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Abstract—We consider the generation of a secret key (SK)
by the inputs and the output of a secure multipleaccess channel
(MAC) that additionally have access to a noiseless public commu-
nication channel. Under specific restrictions on the protocols, we
derive various upper bounds on the rate of such SKs. Specifically,
if the public communication consists of only the feedback from
the output terminal, then the rate of SKs that can be generated
is bounded above by the maximum symmetric rate R∗f in the
capacity region of the MAC with feedback. On the other hand,
if the public communication is allowed only before and after
the transmission over the MAC, then the rate of SKs is bounded
above by the maximum symmetric rate R∗ in the capacity region
of the MAC without feedback. Furthermore, for a symmetric
MAC, we present a scheme that generates an SK of rate R∗f ,
improving the best previously known achievable rate R∗. An
application of our results establishes the SK capacity for adder
MAC, without any restrictions on the protocols.

I. INTRODUCTION

What is the largest rate of a secret key (SK) that can be
generated by the inputs and the output of a secure multipleac-
cess channel (MAC) with a public feedback from the output?
We show that this rate is bounded above by

R∗f = max {R : (R,R) ∈ CMACFB} , (1)

where CMACFB denotes the capacity region1 of the MAC with
feedback. In fact, for a MAC that is symmetric with respect
to its inputs, this largest SK rate is equal to R∗f .

Previously, Csiszár and Narayan [6] presented two different
protocols to establish SKs of rate

R∗ = max {R : (R,R) ∈ CMAC} , (2)

where CMAC denotes the capacity region of the MAC without
feedback. In both the protocols, the inputs of the MAC were
selected without any knowledge of the previous outputs. Such
protocols are reminiscent of SK generation in source models
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[4] and will be collectively referred to as source emulation2.
We show that R∗ is the best rate of an SK that can be generated
using such simple protocols. Since for symmetric MACs we
generate an SK of rate R∗f , it follows that complex protocols
that select inputs of the MAC based on the feedback from
the output can outperform source emulation. This answers a
question raised in [6, Section VII].

In general, the inputs of the MAC can be selected based
on interactive public communication from all the terminals
after each transmission over the secure MAC. For this set-
up, Csiszár and Narayan established an upper bound for the
largest rate of an SK [6], termed the SK capacity and denoted
by C. Moreover, for the special case of MACs in the Willem’s
class [12], this upper bound was improved and it was shown
that C ≤ R∗f . Therefore, for symmetric MACs in the Willem’s
class, our aforementioned results imply C = R∗f . This class of
channels includes adder MAC, which settles an open problem
posed in [6, Example 2].

One of the rate R∗-achieving schemes in [6] involves
transmitting messages M1,M2 of rates (R∗, R∗) over the
MAC and communicating the modulo sum M1 ⊕ M2 over
the public channel, resulting in an SK of rate R∗; either M1

or M2 constitutes the SK. It was remarked in [6, page 21]
that an SK generation protocol with “full feedback is ruled
out as the feedback communication is public. Still, if a coding
scheme with partial feedback could be found by which the
gain in transmission rates exceeds the information leakage
due to feedback, it would lead to an SK rate greater than” R∗.
Following this clue, our achievability scheme for symmetric
MACs entails communicating compressed output sequences
over the public channel and then extracting an SK of rate
R∗f from the output sequence. One difficulty is the lack of a
single-letter expression for R∗f . However, this is circumvented
by converting the transmission schemes for MAC directly into
SK generation protocols, without recourse to the single-letter
rate achieved. In fact, our approach implies that any message
transmission scheme of rates (R,R) for a symmetric MAC
can be used to generate an SK of rate R, with appropriate
modifications.

Our converse proofs rely on a general converse3 for the SK
generation problem in a multiterminal source model, which in

2Our source emulation protocols include the generalized source emulation
of [6], [3] as a special case; the latter restricts the MAC inputs for different
channel uses to be independent and identically distributed (i.i.d.).

3This general converse is due to Prakash Narayan, who agreed to publish
it in this paper.



turn is a simple consequence of a basic property of interactive
communication that was established in [5, Lemma B.1] (see,
also, [8]). Here, too, the challenge posed by the lack of single-
letter expressions is handled by working directly with n-letter
expressions.

The problem formulation and our main results are stated
formally in the following section. Sections III and IV contain
the necessary tools that are used in our converse proofs in
Section V. The final section contains a discussion of our results
and the properties of interactive communication that are used
to derive them.

II. PROBLEM FORMULATION AND MAIN RESULTS

Consider a MAC with two inputs4 X1 and X2, and an output
X3, specified by a DMC W : X1 × X2 → X3. We study
a secrecy generation problem for three terminals: terminals 1
and 2 govern the inputs to the DMC over which they transmit,
respectively, sequences x1 and x2 of length n, while terminal
3 observes the corresponding n length output x3. Between two
consecutive transmissions, the terminals communicate with
each other interactively over a noiseless public communication
channel of unlimited capacity. While the transmissions over
the DMC W are secure, the public communication is observed
by all the terminals as well as a (passive) eavesdropper.
This model is a special case of a general model for secrecy
generation over channels introduced by Csiszár and Narayan
in [6] (see also [5]). In the manner of [6], the messages sent
over W will be referred to as transmissions and those sent
over the public channel will be referred to as communication.

Formally, assume that at the outset terminal i generates
rv Ui, i = 1, 2, 3, to be used for (local) randomization; the
rvs U1, U2, U3 are mutually independent. The communication-
transmission protocol can be divided into n+1 time slots. In
the first n time slots, the terminals communicate interactively
over the public channel, followed by a transmission over
the secure DMC. The protocol ends with a final round of
interactive public communication in slot n + 1. Specifically,
in time slot t, 1 ≤ t ≤ n, the terminals communicate inter-
actively using their respective local randomization U1, U2, U3

and observations upto time slot t − 1; the overall interactive
communication in slot t is denoted by

Ft = Ft
(
U1, U2, U3, X

t−1
3 , F t−1

)
(3)

Subsequently, the inputs X1t = X1t(F
t, U1) and X2t =

X2t(F
t, U2) are transmitted by terminals 1 and 2, respectively,

and X3t is observed by terminal 3. Finally, the last round of in-
teractive communication Fn+1 = Fn+1 (U1, U2, U3, X

n
3 , F

n)
is sent over the public channel. For convenience, we denote
F = (F1, ..., Fn+1).

After the communication-transmission protocol ends, the
terminals 1, 2, 3, respectively, form estimates K1,K2,K3 as
follows:

Ki = Ki(U1,F), i = 1, 2, 3. (4)

4Our results in this paper can be extended to the multiple input case. See
Section VII.

An rv K with range K constitutes an ε-SK if the following
two conditions are satisfied (c.f. [4]):

P (K1 = K2 = K3 = K) ≥ 1− ε, (5)
sin(K;F) := log |K| −H(K | F)

= D (PKF‖Punif × PF)

≤ ε, (6)

where Punif is the uniform distribution on K. The first
condition above represents reliable recoverability of the SK
and the second guarantees its security. While our achievability
proofs establish SKs that satisfy the “strong secrecy” condition
(6), our converse results are valid for SKs satisfying the weaker
secrecy condition given below:

1

n
sin(K;F) ≤ ε. (7)

Definition 1. A number R ≥ 0 is an achievable SK rate if
for every ε > 0, there exist local randomization U1, U2, U3,
communication-transmission protocol F and ε-SK K with

1

n
log |K| ≥ R,

for all n sufficiently large.
The supremum of all achievable SK rates is called the SK

capacity, denoted by C.

The general problem of characterizing C remains open. In
[6], general lower bounds and upper bounds for C were given;
we state the former next, specialized for the case of two input
MAC.

Theorem 1. [6] The SK capacity for a MAC is bounded below
as

C ≥ R∗. (8)

For the special case W (x3 | x1, x2) = 1 (x3 = x1 ⊕ x2),
the lower bound above is tight and C = R∗ [6, Example
1]. Also, for the case when W is in the Willem’s class of
MACs [12], an upper bound for C was derived in [6]. Willem’s
class consists of MAC where one of the inputs, say input
1, is determined by the output and the other input, i.e., for
some mapping φ : X2 × X3 → X1, W (x3 | x1, x2) = 0 if
x1 6= φ(x2, x3). The following result holds.

Theorem 2. [6] For a MAC in the Willem’s class,

C ≤ R∗f . (9)

In this paper, we show that the bounds (8) and (9) are
tight under various restrictions imposed on the MAC and the
communication-transmission protocols. We first describe the
specific restrictions we place. As in Definition 1, define the
SK capacity with source emulation [5], [6], [3], denoted by
CSE, as the supremum of all achievable SK rates with the
additional restriction that

Ft = constant, 2 ≤ t ≤ n,

i.e., the transmission input sequences for the MAC are selected



solely based on the initial interactive communication F1

and local randomization at the input terminals, without any
feedback from the output. Next, define the SK capacity with
no input communication, denoted by CNIC, as the supremum
of all achievable SK rates with the additional restriction that
following the first round interactive communication F1, the
subsequent communication F2, ..., Fn are only from the output
terminal, i.e.,

Ft = Ft
(
U3, X

t−1
3 , F t−1

)
, 2 ≤ t ≤ n.

The following inequalities ensue:

CSE ≤ CNIC ≤ C.

We now state our main results. First, we show a general
upper bound on CNIC.

Theorem 3. The SK capacity with no input communication is
bounded above as

CNIC ≤ R∗f .

Next, we show that for the class of symmetric MACs, this
upper bound is tight.

Theorem 4. For a symmetric MAC with X1 = X2 and

W (x3 | x1, x2) =W (x3 | x2, x1),

the SK capacity with no input communication is given by

CNIC = R∗f .

As a corollary, we characterize C for adder MAC, for which
lower and upper bounds were reported in [6, Example 2].

Corollary. For W (x3|x1, x2) = 1(x3 = x1 + x2), the SK
capacity is given by

C = R∗f .

Since adder MAC is in the Willem’s class and is symmetric,
the corollary follows from Theorem 2 and Theorem 4.

Finally, the following result implies that source emulation
does not suffice to generate SKs of rate R∗f and the complex
communication-transmission protocols above are needed nec-
essarily in Theorem 4.

Theorem 5. The SK capacity with source emulation is given
by

CSE = R∗.

The inequality CSE ≥ R∗ was shown in [6]. We show the
reverse inequality in Section V.

Remark. Theorem 5 is a further strengthening of [6, Proposi-
tion 5] where this result was established for source emulation
protocols that restrict the inputs of the MAC for different
channel uses to be i.i.d. We show that the inequality CSE ≤ R∗
holds even when this restriction is dropped.

III. A GENERAL CONVERSE FOR SK CAPACITY OF A
MULTITERMINAL SOURCE

In this section, we present a converse for an SK generation
problem in a multiterminal source model with m sources (c.f.
[4]) that does not require the underlying sources to be i.i.d.
This converse result is due to Prakash Narayan and it relies on
a basic property of interactive communication in multiterminal
models.

Terminals 1, ...,m observe correlated rvs Y1, ..., Ym, respec-
tively; for brevity we denote by M the set {1, ...,m} and
by YA the rvs {Yi, i ∈ A} for A ⊆ M. The terminals
communicate over a public channel, possibly interactively in
several rounds. Specifically, terminal i sends communication
Fij in the jth round, 1 ≤ j ≤ r, where Fij depends on the
observation Yi and the previously received communication

F11, ..., Fm1, ..., F1j , ..., F(i−1)j .

We denote the overall interactive communication by F. Con-
sider an rv K taking values in K such that

P (K = Ki(Yi,F), i ∈M) ≥ 1− ε, (10)

for 0 < ε < 1 and some mappings Ki of (Yi,F), i.e.,
the terminals form estimates of K using their respective
observations Yi and the interactive communication F that
agree with K with probability greater than 1− ε. We present
below an upper bound on log |K| . The following notations
will be used: Let B be a collection of subsets of M given by

B = {B : B (M, B 6= ∅}.

A collection λ = {λB : B ∈ B} constitutes a fractional
partition of M (c.f. [5]) if∑

B∈B:i∈B
λB = 1, for all i ∈M.

Consider a partition π = {π1, ..., πk} ofM. Corresponding to
this partition, we define a fractional partition λπ as follows:

λπB =

{
1

k−1 , B = πci , 1 ≤ i ≤ k,
0, otherwise.

(11)

First, we present a key property of interactive communica-
tion that underlies all the converse proofs of this paper.

Lemma 6 (Interactive Communication Property). [5] For an
interactive communication F, we have

H(F) ≥
∑
B∈B

λBH (F | YBc) ,

for every fractional partition λ of M.

The following result is, in effect, a “single-shot” converse
for the SK generation problem.

Theorem 7. [9] For an rv K and interactive communication
F satisfying (10), we have

log |K| ≤ H (YM)−
∑
B∈B

λBH (YB | YBc) + sin(K;F) + ν,



for every fractional partition λ of M, where ν = (m +
2)(ε log |K|+ h(ε)).

Proof. It follows from [5, Lemma A.2] that

H(K | F) ≤ H (YM | F)−
∑
B∈B

λBH (YB | YBc ,F) + ν,

= H (YM)−
∑
B∈B

λBH (YB | YBc)

−

[
H(F)−

∑
B∈B

λBH (F | YBc)

]
+ ν,

which, along with Lemma 6 and the definition of sin(K;F)
in (6), completes the proof.

Corollary. For K and F as in Theorem 7, we get

log |K| ≤ 1

k − 1
D

(
PYM

∥∥∥∥∥
k∏
i=1

PYπi

)
+ sin(K;F) + ν,

for every partition π = {π1, ..., πk} of M.

The corollary follows upon choosing λ = λπ in Theorem 7,
where λπ is given by (11).

IV. MAXIMUM SYMMETRIC RATE FOR MAC

While a single-letter expression for R∗ is known [1], [7],
for R∗f such an expression is available only in special cases
[12]. In this section, we will present n-letter characterizations
for R∗ and R∗f , which will be used in our proofs in the next
section.

Lemma 8. For MAC with two inputs,

R∗ = lim
n

supmin

{
1

n
I (Xn

1 ∧Xn
3 | Xn

2 ) ,

1

n
I (Xn

2 ∧Xn
3 | Xn

1 ) ,

1

2n
I (Xn

1 , X
n
2 ∧Xn

3 )

}
,

where the sup is over all distributions PXn1 Xn2 Xn3 =
PXn1 PXn2 W

n.

We omit the proof, which is a simple consequence of the
capacity region for a MAC [1], [7].

Lemma 9. For MAC with two inputs,

R∗f = lim
n

supmin

{
1

n
I (U1 ∧Xn

3 , U3 | U2) ,

1

n
I (U2 ∧Xn

3 , U3 | U1) ,

1

2n
I (U1, U2 ∧Xn

3 , U3)

}
, (12)

where the sup is over all joint distributions U1, U2, U3, X
n
3

of the randomization at the terminals and the output of the
MAC that result from communication-transmission protocols
with no input communication (as in the definition of CNIC).

Proof. First, we claim that making additional independent
common randomness U3 available to the senders and the
receiver does not improve the capacity region of a MAC.
Indeed, let Perr(u3) be the error probability of the MAC Wn

with feedback conditioned on U3 = u3. Clearly, there exists
at least one realization u∗3 such that

Perr(u
∗
3) ≤ E[Perr(U3)].

Thus, using the encoders and decoders with U3 = u∗3 fixed
we can achieve the same rate as that of the original scheme.
In the remainder of the proof, without loss of generality, we
will assume the availability of rv U3 to the senders and the
receiver of the MAC.

If (R,R) ∈ CMACFB, then using standard manipulations and
Fano’s inequality we get

R ≤ 1

n
I (U1 ∧Xn

3 , U3 | U2) + ηn,

where U1, U2 are the messages sent by terminal 1 and 2,
respectively, i.i.d. uniform over {1, ..., b2nRc}, and ηn → 0
as n→∞. Also,

R ≤ 1

n
I (U2 ∧Xn

3 , U3 | U1) + ηn,

and

2R ≤ 1

n
I (U1, U2 ∧Xn

3 , U3) + ηn.

Since a code for MAC with feedback constitutes a valid
communication-transmission protocol with local randomiza-
tion U1, U2, U3 at terminals 1, 2, 3, respectively, it follows
that R∗f is bounded above by the right-side of (12).

For the other direction, consider a MAC W (n) : U1×U2 →
Xn3 × U3 given by

W (n) (xn3 , u3 | u1, u2)
= P (Xn

3 = xn3 , U3 = u3 | U1 = u1, U2 = u2) .

Then, by [1] and [7], the right-side of (12) is less than
the maximum symmetric rate of the messages that can be
transmitted reliably over this MAC (without feedback). To
complete the proof we note that we can simulate W (n)

by using the MAC W with feedback n times. Specifically,
given a communication-transmission protocol with no input
communication and fixed values u1, u2, u3, choosing

X1t = X1t

(
u1, F

t−1 (xt−13 , u3
))
,

X2t = X2t

(
u2, F

t−1 (xt−13 , u3
))
, 1 ≤ t ≤ n.

simulates W (n). This is a valid choice of inputs since both the
senders know the common randomness U3 and the feedback
signals Xt−1

3 at time t.

V. UPPER BOUNDS

In this section, we prove upper bounds on CNIC and CSE

by applying the results developed in Sections III and IV. We
assume that the SK satisfies the “weak secrecy” condition (7).

The following observation from [11] is needed.



Lemma 10. For mutually independent rvs Y1, Y2, Y3 and
an interactive communication F for the sources Y1, Y2, Y3
described in Section III, we have

PY1,Y2,Y3|F (y1, y2, y3 | f) =
3∏
i=1

PYi|F (yi | f) , ∀ f ,

i.e., independent observations remain independent when con-
ditioned on an interactive communication.

We first remark that the initial round of interactive com-
munication F1 does not help. Specifically, for an ε-SK K
recoverable from an interactive communication F, it follows
from (5) and (6) that there exists a fixed value f1 of F1 such
that

P (K1 = K2 = K3 = K | F1 = f1) ≥ 1− 2ε,

log |K| −H (K | F, F1 = f1) ≤ 2ε (13)

Note that by Lemma 10 the rvs U1, U2, U3 are conditionally
independent given F1. Consider a modified protocol obtained
by fixing F1 = f1 and using local randomization Ũ1, Ũ2, Ũ3

with the same distribution as the conditional distribution of
U1, U2, U3 given F1 = f1. Then, in view of (13), the modified
protocol generates a 2ε-SK of rate not less than the original
protocol and does not require any initial interactive commu-
nication. Thus, without loss of generality, in the remainder of
the section we assume that F1 is constant.

A. Proof of CNIC ≤ R∗f
Let R be an achievable SK rate for a MAC with no

input communication. Setting Y1 = U1, Y2 = U2 and
Y3 = (Xn

3 , U3) and applying the corollary to Theorem 7 with
partition π = ({1}, {2, 3}), for every δ > 0 and n sufficiently
large we have

R ≤ 1

n
D
(
PU1U2Xn3 U3‖PU1 × PU2Xn3 U3

)
+ δ

=
1

n
I (U1 ∧ U2, X

n
3 , U3) + δ

=
1

n
I (U1 ∧Xn

3 , U3 | U2) + δ, (14)

and similarly, using the partition π = ({2}, {1, 3}),

R ≤ 1

n
I (U2 ∧Xn

3 , U3 | U1) + δ. (15)

Also, for the partition π = ({1}, {2}, {3}), we get for n large

R ≤ 1

2n
D
(
PU1U2Xn3 U3‖PU1 × PU2 × PXn3 U3

)
+ δ

=
1

2n
I (U1, U2 ∧Xn

3 , U3) + δ, (16)

where the equality uses the independence of U1 and U2. Upon
combining the bounds in (14) – (16) and taking the limit n→
∞, an application of Lemma 9 yields

R ≤ R∗f ,

since δ > 0 was arbitrary. This proves the claimed upper
bound.

Remark. Choosing π = ({1, 2}, {3}), we also get the bound

R ≤ 1

n
D
(
PU1U2Xn3 U3‖PU1U2 × PXn3 U3

)
+ δ

=
1

n
I (U1, U2 ∧Xn

3 , U3) + δ

which is subsumed by (16).

B. Proof of CSE ≤ R∗

Let R be an achievable SK rate for a MAC with source
emulation. Setting Y1 = (Xn

1 , U1), Y2 = (Xn
2 , U2) and Y3 =

(Xn
3 , U3), and following the steps of the previous part mutatis

mutandis, we get

R∗ ≤ lim
n

supmin

{
1

n
I (Xn

1 , U1 ∧Xn
3 , U3 | Xn

2 , U2) ,

1

n
I (Xn

2 , U2 ∧Xn
3 , U3 | Xn

1 , U1) ,

1

2n
I (Xn

1 , U1, X
n
2 , U2 ∧Xn

3 , U3)

}
. (17)

Note that

I (Xn
1 , U1 ∧Xn

3 , U3 | Xn
2 , U2)

= I (Xn
1 , U1 ∧Xn

3 | Xn
2 , U2)

≤ I (Xn
1 ∧Xn

3 | Xn
2 ) , (18)

where the equality follows since U3 is independent of the rest
of the rvs, and the inequality5 uses U1, U2−◦−Xn

1 , X
n
2 −◦−Xn

3 .
Similarly,

I (Xn
2 , U2 ∧Xn

3 , U3 | Xn
1 , U1) ≤ I (Xn

2 ∧Xn
3 | Xn

1 ) ,

and

I (X1, U1, X
n
2 , U2 ∧Xn

3 , U3) ≤ I (Xn
1 , X

n
2 ∧Xn

3 ) ,

where the rvs Xn
1 = Xn

1 (U1) and Xn
2 = Xn

2 (U2) are
independent. By Lemma 8 and (17), the upper bound on CSE

follows.

VI. LOWER BOUNDS

In this section, we prove Theorem 4. Suppose (R,R) lies
in CMACFB for a symmetric MAC. Then, there exist encoder
mappings

τ1t : {1, ..., b2nRc} × X t−13 → X1,

τ2t : {1, ..., b2nRc} × X t−13 → X2, 1 ≤ t ≤ n, (19)

and decoder mapping

ρ : Xn3 → {1, ..., b2nRc} × {1, ..., b2nRc} (20)

such that when messages M1,M2 are sent, where rvs M1 and
M2 are i.i.d. uniform over

{
1, ..., b2nRc

}
, the error probability

satisfies

εn = P(ρ (Xn
3 ) 6= (M1,M2))→ 0,

in the limit as n→∞.

5In fact, the inequality holds with equality.



Using this n length code, we construct a symmetric code of
length 2n by applying (19) and (20) twice as follows. Consider
rvs M̂1, M̂2, M̃1, M̃2 i.i.d. uniform over

{
1, ..., b2nRc

}
. We

send inputs corresponding to messages M̂1, M̂2 in the odd time
instances, and, with the roles of τ1t and τ2t interchanged, send
inputs corresponding to messages M̃1, M̃2 in the even time
instances. Using the outputs at the odd and even time instances
to decode M̂1, M̂2 and M̃1, M̃2, respectively, we obtain a code
of rate (R,R) with error probability bounded above by 2εn.
Denoting by Yt the rv (X3(2t−1), X3(2t)), 1 ≤ t ≤ n, and
letting M1 = (M̂1, M̃1) and M2 = (M̂2, M̃2), we get

H
(
Yt |M1, Y

t−1)
= H

(
X3(2t−1) | M̂1, X31, ..., X3(2t−3)

)
+H

(
X3(2t) | M̃1, X32, ..., X3(2t−2)

)
= H

(
X3(2t) | M̃2, X32, ..., X3(2t−2)

)
+H

(
X3(2t−1) | M̂2, X31, ..., X3(2t−3)

)
= H

(
Yt |M2, Y

t−1) , (21)

where the second equality follows from the symmetry of the
MAC.

Next, we replace the feedback Yt with its compressed
version given the observations of the input terminals. To do
this, we consider a multiple-blocks extension of the symmetric
code above and take recourse to the result of Slepian and
Wolf [10]. Specifically, let M1i,M2i, Y

n
i , i = 1, ..., N , be N

i.i.d. repetitions of rvs M1,M2, Y
n above. By Slepian-Wolf

theorem [10], there exist mappings

Ft = Ft(Yt1, Yt2, ..., YtN ), 1 ≤ t ≤ n,

of rates
1

N
log ‖Ft‖ ≤ H

(
Yt |M1, Y

t−1)+ εn,

= H
(
Yt |M2, Y

t−1)+ εn, (22)

such that an observer of (M11, ...,M1N , Y
t−1
1 , ..., Y t−1N ) or

(M21, ...,M2N , Y
t−1
1 , ..., Y t−1N ) can recover Y Nt with prob-

ability of error less than εn/n, for all N sufficiently large.
The equality in (22) uses (21). Then, using a union bound on
probability of error, the communication-transmission protocol
corresponding to F1, ..., Fn allows all the terminals to recover
(Y n1 , ..., Y

n
N ) with probability of error less than εn. Note that

the overall communication-transmission protocol now consists
of n rounds of communication from terminal 3 and 2nN
transmissions over the MAC. In each time slot t, the output
terminal observing Yt1, ..., YtN sends Ft to the input terminals.
Using this communication and their local observations MN

1

and MN
2 , the terminals 1 and 2 estimate Yt1, ..., YtN and

use the estimates to select the inputs XN
1(2t+1), X

N
1(2t+2) and

XN
2(2t+1), X

N
2(2t+2), respectively.

Finally, we show that for all n,N sufficiently large, there
exists a function K of (Y n1 , ..., Y

n
N ) of rate (1/nN) log ‖K‖

greater than R− δ, satisfying

sin(K;F) ≤ ε.

Therefore, K is an ε-SK for n,N sufficiently large, where
0 < ε < 1 is arbitrary. It remains to find a mapping K as
above. By [4, Lemma 1], it suffices to show that

‖PKF − Punif × PF‖ ≤ 2−nτ ,

for some τ > 0. Indeed, by the “balanced coloring lemma”
[4, Lemma B4], for n,N sufficiently large, there exists such
a mapping K of rate

1

nN
log ‖K‖ ≥ 1

nN
H(Y n1 , ..., Y

n
N )− 1

nN
log ‖F‖ − εn

≥ 1

n
H(Y n)− 1

n

n∑
t=1

H
(
Yt |M1, Y

t−1)− 2εn

=
1

n
I(Y n ∧M1)− 2εn

≥ R− δ,

where the second inequality is by (22) and the previous
inequality uses Fano’s inequality. Thus, R is an achievable
SK rate.

VII. DISCUSSION

Our proof methodology in this paper is to use the basic
properties of SKs and interactive communication to obtain
upper bounds on SK rates, and then relate these upper bounds
directly to the maximum rates of reliable transmission over
a MAC, without reducing them to single-letter forms. In par-
ticular, this approach brings out a key property of interactive
communication that is instrumental in proving the converse,
namely the inequality (see Lemma 6)

H(F) ≥
∑
B∈B

λBH (F | YBc) . (23)

For the case of two terminals, this inequality can be written
as

H(F) ≥ H(F | Y1) +H(F | Y2), (24)

which is well-known in the communication complexity liter-
ature (c.f. [2]) as the fact that external communication cost
is at least as much as the communication cost. Besides (23),
the only other property of interactive communication that we
use is the fact that independent observations remain so when
conditioned on interactive communication (see Lemma 10).
However, for a specific choice of λ in (23), upon rearranging
the terms we get

I (YB ∧ YBc | F) ≤ I (YB ∧ YBc) , for all B ⊆M,

which in turn implies Lemma 10. Thus, (23) is the only
property of interactive communication that is used in our
converse proofs. Note that (24) is indeed a characteristic of an
interactive communication and does not hold for every func-
tion of Y1 and Y2. For instance, for symmetrically distributed



unbiased bits Y1 and Y2, and F = Y1 ⊕ Y2,

H(F ) = 1 < H(F | Y1) +H(F | Y2) = 2.

Our results in this paper extend easily to MACs with
multiple inputs. In particular, Theorems 3 and 5 hold for a
multi-input MAC upon defining R∗ and R∗f as follows:

R∗ = max {R : (R, ..., R) ∈ CMAC} ,
R∗f = max {R : (R, ..., R) ∈ CMACFB} .

Also, Theorem 4 holds for a multi-input MAC W : X1× ...×
Xm−1 → Xm that satisfies

W (xm | x1, ..., xm−1) =W
(
xm | xσ(1), ..., xσ(m−1)

)
,

for every permutation σ of {1, ...,m− 1}.
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