 0 < ε < 1. (95)

Proof. That C(ε) is no smaller than the right-side of (95)
follows from the achievability proof in [22].
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The proof of the reverse inequality is along the lines of the
proof of Theorem 12 and is obtained upon replacing the upper
bound (83) by

ρ

n
log

n

ρ
+ 2ρR,

and noting that Lemma 3 can be extended straightforwardly to
an arbitrary rv V (with the explicit summations in the proof
of that Lemma written as expectations), provided that the rv
U is finite-valued.

Proof of Theorem 13. In the manner of the proof of Theorem
7, it suffices to identify measurable sets I0 and L(i) ⊆ L,
i ∈ I0, such that (32)-(34) are satisfied. Below we generalize
appropriately the steps 1-3 in the proof of Theorem 7.
Step 1. The following claim is an extension of Lemma 8.

Lemma 16. Given measurable sets Ai ∈ σi, 1 ≤ i ≤ k, for
P̃ in (89),

P̃Y1,...,Yk|F (A1 × ...×Ak | i) =

k∏
j=1

P̃Yj |F (Aj | i) ,

PF a.s. in i, (96)

where P̃Y1,...,Yk|F is the regular conditional probability on
(Yk, σk) conditioned on σ(F).

The proof uses the interactive property of the communication
and is relegated to the Appendix.
Step 2. Next, we identify the set I0. The following technical
observation will be used.

Lemma 17. For every A0 ∈ σk such that

dP

d P̃
(yk) > 0, yk ∈ A0, (97)

it holds that

P̃Y1,...,Yk|F (A0 | i) =
dPF

d P̃F

(i)

∫
A0

dQi

dP
d P̃, P̃F a.s. in i

(98)

The proof is given in the Appendix. Denoting by T0 the set{
yk ∈ Yk : 0 < dP

d P̃
(yk) ≤ θ

}
, let

Al = T0 ∩
{
yk : Lj

(
yj ,F(yk)

)
= L(yk) = l, 1 ≤ j ≤ k

}
, l ∈ L.

Then, for Al,i , Al∩F−1(i), (87), (88) and Lemma 17 imply

P̃Y1,...,Yk|F (Al,i | i) =
dPF

d P̃F

(i)

∫
Al,i

dQi

dP
d P̃, P̃F a.s. in i.

(99)

Below we restrict attention to the set of values of F for which
(99) holds for every l ∈ L; this set has P̃F measure 1 by (98)
since the set L is countable. Proceeding along the lines of the
proof of Theorem 7, we define I1 as the set of those i for
which

PY1,...,Yk|F (Al,i | i) ≥ 1−
√
ε+ δ. (100)

Since L is an ε-CR from F, it follows from (90), the fact that

P

({
yk :

dP

d P̃
(yk) = 0

})
= 0,

and by a reverse Markov inequality, that

PF (I1) ≥ 1−
√
ε+ δ. (101)

Furthermore, for the set I2 of values i of F satisfying
dPF

d P̃F

(i) ≥ δ, (102)

it holds that

PF (I2) ≥ 1− δ, (103)

since ∫
Ic2
dPF =

∫
Ic2

dPF

d P̃F

d P̃F

< δ.

Define I0 = I1 ∩ I2; (34) follows from (101) and (103).
Step 3. Since Lemma 4 (i) applies to a countable set U = L,
defining the nonnegative measure µ on L as in (44) for each
i ∈ I0 and using (100), the sets L(i) obtained in (45)-(47)
satisfy (32). Also, condition (33) will follow from (46) upon
showing that

exp (Hα(µ)) ≤
(
θ

δ

) 1
k−1

. (104)

To do so, denote by Ajl,i the projection of Al,i along the jth
coordinate, 1 ≤ j ≤ k. As before, the sets Ajl,i are disjoint
across l ∈ L. Then, Hölder’s inequality [16] implies that

1 ≥
k∏
j=1

[∑
l∈L

P̃Yj |F

(
Ajl,i | i

)]

≥

∑
l∈L

 k∏
j=1

P̃Yj |F

(
Ajl,i | i

) 1
k

k

=

[∑
l∈L

P̃Y1,...,Yk|F
(
A1
l,i × ...×Akl,i | i

) 1
k

]k
, (105)

where the previous step uses Lemma 16. The right-side of
(105) is bounded below by[∑

l∈L

P̃Y1,...,Yk|F (Al,i | i)
1
k

]k
,

since Al,i ⊆ A1
l,i × ...×Akl,i, which by (99) equals∑
l∈L

(
dPF

d P̃F

(i)

∫
Al,i

dQi

dP
d P̃

) 1
k

k .
From the definition of the set I2 in (102), the expression above
exceeds ∑

l∈L

(
δ

∫
Al,i

dQi

dP
d P̃

) 1
k

k ,
which is the same as∑

l∈L

(
δ

∫
Al,i

dQi

dP

dP/d P̃

dP/d P̃
d P̃

) 1
k

k . (106)
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Since Al,i ⊆ T0, the sum in (106) is bounded below further
by ∑

l∈L

(
δ

θ

∫
Al,i

dQi

dP

dP

d P̃
d P̃

) 1
k

k

=
δ

θ

∑
l∈L

(∫
Al,i

dQi

) 1
k

k

=
δ

θ

[∑
l∈L

PY1,...,Yk|F (Al,i | i)
1
k

]k
.

Combining the observations above from (105) onward, we
have

θ

δ
≥

[∑
l∈L

PY1,...,Yk|F (Al,i | i)
1
k

]k
,

which is the same as (104) with α = 1/k.

IX. DISCUSSION

A. General lossless source coding theorem

Our Lemma 4 relating the cardinalities of large probability
sets to Rényi entropy played a material role in the converse
proofs. It is also of independent interest, and can be interpreted
as a source coding result for a general source with finite
alphabet U . Furthermore, it leads to the following asymptotic
result.

Consider a sequence of probability measures µn on finite
sets Un, n ≥ 1. For 0 < δ < 1, R is a δ-achievable (block)
source coding rate if there exists sets Vn ⊆ Un satisfying

µn(Vn) ≥ 1− δ,

for all n sufficiently large, and

lim sup
n

1

n
log |Vn| ≤ R.

The optimum source coding rate R∗(δ) is the infimum of all
such δ-achievable rates.

Proposition 18. For each 0 < δ < 1,

lim
α↓1

lim sup
n

1

n
Hα(µn) ≤ R∗(δ) ≤ lim

α↑1
lim sup

n

1

n
Hα(µn).

(107)

Corollary. If µn is an i.i.d. probability measure on Un =
U × ...× U , then

R∗(δ) = H(µ1), 0 < δ < 1.

Proof. The Proposition is a direct consequence of Lemma 4
upon taking appropriate limits in (21) and (22) with Un in the
role of U . The Corollary follows since for i.i.d. µn,

Hα(µn) = nHα(µ1) and lim
α→1

Hα(µ1) = H(µ1).

Note that the Corollary above is proved without recourse
to the AEP. Moreover, it contains a strong converse for the

lossless coding theorem for an i.i.d. source. In general, Propo-
sition 18 implies a strong converse whenever the lower and
upper bounds for R∗(δ) in (107) coincide. This implication is a
special case of a general source coding result in [13, Theorem
1.5.1], [15], where it was shown that a strong converse holds
iff for rvs Un with pmfs µn, the “lim-inf” and “lim-sup” of
Zn = 1

n log 1
µn(Un) in µn-probability coincide, i.e.,

sup
{
β : lim

n
µn(Zn < β) = 0

}
= inf

{
β : lim

n
µn(Zn > β) = 0

}
. (108)

In fact, a straightforward calculation shows that the lower and
upper bounds for R∗(δ) in (107) are admissible choices of β
on the left- and right-sides of (108), respectively.

B. General Models

The description of the optimum query exponent in Defini-
tion 4 can be refined to display an explicit dependence on ε′.
Let E∗(ε, ε′) denote the optimum query exponent for fixed
0 < ε, ε′ < 1. Our proofs establish E∗(ε, ε′) equals the right
side of (5) for ε′ < (1 −

√
ε)2 (see (31)). For ε′ > 1 − ε,

as suggested by a reviewer, the following construction of L
renders E∗(ε, ε′) unbounded: Choose L = 0 with probability
(1 − ε) and uniformly distributed on a sufficiently large set
with probability ε. For the remaining values of ε, ε′, E∗(ε, ε′)
is not known.

A less restrictive model for querying than that in Section
II can be considered, allowing general queries with binary
answers. Such a query strategy can be represented as a search
on a binary tree whose leaves correspond to the values of the
CR L. The query strategies considered in this paper correspond
to the case where the search tree is a path with leaves attached
to each node. For a general tree model, our results can be
adapted to show that the maximum number of queries that
can be inflicted on a querier grows only linearly in n at a rate
that is equal to the expression for E∗ in (5).

We remark also that allowing randomness at the terminals
in M for interactive communication and CR recovery, does
not improve the optimum query exponent. Such randomization
is described by mutually independent rvs W1, ...,Wm, where
each Wi is distributed uniformly on the (finite) set {1, ..., wi},
and the rvs W1, ...,Wm are independent of Xn

M. The claim
of the remark is seen from the converse result in Theorem 9.
Indeed, the assertion (55) of Theorem 9 remains unchanged
upon replacing Yi by (Yi,Wi), i ∈M, θ0 by θ0

(∏
i∈M wi

)
,

and θBc by θBc
(∏

i∈Bc wi
)
, B ∈ B; and observing that

in (54), the wi- terms cancel in the numerator and the
denominator.

Finally, Lemma 3, which considered rvs U, V , can be used
to characterize the optimum query exponent Γ∗ for a family
of finite-valued rvs {Un, Vn}∞n=1 with associated probability
measures {Pn}∞n=1 (which are not necessarily consistent).
Here, Γ∗ is described analogously as E∗ in Definition 4. An
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application of Lemma 3 yields that

Γ∗ ≥ Pn- lim inf
n

− log PUn|Vn (Un | Vn)

n

Γ∗ ≤ Pn- lim sup
n

− log PUn|Vn (Un | Vn)

n

where the first and second limits above equal, respectively, the
left- and right-sides of (108) with µn = Pn and

Zn =
− log PUn|Vn (Un | Vn)

n
.

APPENDIX

Proof of Lemma 16.

For 1 ≤ l ≤ r, 1 ≤ j ≤ k, denote by Φlj the interactive
communication preceding Flj , by Flj the rv (Flj ,Φlj), and by
ilj a realization of Flj . Without loss of generality, we choose
a version of P̃Y k|F that satisfies

P̃Y k|Flj

(
F−1
lj (ilj)

c | ilj
)

= 0, P̃Flj a.s., (A1)

for all 1 ≤ l ≤ r, 1 ≤ j ≤ k. The following property of
interactive communication is pivotal to our proof: For each
i−lj , Φ−1

lj (i−lj) is a product set, i.e.,

Φ−1
lj (i−lj) = A′1 × ...×A′k, A′j ∈ σj , 1 ≤ j ≤ k.

We prove the claim by induction upon observing that P̃Y k|Flj
can be obtained by conditioning P̃Y k|Φlj on the rv Flj .

Formally, denote by σk(i−lj) = σ1(i−lj) × ... × σk(i−lj) the

σ-field induced by σk on A′1× ...×A′k, and by σ
(
Flj(·, i−lj)

)
the smallest sub-σ-field of σk(i−lj) with respect to which Flj
is measurable (for i−lj fixed). Using (A1), we choose a version
of P̃Y k|F such that for each 1 ≤ l ≤ r and 1 ≤ j ≤ k,
P̃Y k|Flj (· | ilj) is the regular conditional probability on the
probability space(

A′1 × ...×A′k, σk(i−lj), P̃Y k|Φlj

(
· | i−lj

))
conditioned on σ

(
Flj(·, i−lj)

)
. Specifically,

P̃Y k|Flj (A | ilj)

= EP̃
Y k|Φlj

(·|i−lj)

[
1A | σ

(
Flj(·, i−lj)

)]
(ilj), A ∈ σk,

(A2)

where the underlying σ-field for the conditional expectation
is σk(i−lj). For this version of P̃Y k|F, we show below that if
(96) holds with Φlj in the role of F, then it holds with Flj
in the role of F. Lemma 16 then follows by induction since
(96) holds with F = ∅.

It remains to prove the assertion above. To that end, for
B ∈ Flj , denote by F−1

lj

(
B, i−lj

)
the set{

yj ∈ Yj : Flj

(
yj , i

−
lj

)
∈ B

}
.

With an abuse of notation, we do not distinguish between the
sets F−1

lj

(
B, i−lj

)
and its cylindrical extension

Y1 × ...× F−1
lj

(
B, i−lj

)
× ...× Yk.

Then, using the notation Q̃i−lj
and Q̃t

i−lj
, 1 ≤ t ≤ k, for the

probability measures P̃Y k|Φlj

(
· | i−lj

)
and P̃Yt|Φlj

(
· | i−lj

)
,

1 ≤ t ≤ k, respectively, our induction hypothesis states

Q̃i−lj(A1 × ....×Ak) =

k∏
t=1

Q̃i−lj(At), At ∈ σt, 1 ≤ t ≤ k.

(A3)

It follows that∫
F−1
lj (B,i−lj)

1A1×...×Ak d Q̃i−lj

=

∫
F−1
lj (B,i−lj)

1A1∩A′1×...×Ak∩A′k d Q̃i−lj

=

∏
t6=j

∫
1At∩A′t d Q̃

t
i−lj

∫
F−1
lj (B,i−lj)

1Aj∩A′j d Q̃
j

i−lj
, (A4)

where the first equality uses (A1) and the second uses (A3).
Defining

P tlj(A) ,E
Q̃i−lj

t

[
1A | σ

(
Flj(·, i−lj)

)]
,

A ∈ σt(i−lj), 1 ≤ t ≤ k,
we have from (A4) that∫

F−1
lj (B,i−lj)

1A1×...×Ak d Q̃i−lj

=

∏
t6=j

∫
P tlj(At ∩A′t) d Q̃ti−lj

×∫
F−1
lj (B,i−lj)

P jlj(Aj ∩A
′
j) d Q̃

j

i−lj

=

∫
F−1
lj (B,i−lj)

k∏
t=1

P tlj(At ∩A′t) d Q̃i−lj ,

where the second equality uses (A3). Thus, by (A2),

P̃Y k|Flj (A1 × ...×Ak | ilj)

=

k∏
t=1

P tlj(At ∩A′t), P̃Flj a.s. in ilj . (A5)

Since by (A1) P tlj(A
′
t) = 1, 1 ≤ t ≤ k, it follows from (A5)

that

P tlj(At)

= P tlj(At ∩A′t)
= P̃Y k|Flj

(
A′1 × ...×A′t−1 ×At ×A′t+1 × ...×A′k | ilj

)
= P̃Yt|Flj (At | ilj) .

The previous observation, along with (A5), implies that (96)
holds with Flj in the role F.

Proof of Lemma 17.

It suffices to show that the right-side of (98) constitutes a
version of EP̃ [1A0

| σ(F)], i.e.,∫
F−1(B)

1A0
d P̃ =

∫
B

(∫
A0

dPF

d P̃F

(z)
dQz
dP

d P̃

)
P̃F (d z) ,

(A6)
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for every set B in the range σ-field of F. To show that, we
note for every A ∈ σk that∫

F−1(B)

1AdP =

∫
B

PY |F (A | z) PF (d z)

=

∫
B

(∫
A

dQz
dP

dP

)
PF (dz) , (A7)

where the previous step uses the assumption (86). Using
Fubini’s and Tonelli’s theorems to interchange the order of
integrals in (A7), we get∫

F−1(B)

1A dP =

∫
A

(∫
B

dQz
dP

PF (dz)

)
dP,

=

∫
A

1F−1(B) dP,

which further implies

1F−1(B) =

∫
B

dQz
dP

PF (dz) , P a.s., (A8)

since the set A ∈ σk was arbitrary. Next, for every B in the
range σ-field of F, it follows from (A8) and (97) that∫

F−1(B)

1A0
d P̃ =

∫
A0

1F−1(B)d P̃

=

∫
A0

1

dP/d P̃
1F−1(B)dP

=

∫
A0

1

dP/d P̃

∫
B

dQz
dP

PF (dz) dP

=

∫
A0

∫
B

dQz
dP

PF (dz) d P̃. (A9)

The claim (A6) follows upon interchanging the order of
integrals in (A9).
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