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Abstract—We extend the Bellare-Tessaro coding scheme for
a discrete, degraded, symmetric wiretap channel to a Gaussian
wiretap channel. Denoting by SNR the signal-to-noise ratio of
the eavesdropper’s channel, the proposed scheme converts a
transmission code of rate R for the channel of the legitimate
receiver into a code of rate R−0.5 log(1+SNR) for the Gaussian
wiretap channel. The conversion has a polynomial complexity in
the codeword length and the proposed scheme achieves strong
security. In particular, when the underlying transmission code is
capacity achieving, this scheme achieves the secrecy capacity of
the Gaussian wiretap channel.

I. INTRODUCTION

Recently, Hayashi and Matsumoto [10] and Bellare and
Tessaro [3] introduced a new coding scheme for a discrete,
degraded, symmetric wiretap channel1 (DSWC) that can be
efficiently implemented and achieves the secrecy capacity of
the wiretap channel. Specifically, they introduced a modular
scheme that starts with a given transmission code of rate R
for the channel of the legitimate receiver and converts it into
a wiretap code of rate R− I(W ), where I(W ) is the capacity
of the (symmetric) discrete memoryless channel W between
the sender and the eavesdropper. The conversion is efficient –
it is of polynomial complexity in the length of the code. In
particular, the conversion in [3] uses an (efficiently) invertible
extractor constructed from a 2-universal hash family (cf. [7],
[11], [12]). When the transmission code achieves capacity of
the legitimate channel T , i.e., R = I(T ), the proposed wiretap
coding scheme achieves the capacity of a DSWC.

In this paper, we extend the aforementioned coding scheme
to the Gaussian wiretap channel (GWC), which was studied
first by Leung-Yan-Cheong and Hellman [15], following the
pioneering work of Wyner [21]. They considered wiretap
codes such that each codeword x has power ‖x‖22 bounded
above by nP and the weak security criterion is satisfied by
the random message M and the eavesdropper’s observation,
i.e.,

lim
n→∞

1

n
I(M ∧ Zn) = 0.

Denoting by Cs(P ) the maximum rate of such codes, the
following result was shown in [15].

1The scheme in [10], [3] achieves capacities of symmetric channels for
which uniform input yields a uniform output; it was extended to all symmetric
channels by Tal and Vardy [19].

Theorem 1. [15] The secrecy capacity Cs(P ) is given by

Cs(P ) =
1

2
log

(
1 + P/σ2

T

1 + P/σ2
W

)
,

where σ2
T and σ2

W are the variances of the zero mean
additive Gaussian noise in the legitimate receiver’s and the
eavesdropper’s channels, respectively.

Although the result above characterizes the optimum rate
of wiretap codes, it does not give a constructive scheme
for optimal codes. In [16], a lattice code based scheme was
proposed for the GWC that achieves rates within 1/2 nats of
Cs(P ), while ensuring strong security with I(M ∧ Zn)→ 0.
However, even this scheme is not constructive and relies on
random lattice codes. To the best of our knowledge, there is no
explicit coding scheme known for the GWC. We fill this gap
here and show that the wiretap coding scheme of [3] achieves
the capacity of the GWC as well. Our proof of security relies
on a simple extension of the well-known leftover hash lemma
(cf. [17]) to mixed RVs. This is in contrast to the approach
in [10] where the basic form of leftover hash lemma was
deemed insufficient and the message equivocation H(M |Zn)
was bounded in terms of the Gallager function.

A key feature of this scheme is that it is modular: while
the underlying transmission code ensures reliable recovery of
the transmitted message, a new preprocessing layer is added
to ensure security. When the transmission code is capacity
achieving for the channel T , this scheme achieves the secrecy
capacity of the GWC. In effect, this approach allows us to
reduce the problem of constructing efficient, secrecy capacity
achieving codes for the GWC to that of constructing efficient,
capacity achieving transmission codes for a Gaussian channel.

The basics of coding for a GWC are reviewed in the next
section. The proposed scheme is described in Section III,
followed by a proof of its security in Section IV. Our scheme
in Section III assumes that all parties share a random seed.
We get rid of this assumption in Section V. The final section
contains a discussion on our notion of security.

Notation. All random variables (RVs) will be denoted
by capital letters and their range sets by the corresponding
calligraphic letters. PU will denote the probability distribution
of a RV U taking values in a set U . Vectors (u1, ..., un) will
be denoted by either un or u; a collection of RVs U1, ..., Un



will be abbreviated as Un. All logarithms are to the base 2.

II. BASICS OF CODING FOR A GWC

A wiretap channel consists of two memoryless channels T
and W , with a common input alphabet X and output alphabets
Y and Z , respectively. When the sender transmits an n-length
sequence xn ∈ Xn, the (legitimate) receiver observes the
yn ∈ Yn with probability

∏
i T (yi|xi) and the eavesdropper

observes the side information zn ∈ Zn with probability∏
iW (zi|xi). A code for this wiretap channel ensures reliable

transmission of a message M from the sender to the receiver,
while keeping it secret from the eavesdropper. Denote by Y n

and Zn the n-length random vectors observed by the receiver
and the eavesdropper, respectively. In this paper, we consider
a GWC where the channels T and W are additive white
Gaussian noise (AWGN) channels, with X = Y = Z = R.
Specifically, for an input X selected by the sender, the receiver
and the eavesdropper observe noisy versions of X given by
Y = X+NT and Z = X+NW , respectively, where NT and
NW are zero mean Gaussian RVs with variances σ2

T and σ2
W ,

respectively.

Definition 1. An (n, k, P )-code consists of a (stochastic)
encoder e : {0, 1}k → Xn and a decoder d : Yn → {0, 1}k.
The maximum probability of error ε(e, d) for the code (e, d)
is given by

ε(e, d) = max
m∈{0,1}k

E
∑

y s.t. d(y)6=m

Tn (y | e(m)),

where the expectation is over the random encoder. Further-
more, the encoder e satisfies the following power constraint
with probability 1:

‖e(m)‖22 ≤ nP, (1)

for every k-bit message m ∈ {0, 1}k, where ‖x‖22 =
∑n
i=1 x

2
i .

Definition 2 (Secrecy capacity). A rate R ≥ 0 is achiev-
able with power constraint P if there exists a sequence of
(n, kn, P )-codes (en, dn) such that

lim inf
n→∞

kn
n
≥ R,

the maximum probability of error ε(en, dn) vanishes to 0
asymptotically, and the random message M is “asymptotically
independent” of Zn, i.e.,

lim
n→∞

I (M ∧ Zn) = 0. (2)

The secrecy capacity Cs(P ) is defined as the supremum over
all rates R that are achievable with power constraint P .

III. A POLYNOMIAL-TIME CODING SCHEME

In this section, we describe the coding scheme introduced
in [10], [3], [5] for a discrete wiretap channel and extend it
to the GWC. Following [3], [5], we shall assume first that
the sender, the receiver, and the eavesdropper share a random
seed S. In practice, however, the seed S must be shared via
channel T since there is no other means of communication

between the sender and the receiver. Indeed, as observed in
[3], the scheme presented in this paper can be easily modified
to share S over the channel T with a negligible loss in the
code rate and while maintaining security. See Section V for
further discussion.

The proposed scheme is modular and consists of two layers:
an error-correcting layer and a security layer. The error-
correcting layer consists of a transmission code (e0, d0) for
the legitimate channel T . The security layer, consisting of an
efficiently invertible extractor, converts any transmission code
(e0, d0) for T into a code for the GWC. Formally, the two
components are described below.
(i) Transmission code. We start with an (n, l, P )-code (e0, d0)
as in Definition 1; it holds by (1) that

‖e0(m)‖22 ≤ nP, ∀m ∈ {0, 1}l. (3)

(ii) Invertible extractor. The second component is an invertible
extractor. An extractor is a random mapping that takes as input
a RV and outputs an “almost uniform” RV. It is well-known
(see [6], [11], [12]) that such a mapping can be implemented
by a 2-universal hash family [7], which is defined next.

Definition 3. A family
{
fs : U → {0, 1}k, s ∈ S

}
, is a 2-

universal hash family if for every u 6= u′, we have

1

|S| | {s | fs(u) = fs(u
′)}| ≤ 2−k.

Our coding scheme uses the following 2-universal hash
family.

Let {0, 1}l correspond to the elements of GF
(
2l
)

with
multiplication operation ∗ and let S = {0, 1}l\{0}. For k ≤ l,
define a mapping f : S × {0, 1}l → {0, 1}k and its inverse
φ : S × {0, 1}k × {0, 1}l−k → {0, 1}l as follows:

f : (s, v) 7→ (s ∗ v)k,
φ : (s,m, b) 7→ s−1 ∗ (m‖b),

where (·)k selects the k most significant bits and (·‖·) con-
catenates the two strings. It follows that

f(s, φ(s,m, b)) = m, (4)

for all s, b. The next result is well known and is easy to show.

Proposition 1. The family of mappings {fs(v) := f(s, v),
s ∈ S} constitutes a 2-universal hash family.

We are now in a position to describe our two-layered codes
(e, d) for the GWC. See Figure 1 for an illustration.
Encoding. The sender draws a random seed S uniformly from
the set S and shares it with the receiver and the eavesdropper.
Next, the sender generates l − k random bits B and encodes
a message m ∈ {0, 1}k as e0(φ(S,m,B)), i.e, the encoder
mapping e can be described as follows:

e : (S,m,B) 7→ e0(φ(S,m,B)) ∈ Xn.

Decoding. Upon observing Y n and S, the receiver decodes the
message as f(S, d0(Y n)), i.e., the decoder d can be described
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Fig. 1. Illustration of the new coding scheme

as follows:

d : (S, Y n) 7→ f(S, d0(Y
n)) ∈ {0, 1}k.

Several polynomial-time implementations of the 2-universal
hash family (f, φ) described above are known (cf. [14]).
Therefore, the proposed scheme can be implemented effi-
ciently as long as (e0, d0) can be implemented efficiently.

In view of (3), with a slight abuse of the notation, (e, d)
constitutes an (n, k, P ) wiretap code. Furthermore, it follows
from (4) that

ε(e, d) ≤ ε(e0, d0). (5)

Thus, (n, k, P )-code (e, d) ensures reliable transmission pro-
vided that the (n, l, P )-code (e0, d0) ensures reliable transmis-
sion over T . It remains to examine the security of the proposed
scheme, which is done in the next section.

IV. PROOF OF SECURITY

We recast the proof of security in [3] in a form that will
lend itself to the analysis for the Gaussian case; the proof
is completed using a measure concentration result for chi-
squared RVs. Instead of (2), we show first that for some c > 0,

‖PMZnS − PunifPZnS‖1 ≤ e−nc, (6)

where M ∼ unif{0, 1}k and ‖P−Q‖1 is the total variation
distance between the measures P and Q given by

‖P −Q‖1 := sup
A
|P(A)−Q(A)|.

It will follow from [8, Lemma 1] (see, also, [4], [5]) that
I(M ∧Zn, S)→ 0 as n→∞. The key technical tool for our
proof is the leftover hash lemma. Below we present this result
for the case of mixed RVs (U,Z), where U is discrete and the
conditional probability distribution PZ|U has a density p(z|u);
the proof is along the lines of [17, Corollary 5.6.1.] and is
omitted. To state the result, we need the following definitions.

The conditional min-entropy Hmin(PUZ | PZ) of U given
Z is defined as

Hmin(PUZ | PZ) = − log

∫
Rn

max
u

PU (u) p(z|u)dz.

The definitions above remains valid even when the conditional
probability densities p(z|u) are replaced by nonnegative, sub-
normalized functions p(z|u), i.e., p(z|u) ≥ 0 such that∫

Rn
p(z|u)dz ≤ 1.

The ε-smooth conditional min-entropy Hε
min(PUZ | PZ) is

defined as [18]

Hε
min(PUZ | PZ) = sup

QUZ :

‖QUZ−PUZ‖1≤ε

Hmin(QUZ | QZ),

where the supremum is over all QUZ with QU discrete
and QZ|U described by a nonnegative, subnormalized density
q(z|u). Note that for mixed measures PUZ and QUZ as above,

‖PUZ −QUZ‖1
=

1

2

∑
u

∫
Rn
|PU (u) p(z|u)−QU (u)q(z|u)| dz.

Lemma 2 (Leftover Hash). Let PUZ be a mixed measure as
above, and let

{
fs : U → {1, ..., 2k}|s ∈ S

}
be a 2-universal

hash family. Then, with S ∼ unif(S), we have

ES
∥∥PfS(U)Z − PunifPZ

∥∥
1

≤ 2ε+
1

2

√
2k−H

ε
min(PUZ |PZ).

Our goal is to bound ‖PMZnS − PunifPZnS‖1. Unfortu-
nately, Lemma 2 does not directly apply to RVs U = M ,
Z = Zn. However, the following result allows us to replace
RVs M,Zn, S with RVs M̃, Z̃n, S̃, to which Lemma 2 applies.
Denote by V the RV φ(S,M,B), where B is as in the
description of the scheme. Note that S,M,B are mutually
independent and (S,M)—V—Zn form a Markov chain.

Lemma 3. For RVs S,M, V, Zn as above, we have

PMVZnS ≡ PM̃Ṽ Z̃nS̃ ,

where S̃ and Ṽ are independent, (S̃, M̃)—Ṽ—Z̃n form a
Markov chain, and

S̃ ∼ unifS, Ṽ ∼ unif{0, 1}l,
M̃ = f(S̃, Ṽ ) and PZ̃n|Ṽ ≡ PZn|V .

We also need the following fact.

Lemma 4. For RVs M̃, Ṽ , Z̃n, S̃ as in Lemma 3, it holds that

PM̃Z̃n|S̃ (m, z | s) = Pf(s,Ṽ )Z̃n (m, z) , ∀m, z, s.

The proofs of Lemmas 3 and 4 are straightforward and
are omitted due to lack of space. Upon combining these
observations, we get the following result.

Lemma 5. For RVs M,Zn, S, Ṽ , Z̃n as above, we have

‖PMZnS − PunifPZnS‖1 ≤ 2ε+
1

2

√
2k−H

ε
min(PṼ Z̃n |PZ̃n).



Proof. Lemmas 3 and 4, along with the independence of
RVs S̃ and Z̃n, imply

‖PMZnS − PunifPZnS‖1
= ‖PM̃Z̃nS̃ − PunifPZ̃nS̃‖1
=
∥∥∥Pf(S̃,Ṽ )Z̃nPS̃ − PunifPZ̃nPS̃

∥∥∥
1

= ES̃
∥∥∥Pf(S̃,Ṽ )Z̃n − PunifPZ̃n

∥∥∥
1

≤ 2ε+
1

2

√
2k−H

ε
min(PṼ Z̃n |PZ̃n),

where the last inequality follows by Lemma 2, along with
Proposition 1, upon choosing U = Ṽ , Z = Z̃n.

Thus, a lower bound for Hε
min(PṼ Z̃n |PZ̃n) will result in an

upper bounds for ‖PMZnS − PunifPZnS‖1; the next lemma
establishes such a lower bound.

Lemma 6. Fix 0 < δ < 1/2 and let ε = e−nδ
2/8. Then,

Hε
min(PṼ Z̃n |PZ̃n) ≥ l −

n

2
log

(
1 + δ +

P

σ2
W

)
− nδ

2

+ o(n).

Proof. Consider QṼ Z̃n with QṼ = PṼ and QZ̃n|Ṽ de-
scribed by a nonnegative, subnormalized density q(z|v). Then,

Hε
min(QṼ Z̃n |QZ̃n) = l − log

∫
Rn

max
v

q(z|v)dz.

For sets Zv ⊆ Rn (to be specified later) such that∫
Zv
p(z|v) ≥ 1− 2ε, (7)

on choosing q(z|v) = 1(z ∈ Zv)p(z|v), we get

‖QṼ Z̃n − PṼ Z̃n‖1 ≤ ε.

Therefore,

Hε
min(PṼ Z̃n |PZ̃n) ≥ l − log

∫
Rn

max
v

1(z ∈ Zv)p(z|v)dz.
(8)

We now select sets Zv satisfying (7). Denote by g(z)
the standard normal density on Rn; then, p(z|v) =
g
(
σ−1W (z − e0(v))

)
. On defining

Z0 =

{
z ∈ Rn|

∣∣∣∣ 1n‖z‖22 − 1

∣∣∣∣ ≤ δ} ,
and

Zv = σWZ0 + e0(v),

standard measure concentration results for chi-squared RVs
(cf. [2, Exercise 2.1.30]) yield∫

Zv
p(z|v)dz =

∫
Z0

g(z)dz ≥ 1− 2e−nδ
2/8.

It follows from (8) and the definition of Zv that

Hε
min(PṼ Z̃n |PZ̃n)

≥ l − log

∫
Rn

max
v

1(z ∈ Zv)g
(
z − e0(v)
σW

)
dz

≥ l − log
e−

n(1−δ)
2

(2πσ2
W )

n
2

∫
Rn

max
v

1(z ∈ Zv)dz

≥ l − log
e−

n(1−δ)
2

(2πσ2
W )

n
2
vol

(⋃
v

Zv
)
.

Denote by Bn(ρ) the sphere of radius ρ in Rn and by νn(ρ)
its volume, which can be approximated as (cf. [20])

νn(ρ) =
1√
nπ

(
2πe

n

)n
2

ρn
(
1 +O(n−1)

)
(9)

By (3), we have ⋃
v

Zv ⊆ Bn (ρn) ,

where ρn =
√
n (σ2

W (1 + δ) + P ). Therefore,

Hε
min(PṼ Z̃n |PZ̃n) ≥ l − log

e−
n(1−δ)

2

(2πσ2
W )

n
2
νn(ρn),

which yields the claimed inequality in view of (9).
On combining Lemmas 5 and 6, we get the following

theorem.

Theorem 7 (Security bound for the scheme). For a message
M ∼ unif{0, 1}k and a seed S ∼ unif{0, 1}l/{0}, let
Zn be the output of the eavesdropper’s channel W when the
coding scheme above is applied. Then,

‖PMZnS − PunifPZnS‖1

≤ 2e−nδ
2/8 +

1

2

√
2
k−l+n

2 log

(
1+δ+ P

σ2
W

)
+nδ

2 +o(n)
.

Corollary 8 (Rate of the code). Let (e0n, d0n) be a sequence
of transmission codes of rate R for the channel T that satisfy
(3) and have the maximum probability of error ε(e0n, d0n)
vanishing to 0 as n goes to ∞. Then, for every 0 < δ < 1/2,
the proposed coding scheme achieves the rate

R− 1

2
log

(
1 + δ +

P

σ2
W

)
− δ

for the GWC and, for a uniformly distributed message M ,
satisfies

lim
n→∞

I (M ∧ Zn, S) = 0.

Proof. The bound (5) and an application of Theorem 7 with
l = bnRc and

k =

⌊
nR− n

2
log

(
1 + δ +

P

σ2
W

)
− nδ

⌋
implies that the proposed scheme achieves the claimed rate
and satisfies

‖PMZnS − PunifPZnS‖1 ≤ 2−nδ/4+o(n).



It follows from [8, Lemma 1] (see, also, [4], [5]) that the
Kullback-Leibler divergence D(PMZnS‖PunifPZnS) goes to
0, and so,

I(M ∧ Zn, S) ≤ k −H(M | Zn, S)
= D(PMZnS‖PunifPZnS)→ 0,

which completes the proof.

Remarks. (i) Note that the proposed scheme depends on
the eavesdropper’s channel W only through the rate kn/n of
the extractor. In particular, the scheme yields an (n, kn, P )-
wiretap code for all AWGN channels W such that the follow-
ing holds for n sufficiently large:

1

2
log

(
1 +

P

σ2
W

)
< R− kn

n
,

where R is the rate of the transmission code (e0, d0), i.e., for
all W s with a sufficiently small signal-to-noise ratio.

(ii) To achieve the secrecy capacity of the GWC using the
scheme above, one needs to start with a transmission code
(e0, d0) that achieves the capacity of the AWGN channel T ;
several such schemes have been proposed (cf. [1], [13]).

V. SHARING THE RANDOM SEED

In the wiretap codes described in this paper, it is assumed
that all parties share a random seed S. However, there is
no other means of communication between the legitimate
parties except the channel T . Therefore, S ∈ Sl must be
communicated via T ; the security proof remains unchanged
since it is already assumed that the eavesdropper knows S.
Such a modification of the original scheme was given in [3]
and is reviewed below for completeness.

Denoting by (en, dn) the sequence of wiretap codes above,
consider the wiretap coding scheme obtained by first gener-
ating the random seed S ∈ {0, 1}nR, next sending S over
T using the rate R transmission code (e0n, d0n), and finally,
using the code (en, dn) tn-times with the same seed S. Let
Mi, 1 ≤ i ≤ tn, denote the uniformly distributed message
sent in the ith use and let Zn(i) denote the corresponding
observations of the eavesdropper. Also, with N = (tn + 1)n,
let (eN , dN ) denote the new scheme. Then, as observed in [3,
Lemma 4.1], we have

ε(eN , dN ) ≤ (tn + 1)ε(en, dn). (10)

Note that (Mi, Z
n(i))—S—(Mj , Z

n(j))j 6=i form a Markov
chain. Therefore,

I(M1, ...,Mtn ∧ ZN ) ≤
tn∑
i=1

I(Mi ∧ Zn(i), S)

= tnI(M ∧ Zn, S), (11)

where M,Zn, S are as in Corollary 8. On choosing tn →∞
such that the right-sides of (10) and (11) go to 0, we get the
required code (eN , dN ) of rate

lim
n→∞

tnkn
(tn + 1)n

= lim
n→∞

kn
n
,

i.e., the new code (eN , dN ) has the same rate as (en, dn).
VI. DISCUSSION ON THE NOTION OF SECURITY

The notion of security in (2) and (6) assumes a uniform
distribution on M . This suffices as long as the eavesdropper
has no prior knowledge of the likelihood of different messages.
In general, it is desirable to guarantee security irrespective of
what likelihood the eavesdropper assigns, a priori, to different
messages. One such guarantee of security is the cryptographic
notion of semantic security (cf, [9], [4], [5]). Establishing
semantic security of our scheme for all message distributions,
with additional assumptions on the structure of (e0, d0), is
work in progress.
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