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Abstract—We consider information theoretic secret key agree-
ment and secure function computation by multiple parties
observing correlated data, with access to an interactive public
communication channel. Our main result is an upper bound on
the secret key length, which is derived using a reduction of binary
hypothesis testing to multiparty secret key agreement. Building
on this basic result, we derive new converses for multiparty
secret key agreement. Furthermore, we derive converse results for
the oblivious transfer problem and the bit commitment problem
by relating them to secret key agreement. Finally, we derive a
necessary condition for the feasibility of secure computation by
trusted parties that seek to compute a function of their collective
data, using an interactive public communication that by itself
does not give away the value of the function. In many cases,
we strengthen and improve upon previously known converse
bounds. Our results are single-shot and use only the given joint
distribution of the correlated observations. For the case when the
correlated observations consist of independent and identically
distributed (in time) sequences, we derive strong versions of
previously known converses.

I. INTRODUCTION

Information theoretic cryptography relies on the availability
of correlated random observations to the parties. Neither
multiparty secret key (SK) agreement nor secure computation
is feasible if the observation of the parties are mutually
independent. In fact, SK agreement is not feasible even when
the observations are independent across some partition of
the set of parties1. As an extension of this principle, we
can expect that the efficiency of a cryptographic primitive is
related to “how far” the joint distribution of the observations is
from a distribution that renders the observations independent
(across some partition of the set of parties). We formalize
this heuristic principle and leverage it to bound the efficiency
of using correlated sources to implement SK agreement and
secure computation. We present single-shot converse results; in
particular, we do not assume that the observations of parties
consist of long sequences generated by an independent and
identically distributed (IID) random process2.
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1With restricted interpretations of feasibility, these observations appear
across the vast literature on SK agreement and secure computation; see, for
instance, [44], [1], [16], [60], [40], [80], [48].

2Throughout this paper, IID observations refer to observations that are IID
in time; at each instant t, the observations of the parties are correlated.

In multiparty SK agreement, a set of parties observing
correlated random variables (RVs) seek to agree on shared
random bits that remain concealed from an eavesdropper
with access to a correlated side information. The parties
may communicate with each other over a noiseless public
channel, but the transmitted communication will be available
to the eavesdropper. The main tool for deriving our converse
results is a reduction argument that relates multiparty SK
agreement to binary hypothesis testing3. For an illustration
of our main idea, consider the two party case when the
eavesdropper observes only the communication between the
legitimate parties and does not observe any additional side
information. Clearly, if the observations of the legitimate
parties are independent, a SK cannot be generated. We upper
bound the length of SKs that can be generated in terms of “how
far” is the joint distribution of the observations of the parties
from a distribution that renders their observations independent.
Specifically, for this special case, we show that the maximum
length Sε (X1, X2) of a SK (for a given secrecy index ε) is
bounded above as

Sε (X1, X2) ≤ − log βε+η
(
PX1X2

,PX1
× PX2

)
+ 2 log(1/η),

where βε
(
PX1X2

,PX1
× PX2

)
is the optimal probability of

error of type II for testing the null hypothesis PX1X2 with the
alternative PX1 × PX2 , given that the probability of error of
type I is smaller than ε; this βε serves as a proxy for “distance”
between PX1X2

and PX1
×PX2

. Similarly, in the general case
of an arbitrary number of parties with correlated side informa-
tion at the eavesdropper, our main result in Theorem 3 bounds
the secret key length in terms of the “distance” between the
joint distribution of the observations of the parties and the
eavesdropper and a distribution that renders the observations
of the parties conditionally independent across some partition,
when conditioned on the eavesdropper’s side information.
This bound is a manifestation of the aforementioned heuristic
principle and is termed the conditional independence testing
bound.

Our approach brings out a structural connection between
SK agreement and binary hypothesis testing4. This is in the
spirit of [52], where a connection between channel coding
and binary hypothesis testing was used to establish an upper
bound on the rate of good channel codes (see, also, [75],
[28]). Also, our upper bound is reminiscent of the measure

3This basic result was reported separately in [73].
4While the connection between SK agreement and hypothesis testing

established in this paper is new, a similar connection between authentication
and hypothesis testing is natural to expect and is well-known (see, for instance,
[45]).
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of entanglement for a quantum state proposed in [74], namely
the minimum distance between the density matrix of the state
and that of a disentangled state. This measure of entanglement
was shown to be an upper bound on the entanglement of
distillation in [74], where the latter is the largest proportion
of maximally entangled states that can be distilled using a
purification process [6].

Using our basic result, we obtain new converses for SK
agreement, and also, for secure two-party computation by
reducing SK agreement to oblivious transfer and bit commit-
ment. In many cases, we strengthen and improve upon previ-
ously known results. Our main contributions are summarized
below.

A. Secret key agreement

For two parties, the problem of SK agreement from corre-
lated observations is well-studied. The problem was introduced
by Maurer [44] and Ahlswede and Csiszár [1], who considered
the case where the parties observe IID sequences. However,
in certain applications it is of interest to consider observa-
tions arising from a single realization of correlated RVs. For
instance, in applications such as biometric and hardware au-
thentication (cf. [51], [20]), the correlated observations consist
of different versions of the biometric and hardware signatures,
respectively, recorded at the registration and the authentication
stages. To this end, Renner and Wolf [60] derived bounds
on the length of a SK that can be generated by two parties
observing a single realization of correlated RVs, using one-
side communication.

The problem of SK agreement with multiple parties, for
the IID setup, was introduced in [16] (see also [9]). In this
work, we consider the SK agreement problem for multiple
parties observing a single realization of correlated RVs. Our
conditional independence testing bound is a single-shot up-
per bound on the length of SKs that can be generated by
multiple parties observing correlated data, using interactive
public communication5. Unlike the single-shot upper bound
in [60], which is restricted to two parties with one-way
communication, we allow arbitrary interactive communication
between multiple parties. Asymptotically our bound is tight
– its application to the IID case recovers some previously
known (tight) bounds on the asymptotic SK rates. In fact, we
strengthen the previously known asymptotic results since we
do not require the probability of error in SK agreement or the
secrecy index to be asymptotically6 0. See Section IV for a
detailed discussion.

B. Secure two-party computation

The problem of secure two-party computation was intro-
duced by Yao in [83]. Two (mutually untrusting) parties seek
to compute a function of their collective data, without sharing
anything more about their data than what is given away by the

5A single-shot upper bound using Fano’s inequality for the length of a
multiparty SK, obtained as a straightforward extension of [16], [17], was
reported in [72].

6Such bounds that do not require the probability of error to vanish to 0 are
called strong converse bounds [15].

function value. Several specific instances of this general prob-
lem have been studied. We consider the problems of oblivious
transfer (OT) and bit commitment (BC), which constitute two
basic primitives for secure two-party computation.

OT between two parties is a mode of message transmission
“where the sender does not know whether the recipient actu-
ally received the information” [55]. In this paper, we consider
the one-out-of-two OT problem [21] where the first party
observes two strings K0 and K1 of length l each, and the
second party seeks the value of the Bth string, B ∈ {0, 1}.
The goal is to accomplish this task in such a manner that
B and KB remain concealed, respectively, from Party 1 and
Party 2. This simply stated problem is at the heart of secure
function computation as it is well-known [39] that any secure
function computation task can be accomplished using the basic
OT protocol repeatedly (for recent results on the complexity of
secure function computation using OT, see [4]). Unfortunately,
information theoretically secure OT is not feasible in the
absence of additional resources. On the bright side, if the
parties share a noisy communication channel or if they observe
correlated randomness, OT can be accomplished (cf. [12], [13],
[2], [48]). In this paper, we consider the latter case where,
as an additional resource, the parties observe correlated RVs
X1 and X2. Based on reduction arguments relating OT to
SK agreement, we derive upper bounds on the length l of
OT that can be accomplished for given RVs X1, X2. The
resulting bound is, in general, tighter than that obtained in
[79]. Furthermore, an application of our bound to the case of
IID observations shows that the upper bound on the rate of
OT length derived in [48] and [2]7 is strong, i.e., the bound
holds even without requiring asymptotically perfect recovery.

We now turn to the BC problem, the first instance of which
was introduced by Blum in [7] as the problem of flipping
a coin over a telephone, when the parties do not trust each
other. A bit commitment protocol has two phases. In the first
phase the committing party generates a random bit string K,
its “coin flip”. Subsequently, the two parties communicate with
each other, which ends the first phase. In the second phase,
the committing party reveals K. A bit commitment protocol
must forbid the committing party from cheating and changing
K in the second phase. As in the case of OT, information
theoretically secure BC is not possible without additional
resources. We consider a version where two parties observ-
ing correlated observations X1 and X2 want to implement
information theoretically secure BC using interactive public
communication. The goal is to maximize the length of the
committed string K. By reducing SK agreement to BC, we
derive an upper bound on BC length which improves upon the
bound in [56]. Furthermore, for the case of IID observations,
we derive a strong converse for BC capacity; the latter is the
maximum rate of BC length and was characterized in [80].

C. Secure computation with trusted parties
In a different direction, we relate our result to the following

problem of secure function computation with trusted parties

7The asymptotic bound in [2] was generalized in [57] usin the tension-
bound technique introduced in [54]. It is not clear if our approach can derive
a single-shot version of the general bound in [57].
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introduced in [69] (for an early version of the problem,
see [50]): Multiple parties observing correlated data seek
to compute a function of their collective data. To this end,
they communicate interactively over a public communication
channel, which is assumed to be authenticated and error-free.
It is required that the value of the function be concealed from
an eavesdropper with access to the communication. When
is such a secure computation of a given function feasible?
In contrast to the traditional secure computation problem
discussed above, this setup is appropriate for applications such
as sensor networks where the legitimate parties are trusted
and are free to extract any information about each other’s
data from the shared communication. Using the conditional
independence testing bound, we derive a necessary condition
for the existence of a communication protocol that allows the
parties to reliably recover the value of a given function, while
keeping this value concealed from an eavesdropper with access
to (only) the communication. In [69], matching necessary
and sufficient conditions for secure computability of a given
function were derived for the case of IID observations. In
contrast, our necessary condition for secure computability is
single-shot and does not rely on the observations being IID.

D. Outline of paper

The next section reviews some basic concepts that will
be used throughout this work. The conditional independence
testing bound is derived in Section III. In the subsequent three
sections, we present the implications of this bound: Section
IV addresses strong converses for SK capacity; Section V
addresses converse results for the OT and the BC problem; and
Section VI contains converse results for the secure computa-
tion problem with trusted parties. The final section contains a
brief discussion of possible extensions.

E. Notations

For brevity, we use abbreviations SK, RV, and IID for
secret key, random variable, and independent and identically
distributed, respectively; a plural form will be indicated by
appending an ‘s’ to the abbreviation. The RVs are denoted by
capital letters and the corresponding range sets are denoted by
calligraphic letters. The distribution of a RV U is given by PU ,
when there is no confusion we drop the subscript U . The set
of all parties {1, ...,m} is denoted by M. For a collection of
RVs {U1, .., Um} and a subset A of M, UA denotes the RVs
{Ui, i ∈ A}. For a RV U , Un denotes n IID repetitions of the
RV U . Similarly, Pn denotes the distribution corresponding to
the n IID repetitions generated from P. All logarithms in this
paper are to the base 2.

II. PRELIMINARIES

A. Secret keys

Consider SK agreement using interactive public commu-
nication by m (trusted) parties. The ith party observes a
discrete RV Xi taking values in a finite set Xi, 1 ≤ i ≤ m.8

8The conditional independence testing bound given in Theorem 3 remains
valid even for continuous valued RVs. However, in general, the resulting bound
may not be achievable.

Upon making these observations, the parties communicate
interactively over a public communication channel that is
accessible by an eavesdropper, who additionally observes a
RV Z such that the RVs (XM, Z) have a distribution PXMZ .
We assume that the communication is error-free and each
party receives the communication from every other party.
Furthermore, we assume that the public communication is
authenticated and the eavesdropper cannot tamper with it.
Specifically, the communication is sent over r rounds of
interaction. In the jth round of communication, 1 ≤ j ≤ r,
the ith party sends Fij , which is a function of its observation
Xi, a locally generated randomness9 Ui and the previously
observed communication

F11, ..., Fm1, F12, ..., Fm2, ..., F1j , ..., F(i−1)j .

The overall interactive communication
F11, ..., Fm1, ..., F1r, ..., Fmr is denoted by F. Using
their local observations and the interactive communication F,
the parties agree on a SK.

Formally, a SK is a collection of RVs K1, ...,Km, where the
ith party gets Ki, that agree with probability close to 1 and are
concealed, in effect, from an eavesdropper. Formally, the ith
party computes a function Ki of (Ui, Xi,F). Traditionally, the
RVs K1, ...,Km with a common range K constitute an (ε, δ)-
SK if the following two conditions are satisfied (for alternative
definitions of secrecy, see [44], [14], [16])

P (K1 = · · · = Km) ≥ 1− ε, (1)
d (PK1FZ ,Punif × PFZ) ≤ δ, (2)

where Punif is the uniform distribution on K and d (P,Q) is
the variational distance between P and Q given by

d (P,Q) =
1

2

∑
x

|P (x)−Q (x) |.

The first condition above represents the reliable recovery
of the SK and the second condition guarantees secrecy. In
this work, we use the following alternative definition of a
SK, which conveniently combines the recoverability and the
secrecy conditions (cf. [58]): The RVs K1, ...,Km above
constitute an ε-SK with common range K if

d
(
PKMFZ ,P

(M)
unif × PFZ

)
≤ ε, (3)

where

P
(M)
unif (kM) =

1(k1 = · · · = km)

|K|
.

In fact, the two definitions above are closely related10.

Proposition 1. Given 0 ≤ ε, δ < 1, if KM constitute an (ε, δ)-
SK under (1) and (2), then they constitute an (ε+δ)-SK under
(3).

Conversely, if KM constitute an ε-SK under (3), then they

9The RVs U1, ..., Um are mutually independent and independent jointly of
(XM, Z).

10Note that a SK agreement protocol that satisfies (3) universally
composable-emulates an ideal SK agreement protocol (see [8] for a definition).
The emulation is with emulation slack ε, for an environment of unbounded
computational complexity.
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constitute an (ε, ε)-SK under (1) and (2).

Therefore, by the composition theorem in [8], the complex
cryptographic protocols using such SKs instead of perfect SKs
are secure.11

We are interested in characterizing the maximum length
log |K| of an ε-SK.

Definition 1. Given 0 ≤ ε < 1, denote by Sε (XM|Z) the
maximum length log |K| of an ε-SK KM with common range
K.

Our upper bound is based on relating the SK agreement
problem to a binary hypothesis testing problem; below we
review some basic concepts in hypothesis testing that will be
used.

B. Hypothesis testing

Consider a binary hypothesis testing problem with null
hypothesis P and alternative hypothesis Q, where P and Q are
distributions on the same alphabet X . Upon observing a value
x ∈ X , the observer needs to decide if the value was generated
by the distribution P or the distribution Q. To this end, the
observer applies a stochastic test T, which is a conditional
distribution on {0, 1} given an observation x ∈ X . When
x ∈ X is observed, the test T chooses the null hypothesis
with probability T(0|x) and the alternative hypothesis with
probability T(1|x) = 1 − T(0|x). For 0 ≤ ε < 1, denote by
βε(P,Q) the infimum of the probability of error of type II
given that the probability of error of type I is less than ε, i.e.,

βε(P,Q) := inf
T :P[T]≥1−ε

Q[T], (4)

where

P[T] =
∑
x

P(x)T(0|x),

Q[T] =
∑
x

Q(x)T(0|x).

We note two important properties of the quantity βε(P,Q).
1) Data processing inequality. Let W be a stochastic

mapping from X to Y , i.e., for each x ∈ X , W (·|x)
is a distribution on Y . Then,

βε(P,Q) ≤ βε(P ◦W,Q ◦W ), (5)

where (P ◦W )(y) =
∑
x P (x)W (y|x).

2) Stein’s Lemma. (cf. [43, Theorem 3.3]) For every 0 <
ε < 1, we have

lim
n→∞

− 1

n
log βε(P

n,Qn) = D(P‖Q), (6)

where D(P‖Q) is the Kullback-Leibler divergence given
by

D(P‖Q) =
∑
x∈X

P(x) log
P(x)

Q(x)
,

with the convention 0 log(0/0) = 0.

11A perfect SK refers to unbiased shared bits that are independent of
eavesdropper’s observations.

C. Remarks on evaluation of βε(P,Q)

We close with a discussion on evaluating βε(P,Q). Note
that the expression for βε(P,Q) in (4) is a linear program,
solving which has a polynomial complexity in the size of the
observation space. A simple manipulation yields the following
computationally more tractable bound:

− log βε(P,Q) ≤ inf
γ
γ − log (Pγ − ε) , (7)

where
Pγ = P

({
x : log

P(x)

Q(x)
≤ γ

})
.

When P and Q correspond to IID RVs, the tail probability in
(7) can be numerically evaluated directly or can be approxi-
mated by the Bérry-Esséen theorem (cf. [22]). On the other
hand, numerical evaluation of the tail probability is rather
involved when P and Q correspond to Markov chains. For
this case, a computationally tractable and asymptotically tight
bound on βε(P,Q) was established recently in [77]. Also, by
setting γ = Dα(P,Q)+ 1

1−α log(1− ε− ε′), where Dα(P,Q)
is the Rényi’s divergence of order α > 1 and is given by [61]

Dα(P,Q) =
1

α− 1
log
∑
x∈X

P(x)αQ(x)1−α,

the following simple bound on βε(P,Q) is obtained12:

− log βε(P,Q) ≤ Dα(P,Q) +
1

α− 1
log

1

1− ε− ε′
+ log

1

ε′
.

(8)

A variant of this bound for the case of quantum observations
was reported in [49, Theorem 1] (see, also, [27, Eqn. (2.63)]).
For the classical case, the bound follows from the simple proof
below: Denote by Aγ the set {x : log P(x)/Q(x) ≤ γ}. Thus,
for α > 1,

1− Pγ =
∑
x∈Acγ

P(x)

=
∑
x∈Acγ

P(x)αP(x)1−α

<
∑
x∈Acγ

P(x)αQ(x)1−α2(1−α)γ

≤ 2(α−1)Dα(P,Q)+(1−α)γ

= (1− ε− ε′),

which further implies that Pγ > ε+ ε′. The bound (8) follows
from (7). Note that while the bound (8) is not tight in general,
as its corollary we obtain Stein’s lemma (see (6)).

Finally, we remark that when the condition

log
P(X)

Q(X)
= D(P‖Q) (9)

is satisfied with probability 1 under P, the bound in (7) implies

− log βε(P,Q) ≤ D(P‖Q) + log(1/(1− ε)). (10)

12For other connections between βε and Rényi’s divergence, see [27, Eqns.
(3.37) and (3.38)], [53, Eqn. (29)].
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D. Smooth min-entropy and smooth max-divergence

Given two RVs X and Y , a central question of information
theoretic secrecy is (cf. [34], [35], [5]): How many unbiased,
independent bits can be extracted from X that are unavailable
to an observer of Y ? When the underlying distribution is IID,
the optimum rate of extracted bits can be expressed in terms
of Shannon entropies and is given by H(X|Y ). However, for
our single-shot setup, smooth min-entropy introduced in [60],
[58] is a more relevant measure of randomness. We use the
definition of smooth min-entropy introduced13 in [58]; for a
review of other variations, see [63].

We also review the leftover hash lemma [34], [5], which
brings out the central role of smooth min-entropy in the
answer to the question above. Also, as a “change of mea-
sure companion” for smooth min-entropy, we define smooth
max-divergence and note that it satisfies the data processing
inequality.

Definition 2. (min-entropy) The min-entropy of P is defined
as

Hmin(P) := min
x

log
1

P (x)
.

For distributions PXY and QY , the conditional min-entropy
of PXY given QY is defined as

Hmin(PXY |QY ) := min
x∈X , y ∈ supp(QY )

log
QY (y)

PXY (x, y)
.

Finally, the conditional min-entropy14 of PXY given Y is
defined as

Hmin(PXY |Y ) := sup
QY

Hmin(PXY |QY ), (11)

where the sup is over all QY such that supp(PY ) ⊆
supp(QY ).

Note that

Hmin(PXY |Y )

= − inf
QY

max
x,y

log
PXY (x, y)

QY (y)

= − inf
QY

max
y

log
PY (y)maxx PX|Y (x|y)

QY (y)

= − log
∑
y

PY (y)max
x

PX|Y (x|y)− inf
QY

max
y

log
P̃Y (y)

QY (y)

= − log
∑
y

PY (y)max
x

PX|Y (x|y)− inf
QY

Dmax(P̃Y ‖QY )

= − log
∑
y

PY (y)max
x

PX|Y (x|y) , (12)

where

P̃Y (y) :=

(∑
y′

PY (y′)max
x

PX|Y (x|y′)
)−1

PY (y)×

13A review of the notion of smooth min-entropy without the notations from
quantum information theory can be also found in [76].

14There are other definitions of conditional min-entropy available in the
literature. The form here is perhaps the most widely used and is appropriate
for our purpose.

max
x

PX|Y (x) ,

and the final equality in (12) holds since the max-divergence
Dmax(P‖Q) (see Definition 4 below) is nonnegative and
equals 0 if and only if P = Q. This alternative form of
conditional min-entropy was first derived in [41] for a more
general, quantum setup (see, also, [36, Theorem 2(ii)]) and
shows that Hmin(PXY |Y ) corresponds to the − log of the
average conditional guessing probability for X given Y .
However, the original form in (11) is more suited for our
purpose.

The definition of min-entropy and conditional min-entropy
remain valid for all subnormalized, nonnegative functions
PXY , i.e., PXY such that∑

x,y

PXY (x, y) ≤ 1.

We need this extension and the concept of smoothing, defined
next, to derive tight bounds.

Definition 3. (Smooth min-entropy) Given ε ≥ 0, the ε-
smooth conditional minimum entropy of PXY given Y is
defined as

Hε
min(PXY |Y ) := sup

P̃XY : d(PXY ,P̃XY )≤ ε
Hmin(P̃XY |Y ),

where the sup is over all subnormalized, nonnegative functions
P̃XY . When Y is a constant, the ε-smooth min-entropy is
denoted by Hε

min(PX).

We now state the leftover hash lemma, which says that we
can extract Hε

min (PXY |Y ) unbiased, independent bits from
X that are effectively concealed from an observer of Y .

Lemma 2. (Leftover hash) [58] Given a joint distribution
PXY , for every 0 ≤ 2ε < 1 and 0 < η there exists a mapping15

K : X → K with log |K| = bHε
min (PXY |Y ) − 2 log(1/2η)c

such that

d
(
PK(X)Y ,Punif × PY

)
≤ 2ε+ η.

Finally, we review smooth max-divergence, which was
introduced first in [18] for a quantum setting. The method
of smoothing in the following definition is slightly different
from the one in [18] and is tailored to our purpose.

Definition 4. (Smooth max-divergence) The max-divergence
between two distributions P and Q is defined as

Dmax(P‖Q) := max
x

log
P (x)

Q (x)
,

with the convention log(0/0) = 0, and for 0 ≤ ε < 1, the
ε-smooth max-divergence between P and Q is defined as

Dε
max(P‖Q) := inf

P̃≤P:

P̃(X )≥ 1−ε

Dmax(P̃‖Q),

where the inf is over all subnormalized, nonnegative functions
P̃ such that P̃ (x) ≤ P (x) for all x ∈ X and

∑
x P̃ (x) ≥

1− ε.

15A randomly chosen function from a 2-universal hash family suffices.
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The following two properties of smooth max-divergence
will be used:

1) Data processing inequality. For every stochastic map-
ping W : X → Y ,

Dε
max(P ◦W‖Q ◦W ) ≤ Dε

max(P‖Q). (13)

Indeed, for every P̃ such that P̃ (x) ≤ P (x) for all
x ∈ X and

∑
x P̃ (x) ≥ 1− ε, the following hold

(P̃ ◦W )(Y) ≥ 1− ε,
(P̃ ◦W )(y) ≤ (P ◦W )(y), ∀ y ∈ Y.

The property follows upon noting that for every y ∈ Y

Dmax(P̃‖Q) = max
x

log
P̃ (x)

Q (x)

≥ log
(P̃ ◦W )(y)

(Q ◦W )(y)
,

since maxi(ai/bi) ≥ (
∑
i ai/

∑
i bi).

2) Convergence to Kullback-Leibler divergence. For IID
distributions Pn and Qn,

lim
n→∞

1

n
Dε

max(P
n‖Qn) = D(P‖Q), ∀ 0 < ε < 1.

The inequality ‘≤’ holds trivially if D(P‖Q) = ∞.
Thus, it suffices to prove it under the assumption that
D(P‖Q) is finite. To that end, consider P̃n(x) =
Pn(x)1(x ∈ Tn), where Tn is the (strongly) typical set
for Pn (cf. [15]). For a sequence x ∈ Xn and an element
x ∈ X , denote by N(x|x) the number of occurrences of
x in x. Then, every sequence x ∈ Tn satisfies (cf. [15])∣∣∣∣N(x|x)

n
− P (x)

∣∣∣∣ < δn, x ∈ X , (14)

where δn → 0 as n → 0 (for precise conditions, see
the δ-convention in [15]). Note that P̃n ≤ Pn and
P̃n(Xn) = Pn(Tn) ≥ 1 − ε for all n sufficiently large.
Thus,

1

n
Dε

max(P
n‖Qn) ≤ 1

n
Dmax(P̃n‖Qn)

= max
x∈Tn

1

n
log

Pn(x)

Qn(x)

= max
x∈Tn

1

n

n∑
i=1

log
P(xi)

Q(xi)

= max
x∈Tn

∑
x∈X

N(x|x)
n

log
P (x)

Q (x)

≤
∑
x∈X

P (x) log
P (x)

Q (x)
+ o(1),

where the last inequality follows from (14) under the
assumption that D(P‖Q) <∞.
For the inequality in the other direction, suppose we are
given a P̃n ≤ Pn with P̃n(Xn) ≥ 1− ε. Then,

P̃n(Tn) = P̃n(Xn)− P̃n(T cn )
≥ 1− ε− P̃n(T cn )

≥ 1− ε− Pn(T cn )
≥ (1− ε)/2, (15)

for all n sufficiently large. This further implies that there
exists an x0 ∈ Tn such that

P̃n(x0) ≥ Pn(x0)(1− ε)/2.

Indeed, if not, then P̃n(x) < Pn(x)(1 − ε)/2 for all
x ∈ Tn, which further implies P̃n(Tn) < (1 − ε)/2
contradicting (15). Thus,

1

n
max
x

log
P̃n(x)

Qn(x)
≥ 1

n
log

P̃n(x0)

Qn(x0)

≥ 1

n
log

Pn(x0)

Qn(x0)
+

1

n
log

1− ε
2

.

For the case D(P‖Q) = ∞, there exists x+ ∈ X such
that P(x+) > 0 and Q(x+) = 0. Since x0 ∈ Tn,
N(x+|x0) > 0 and the right-side of the inequality
above, too, is infinity. On the other hand, if D(P‖Q)
is finite, using (14) for the sequence x0 ∈ Tn, the right-
side of the inequality above is further bounded below
by D(P‖Q)− o(1), which completes the proof.

III. THE CONDITIONAL INDEPENDENCE TESTING BOUND

Converse results of this paper are based on an upper bound
on the maximum length Sε (XM|Z) of an ε-SK. We present
this basic result here16.

Consider a (nontrivial) partition π = {π1, ..., πl} of the
set M. Heuristically, if the underlying distribution of the
observations PXMZ is such that XM are conditionally in-
dependent across the partition π given Z, the length of a
SK that can be generated is 0. Our approach is to bound
the length of a generated SK in terms of “how far” is
the distribution PXMZ from another distribution QπXMZ that
renders XM conditionally independent across the partition π
given Z – the closeness of the two distributions is measured
by βε

(
PXMZ ,Q

π
XMZ

)
.

Specifically, for a partition π with |π| ≥ 2 parts, let Q(π)
be the set of all distributions QπXMZ that factorize as follows:

QπXM|Z(x1, . . . , xm|z) =
|π|∏
i=1

QπXπi |Z
(xπi |z). (16)

Theorem 3 (Conditional independence testing bound).
Given 0 ≤ ε < 1, 0 < η < 1 − ε, and a partition π of
M. It holds that

Sε (XM|Z)

≤ 1

|π| − 1

[
− log βε+η

(
PXMZ ,Q

π
XMZ

)
+ |π| log(1/η)

]
,

(17)

for all QπXMZ ∈ Q(π).

Remark 1. Renner and Wolf [60] derived a bound on the length
of a SK that can be generated by two parties using one-way
communication. A comparison of this bound with the general

16The results of this section were presented in [73].
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bound in Theorem 3 is unavailable, since the former involves
auxiliary RVs and is difficult to evaluate.

Remark 2. For m = 2 and Z = constant, the upper bound
on the length of a SK in Theorem 3 is related closely to the
meta-converse of Polyanskiy, Poor, and Verdú [52]. Indeed, a
code for reliable transmission of a message M over a point-
to-point channel yields a SK for the sender and the receiver;
the length of this SK can be bounded by Theorem 3. However,
the resulting bound is slightly weaker than the meta-converse
and does not yield the correct third order asymptotic term (the
coefficient of log n) in the optimal size of transmission codes
[64].

Remark 3. The proof of Theorem 3 below remains valid even
when the secrecy condition (3) is replaced by the following
more general condition:

d
(
PKMFZ ,P

(M)
unif ×QFZ

)
≤ ε,

for some distribution QFZ . In particular, upper bound (17)
holds even under the relaxed secrecy criterion above.

The key idea underlying our proof of Theorem 3 is a
lower bound for − log βε(P,Q) for a binary hypothesis testing
problem with observation space Km, null hypothesis P given
by

PK1K2...Km = P
(M)
unif , (18)

and the alternative hypothesis Q given by

QK1K2...Km =

m∏
i=1

QKi , (19)

namely the problem of testing if K1....Km constitute a per-
fectly correlated uniform randomness or are they mutually
independent.

Lemma 4. For PKM = PK1...Km and QKM = QK1...Km

given in (18) and (19), it holds for every 0 < η < 1 that

log |K| ≤ 1

m− 1

[
− log βη

(
PKM ,QKM

)
+m log(1/η)

]
.

Proof: Consider the log-likelihood ratio test with thresh-
old λ given by

λ = (m− 1) log |K| −m log(1/η),

i.e., the deterministic test with the following acceptance region
(for the null hypothesis)

A :=

{
kM : log

PKM (kM)

QKM (kM)
≥ λ

}
.

For this test, the probability of error of type II is bounded
above as

QKM(A) =
∑
kM∈A

QKM (kM)

≤ 2−λ
∑
kM∈A

PKM (kM)

≤ 2−λ

= |K|1−mη−m. (20)

On the other hand, the probability of error of type I is given
by

PKM (Ac) = 1

|K|
|{k : k = (k, ..., k) ∈ Ac}|

=
1

|K|
∑
k

1 (k ∈ Ac)

=
1

|K|
∑
k

1 (QKM (k) |K|mηm > 1) , (21)

where k := (k, . . . , k) and the second equality holds since Ac
consists of elements kM satisfying

PKM (kM)

QKM (kM)
=
1(k1 = · · · = km)

|K|QKM (M)
< 2λ = |K|m−1ηm.

The inner sum can be further upper bounded as∑
k

1 (QKM (k) |K|mηm > 1) ≤
∑
k

(QKM (k) |K|mηm)
1
m

= |K|η
∑
k

QKM (k)
1
m

= |K|η
∑
k

m∏
i=1

QKi (k)
1
m

≤ |K|η
m∏
i=1

(∑
k

QKi (k)

) 1
m

= |K|η, (22)

where the first inequality above holds by 1(·) ≤ 1, and the
second inequality above holds by Hölder’s inequality. Upon
combining (21) and (22) we obtain

PKM (Ac) ≤ η.

Thus, we have a test with probability of error of type I less
than η and the probability of error of type II bounded as in
(20). Therefore,

βη
(
PKM ,QKM

)
≤ |K|1−mη−m,

which completes the proof.
The distribution PKM in (18) corresponds to a perfect secret

key shared by m parties. The next result extends Lemma 4
to the case where not only the key values KM but also the
communication F and the eavesdropper’s side information Z
are observed, and the null hypothesis PKMFZ corresponds to
an ε-SK KM.

Lemma 5. For an ε-SK KM with a common range K gener-
ated using an interactive communication F, let WKMF|XMZ

be the resulting conditional distribution17 on (KM,F) given
(XM, Z). Then, for every 0 < η < 1 − ε and every
QXMZ =

∏m
i=1 QXi|ZQZ , we have

log |K|

≤ 1

m− 1

[
− log βε+η

(
PKMFZ ,QKMFZ

)
+m log(1/η)

]
,

(23)

17The conditional distribution WKMF|XMZ is defined only for (xM, z)
with PXMZ (xM, z) > 0.
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where PKMFZ is the marginal of (KM,F, Z) for the joint
distribution

PKMFXMZ = PXMZWKMF|XMZ ,

and QπKMFZ is the corresponding marginal for the joint
distribution

QKMFXMZ = QXMZWKMF|XMZ .

Also, we need the following basic property of interactive
communication from [68], which will be used throughout this
paper (see, also, [1, Lemma 2.2], [15, Lemma 17.18]).

Lemma 6 (Interactive communication property). Given
QXMZ =

∏m
i=1 QXi|ZQZ and an interactive communication

F, the following holds:

QXM|FZ (xM|f, z) =
m∏
i=1

QXi|FZ (xi|f, z) ,

i.e., conditionally independent observations remain so when
conditioned additionally on an interactive communication. In
particular, if QX1X2|Z = QX1|ZQX2|Z , then

QX1X2|FZ = QX1|FZ ×QX2|FZ .

Proof of Lemma 5. The proof is a simple modification of
the proof of Lemma 4. First note that by Lemma 6 and the
fact Ki is a function of (Xi, Ui) given F, we have

QKM|FZ =

m∏
i=1

QKi|FZ .

Thus, Lemma 4 applies with distribution QKM|FZ in the role
of Q for every F = f, Z = z, and consequently, for every
(f, z) there exists a set Af,z such that

QKM|FZ (Af,z|f, z) ≤ |K|1−mη−m, (24)

and

P
(M)
unif (Acf,z) ≤ η. (25)

We consider the following test for a binary hypothesis testing
problem with null hypothesis P

(M)
unif × PFZ and alternative

hypothesis QKMFZ : For an observed (kM, f, z), we accept
the null hypothesis if kM ∈ Af,z and alternative otherwise.
Using (24), the probability of error of type II is bounded above
by ∑

f,z

QFZ (f, z)QKM|FZ (Af,z|f, z) ≤ |K|1−mη−m,

and by (25), the probability of error of type I is bounded above
by ∑

f,z

PFZ (f, z) P
(M)
unif (Af,z) ≤ η.

Finally, we consider the hypothesis testing problem with null
hypothesis PKMFZ and alternative hypothesis QKMFZ and
apply the same test as above. Clearly, the probability of error
of type II remains unchanged. Furthermore, in view of the
secrecy condition (3), the probability of error of type I will

increase by at most ε, which completes the proof.

Proof of Theorem 3. We first consider the partition π with
one element in each part, i.e., πi = {i} for 1 ≤ i ≤ m. For
this case, it follows from Lemma 5 and the data processing
inequality (5) with P = PXMZ , Q = QπXMZ , and W =
WKMF|XMZ , that for an ε-SK KM taking values in the set
K,

log |K|

≤ 1

m− 1

[
− log βε+η

(
PKMFZ ,Q

π
KMFZ

)
+m log(1/η)

]
≤ 1

m− 1

[
− log βε+η

(
PXMZ ,Q

π
XMZ

)
+m log(1/η)

]
,

(26)

for every 1 < η < 1− ε.
To extend (26) to an arbitrary partition π, we claim that an

ε-SK for the original model with m parties yields an ε-SK of
the same length for a model with |π| parties with the ith party
observing Xπi , 1 ≤ i ≤ |π|, and the eavesdropper observing
the RV Z as before. The result follows by applying the bound
(26) to the new model with |π| parties.

It only remains to prove the claim above. To that end,
given an ε-SK KM for the original model, we define an ε-
SK for the new model (with the ith party observing Xπi )
as follows: The parties run the protocol for generating KM
with communication corresponding to any party j ∈ πi in
the original model transmitted by the ith party in the new
model. For each party i in the new model, we select a
representative party i0 ∈ πi; for concreteness, let i0 be the
smallest index in the set πi. An ε-SK for the new model is
given by (K ′1, ...,K

′
|π|) where K ′i = Ki0 since, denoting by

P
(π)
unif the distribution

P
(π)
unif(k1, ..., k|π|) =

1

|K|
1(k1 = · · · = k|π|),

we have by the monotonicity that

d
(
PK′

1...K
′
|π|FZ

,P
(π)
unif × PFZ

)
≤ d

(
PK1...KmFZ ,P

(M)
unif × PFZ

)
≤ ε,

which completes the proof.

IV. IMPLICATIONS FOR SECRET KEY CAPACITY

For the SK agreement problem, a special case of interest is
when the observations consist of n length IID sequences, i.e.,
the ith party observes (Xi1, ..., Xin) and the eavesdropper ob-
serves (Z1, ..., Zn) such that the RVs {XMt, Zt}nt=1 are IID.
For this case, it is well known that a SK of length proportional
to n can be generated; the maximum rate (log |Kn|/n) of a
SK is called the SK capacity [44], [1], [16].

To present the results of this section at full strength, we
need to take recourse to the original definition of (ε, δ)-SK
given in (1) and (2). In the manner of Definition 1, denote by
Sε,δ(XM|Z) the maximum length of an (ε, δ)-SK. It follows
from Proposition 1 that Sε,δ(XM|Z) ≤ Sε+δ(XM|Z).
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Definition 5. (SK capacity) Given 0 < ε, δ < 1, the (ε, δ)-SK
capacity Cε,δ (XM|Z) is defined by

Cε,δ (XM|Z) := lim inf
n→∞

1

n
Sε,δ(X

n
M|Zn),

where the RVs {XMt, Zt} are IID for 1 ≤ t ≤ n, with a
common distribution PXMZ . The SK capacity C (XM|Z) is
defined as the limit

C (XM|Z) := lim
ε,δ→0

Cε,δ (XM|Z) .

For the case when the eavesdropper does not observe any
side information, i.e., Z = constant, the SK capacity for two
parties was characterized by Maurer [44] and Ahlswede and
Csiszár [1]. Later, the SK capacity for a multiparty model,
with Z =constant was characterized by Csiszár and Narayan
[16]. The general problem of characterizing the SK capacity
for arbitrary Z remains open. Several upper bounds for SK
capacity are known [44], [1], [46], [59], [16], [17], [26], which
are tight for special cases.

In this section, we derive a single-shot version of the
Gohari-Anantharam bound [26] on the SK capacity for two
parties, which is the best known bound for this case. Fur-
thermore, for multiple parties, we establish a strong converse
for SK capacity, which shows that, surprisingly, we cannot
improve the rate of a SK by relaxing the recoverability
requirement (1) or the secrecy requirement (2).

A. Converse results for two parties

It was shown in [26] that for two parties,

C(X1, X2|Z) ≤ min
U

I (X1 ∧X2|U) + I(X1, X2 ∧ U |Z).
(27)

The proof in [26] relied critically on the assumption that the
RVs {(XMt, Zt)}nt=1 are IID and does not apply to the single-
shot setup. The result below is a single-shot version of (27)
and is proved by relying only on the structure of the SKs,
without recourse to the potential function approach18 of [26].

Theorem 7. For 0 < ε, δ with ε+ 2δ < 1,

Sε,δ(X1, X2|Z)
≤ Sε,2δ+η(X1, X2|Z,U) +Dξ

max

(
PX1X2ZU‖PX1X2ZPU |Z

)
+ 2 log(1/2(η − ξ)) + 1,

for every RV U and every 0 ≤ ξ < η < 1− ε− 2δ.

As corollaries, we obtain a single-shot version and a strong
version of the upper bound in (27), which does not require
perfect asymptotic recovery or perfect asymptotic secrecy.

Corollary 8 (Single-shot bound for SK length). For 0 < ε, δ
with ε+ 2δ < 1,

Sε,δ(X1, X2|Z) ≤ − log βε+2δ+η(PX1X2ZU ,PX1|ZUPX2ZU )

18In fact, a simple proof of (27) follows upon noting that for an
optimum rate SK (K1,K2) recoverable from a communication F, the
SK capacity C(X1, X2|Z) approximately equals (1/n)H(K1|F, Zn) ≤
(1/n)H(K1|F, Un, Zn) + (1/n)I(K1,F ∧ Un|Zn), which is further
bounded above by C(X1, X2|U) + I(X1, X2 ∧ U |Z).

+Dη1
max

(
PX1X2ZU‖PX1X2ZPU |Z

)
+ 4 log(1/(η − η1 − η2)) + 1,

for every RV U and every 0 ≤ η1 + η2 < η < 1− ε− 2δ.

Corollary 9 (Strong bound for SK capacity). For 0 ≤ ε, δ
with ε+ 2δ < 1,

Cε,δ(X1, X2|Z) ≤ min
U

I (X1 ∧X2|U) + I(X1, X2 ∧ U |Z).

We conclude this section with proofs. The core of Theorem
7 is contained in the following lemma.

Lemma 10. Let (K1,K2) be an (ε, δ)-SK taking values in K,
recoverable from a communication F. Then,

H
δ+ξ/2
min (PK1FZU |FZU)

≥ log |K| −Dξ
max

(
PK1FZU‖PK1FZPU |Z

)
,

for every RV U and every 0 ≤ ξ < 1− ε− 2δ.

Proof of Theorem 7. Let (K1,K2) be an (ε, δ)-SK taking
values in K. Then, by Lemma 10 and the data processing
property of smooth max-divergence (13), we get

H
δ+ξ/2
min (PK1FZU |FZU)

≥ log |K| −Dξ
max

(
PX1X2ZU‖PX1X2ZPU |Z

)
.

By the leftover hash lemma (see Section II-D), there
exists a mapping K ′ of K taking at least log |K| −
Dξ

max

(
PX1X2ZU‖PX1X2ZPU |Z

)
−2 log(1/2(η−ξ))−1 values

and satisfying

d
(
PK′(K1)FZU ,Punif × PFZU

)
≤ 2δ + η.

Therefore, (K ′(K1),K
′(K2)) constitutes an (ε, 2δ + η)-SK

for X1 and X2, when the eavesdropper observes (Z,U) and
so,

Sε,2δ+η(X1, X2|Z,U)

≥ log |K| −Dξ
max

(
PX1X2ZU‖PX1X2ZPU |Z

)
− 2 log

1

2(η − ξ)
− 1.

Corollary 8 follows by Theorem 3.
Proof of Corollary 9. The result follows by Corollary 8

upon using Stein’s lemma (see Section II-B), along with the
convergence property of smooth max-divergence (see Section
II-D).

Proof of Lemma 10. By definitions of Hδ+ξ/2
min and Dξ

max,
it suffices to show that for every mapping T : (k1, f, z, u) 7→
[0, 1] such that∑

k1,f,z,u

P (k1, f, z, u)T (k1, f, z, u) ≥ 1− ξ, (28)

here exist a subnormalized nonnegative function QK1FZU and
a distribution Q̃FZU satisfying the following:

d (PK1FZU ,QK1FZU ) ≤ δ + ξ/2 (29)

and

Hmin

(
QK1FZU |Q̃FZU

)
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= log |K| −Dmax

(
PK1FZUT‖PK1FZPU |Z

)
. (30)

To that end, consider QK1FZU given by

Q (k1, f, z, u)

:= Punif (k1) P (f, z) P (u|k1, f, z)T (k1, f, z, u), (31)

which is a valid subnormalized nonnegative function since
T (k1, f, z, u) ≤ 1. Furthermore, since

P (k1, f, z, u) = P (k1, f, z) P (u|k1, f, z) ,

we get (29) as follows:

d (PK1FZU ,QK1FZU )

≤ d (PK1FZ ,PunifPFZ)

+
∑

k1,f,z,u

P (k1, f, z, u) (1− T (k1, f, z, u))

≤ δ + ξ

2
,

where the first inequality is by the triangle inequality and the
fact that T (k1, f, z, u) ≤ 1, and the last inequality uses the
secrecy condition (2) and the assumption (28).

Next, for Q̃FZU defined by

Q̃(f, z, u) := P (f, z) P (u|z) (32)

and QK1FZU defined in (31), observe that

Q (k1, f, z, u)

Q̃(f, z, u)

= Punif (k)

[
P (u|k1, f, z)

P (u|z)

]
T (k1, f, z, u)

= Punif (k)

[
P (k1, f, z, u)

P (k1, f, z) P (u|z)

]
T (k1, f, z, u),

and so,

Hmin

(
QK1FZU |Q̃FZU

)
= log |K| − max

k1,f,z,u
log

P (k1, f, z, u)T (k1, f, z, u)

P (k1, f, z) P (u|z)
,

which is the same as (30).

B. Strong converse for multiple parties
Now we move to the m terminal case where the eavesdrop-

per gets no side information, i.e., Z = constant. With this
simplification, the SK capacity C (XM) for multiple parties
was characterized by Csiszár and Narayan [16]. Furthermore,
they introduced the remarkable expression on the right-side
of (33) below as an upper bound for C (XM), and showed
its tightness for m = 2, 3. Later, the tightness of the upper
bound for arbitrary m was shown in [10]; we summarize these
developments in the result below.

Theorem 11. [16], [10] The SK capacity for the case when
eavesdropper’s side information Z = constant is given by

C (XM) = min
π

1

|π| − 1
D

(
PXM

∥∥∥∥ |π|∏
i=1

PXπi

)
, (33)

where the min is over all partitions π of M.

This generalized the classic result of Maurer [44] and
Ahlswede and Csiszár [1], which established that for two par-
ties, C (X1, X2) = D (PX1X2‖PX1 × PX2) = I (X1 ∧X2).

The converse part of Theorem 11 relied critically on the
fact that εn + δn → 0 as n → ∞. Below we strengthen the
converse and show that the upper bound for SK rates implied
by Theorem 11 holds even when (εn, δn) is fixed. Specifically,
for 0 < ε, δ with ε+ δ < 1 and Z = constant, an application
of Theorem 3 to the IID RVs Xn

M, with QπXnM
=
∏|π|
i=1 P

n
Xπi

,
yields

Sε,δ (X
n
1 , ..., X

n
m)

≤ 1

|π| − 1

[
− log βε+δ+η

PnXM
,

|π|∏
i=1

PnXπi


+ |π| log(1/η)

]
,

where η < 1−ε−δ. Therefore, using Stein’s Lemma (see (6))
we get

Cε,δ (XM)

≤ 1

|π| − 1
lim inf
n→∞

− 1

n
log βε+δ+η

PnXM
,

|π|∏
i=1

PnXπi


=

1

|π| − 1
D

(
PXM

∥∥∥∥ |π|∏
i=1

PXπi

)
.

Also, note that if ε + δ ≥ 1, the SK rate can be infinity.
Indeed, consider a (0, 1)-SK where party 1 generates a RV
K1 uniformly over a set K and sends it to the other parties
over the public communication channel, and a (1, 0)-SK where
the ith party generates Ki uniformly over K using its local
randomness Ui (without any public communication). If ε+δ ≥
1, the SK which equals the (0, 1)-SK above with probability
(1− ε) and the (1, 0)-SK above with probability ε constitutes
an (ε, 1−ε)-SK of length log |K|, and therefore, also an (ε, δ)-
SK of the same length. Since K was arbitrary, the length of
the resulting (ε, δ)-SK can be arbitrarily large.

Thus, we have established the following strong converse for
the SK capacity when Z = constant.

Corollary 12 (Strong converse for SK capacity). Given 0 <
ε, δ < 1, the (ε, δ)-SK capacity Cε,δ (XM) is given by

Cε,δ (XM) = min
π

1

|π| − 1
D

(
PXM

∥∥∥∥ |π|∏
i=1

PXπi

)
, if ε+ δ < 1,

and

Cε,δ (XM) =∞, if ε+ δ ≥ 1.

V. IMPLICATIONS FOR SECURE TWO-PARTY COMPUTATION

In this section, we consider secure computation by two
(mutually untrusting) parties. First introduced by Yao in [83],
these problems have propelled the research in cryptography
over the last three decades. In particular, we will consider the
oblivious transfer and the bit commitment problem, the two
basic primitives for secure two-party computation. We will
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Fig. 1. Depiction of our reduction arguments.

look at the information theoretic versions of these problems
where, as an additional resource, the parties observe correlated
RVs X1 and X2. Our converse results are based on reduction
arguments which relate these problems to the SK agreement
problem, enabling the application of Theorem 3 (see Fig. 1).

A. Maximum common function and minimum sufficient statis-
tic

To state our results, we need the notions of maximum
common function and minimum sufficient statistic. The notion
of maximum common function was introduced in [24] as a
measure of “common information” of random variables X1

and X2. Its role in secrecy was first highlighted in [82] (see,
also, [69], [47] for different roles of the maximum common
function in secrecy and privacy.) Operationally, the maximum
common function of X1 and X2 is defined as follows.

Definition 6 (Maximum Common Function). A common
function of X1 and X2 is a random variable U for which
there there exist functions φ1(X1) and φ2(X2) such that
P (U = φ1(X1) = φ2(X2)) = 1. The maximum common
function19 of X1 and X2, denoted by mcf(X1, X2), is a
common function of X1 and of X2 such that every common
function U of X1 and X2 is a function of mcf(X1, X2), i.e.,
H(U |mcf(X1, X2)) = 0.

In fact, [24] characterized mcf(X1, X2) and showed that it
corresponds to the following equivalence relation on X1 (or a
similarly defined equivalence relation on X2)

x1 ∼ x′1 ⇔ ∃x21, ..., x2k ∈ X2 and x12, ..., x1k ∈ X1 s.t.

PX1X2
(x1i, x2i) PX1X2

(
x1(i+1), x2i

)
> 0 for 1 ≤ i ≤ k.

where x11 = x1 and x1(k+1) = x′1. The role of minimum
sufficient statistic in secrecy was highlighted in [82] as well.
We give its operational definition below.

Definition 7 (Minimum Sufficient Satistics). A sufficient
statistic for X2 given X1 is a random variable U such that
there exists a function U = g(X1) such that the Markov chain
X1—U—X2 holds. The minimum sufficient statistics for X2

given X1, denoted by mss(X2|X1), is a sufficient statistics

19By definition, it is unique up to relabeling.

for X2 given X1 such that it is a function of every sufficient
statistic U for X2 given X1, i.e., H(mss(X2|X1)|U) = 0.

An exact characterization of mss(X2|X1) is available, too,
and it corresponds to the following equivalence relation on X1

(cf. [23], [37], [67]):

x1 ∼ x′1 ⇔ PX2|X1
(x2|x1) = PX2|X1

(x2|x′1) , ∀x2 ∈ X2.

B. Oblivious transfer

We present bounds on the efficiency of implementing in-
formation theoretically secure one-out-of-two OT using corre-
lated randomness. Suppose that party 1 generates K0 and K1,
distributed uniformly over {0, 1}l, and party 2 generates B,
distributed uniformly over {0, 1}, as inputs to an OT protocol.
The RVs K0,K1, and B are assumed to be mutually indepen-
dent20. The goal of an OT protocol is for Party 2 to obtain KB

in such a manner that B is concealed from Party 1 and KB is
concealed from party 2, where B = 1⊕B. Furthermore, Party
i observes the RV Xi, i = 1, 2, as a resource to implement an
OT protocol, where RVs (X1, X2) are independent jointly of
(K0,K1, B). During the protocol, the parties are allowed to
communicate interactively. In general, the parties are allowed
to use local randomization; for simplicity of presentation, we
restrict ourselves to protocols without local randomization.
However, as pointed-out in Remark 6 below, our results remain
valid even when local randomization is allowed.

Definition 8. (Oblivious transfer) An execution of a protocol
realizing an (ε, δ1, δ2)-OT (for a passive adversary21) of length
l consists of an interactive communication F and an estimate
K̂ = K̂(X2, B,F) by Party 2 such that the following
conditions are satisfied:

P
(
KB 6= K̂

)
≤ ε, (34)

d
(
PKBX2BF,PKB × PX2BF

)
≤ δ1, (35)

d (PBK0K1X1F,PB × PK0K1X1F) ≤ δ2, (36)

where B = 1 ⊕ B. The first condition above denotes the
reliability of OT, while the second and the third conditions
ensure secrecy for party 1 and 2, respectively. Denote by
Lε,δ1,δ2(X1, X2) the largest l such that a protocol realizing
an (ε, δ1, δ2)-OT of length l exists.

When the underlying observations X1, X2 consist of n-
length IID sequences Xn

1 , X
n
2 with common distribution

PX1X2 , it is known that Lε,δ1,δ2(X
n
1 , X

n
2 ) may grow linearly

with n (cf. [48], [2]); the largest rate of growth is called the
OT capacity.

Definition 9 (OT capacity). For 0 < ε < 1, the ε-OT capacity

20Strictly speaking, OT refers to the problem where the strings K0,K1

and the bit B are fixed. The randomized version here is sometimes referred
as oblivious key transfer (see [3], [81]) or fully randomized oblivious transfer
(see [78], [42]), and they are equivalent to OT.

21Here, “passive adversary” refers to an “honest but curious” adversary that
follows the protocol, but is curious to know the other party’s input. Since we
consider only converse results for OT, this assumption only strengthens our
results and they remain valid for more powerful, active adversaries.
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of (X1, X2) is defined22 as

Cε(X1, X2) = lim
δ1,δ2→0

lim inf
n→∞

1

n
Lε,δ1,δ1(X

n
1 , X

n
2 ).

Then, the OT capacity is defined as

C(X1, X2) = lim
ε→0

Cε(X1, X2).

The main result of this section is an upper bound on
Lε,δ1,δ2(X1, X2). Consequently, we recover the upper bound
on C(X1, X2) due to Ahlswede and Csiszár derived in [2]. In
fact, we show that the upper bound is “strong” and applies to
Cε(X1, X2) for every 0 < ε < 1.

Heuristically, OT is feasible only when the observations
of the two parties are correlated. However, no party should
have an advantage over the other, and only that portion of
correlated randomness observed by a party is useful which
cannot be determined by the other party. Drawing on this
heuristic, two different bounds for OT length are possible, each
based on relating OT length to “how far” the joint distribution
PX1X2

of the observed correlated randomness is from a
useless distribution. The choice of the useless distribution
is different in both bounds. In the first bound, we consider
a distribution such that X1 and X2 are independent given
V0 = mcf(X1, X2). For such distributions, once the shared
knowledge of each party is factored out, no correlation is
available to facilitate OT. In the second bound, we consider
distributions where V1 = mss(X2|X1) can be determined
by X2. Note that for such distributions the factorization
PV1V1X2

= PV1|X2
PV1|X2

PX2
holds. Such distributions are

useless for OT since the essential part of X1 that is correlated
with X2, namely V1, can be determined by X2, thereby giving
an advantage to Party 2. As in the case of SK agreement, we
shall measure the distance between two distributions using βε.
In fact, our proof entails reducing SK agreement to OT; the
reductions used for the two bounds are different.

Theorem 13 (Single-shot bound for OT length). For RVs
X1, X2, V0 = mcf(X1, X2) and V1 = mss(X2|X1), the
following inequalities hold:

Lε,δ1,δ2(X1, X2) ≤ − log βη
(
PX1X2V0

,PX1|V0
PX2|V0

PV0

)
+ 2 log(1/ξ), (37)

Lε,δ1,δ2(X1, X2) ≤ − log βη
(
PV1V1X2

,PV1|X2
PV1|X2

PX2

)
+ 2 log(1/ξ), (38)

for all ξ > 0 with η = ε+ δ1 + 2δ2 + ξ < 1.

Corollary 14 (Strong bound for OT capacity). For 0 < ε <
1, the ε-OT capacity of (X1, X2) satisfies

Cε(X1, X2) ≤ min{I(X1 ∧X2|V0), H(V1|X2)}, (39)

where V0 = mcf(X1, X2) and V1 = mss(X2|X1).

The proof of Theorem 13 entails reducing two SK agree-

22For brevity, we use the same notation for SK capacity and OT capacity;
the meaning will be clear from the context. Similarly, the notation L, used
here to denote the optimal OT length, is also used to denote the optimal BC
length in the next section.

ment problems to OT23. The bound (37) is obtained by
recovering KB as a SK, while (38) is obtained by recovering
KB as a SK; we note these two reductions as separate lemmas
below.

Lemma 15 (Reduction 1 of SK agreement to OT). Consider
SK agreement for two parties observing X1 and X2, respec-
tively, with the eavesdropper observing V0 = mcf(X1, X2).
Given a protocol realizing an (ε, δ1, δ2)-OT of length l, there
exists a protocol for generating an (ε+δ1+2δ2)-SK of length
l. In particular,

Lε,δ1,δ2(X1, X2) ≤ Sε+δ1+2δ2(X1, X2|V0).

Lemma 16 (Reduction 2 of SK agreement to OT). Consider
two party SK agreement where Party 1 observes X1, Party 2
observes (V1, X2) = (mss(X2|X1), X2) and the eavesdropper
observes X2. Given a protocol realizing an (ε, δ1, δ2)-OT of
length l, there exists a protocol for generating an (ε+δ1+2δ2)-
SK of length l. In particular,

Lε,δ1,δ2(X1, X2) ≤ Sε+δ1+2δ2(X1, (V1, X2)|X2).

Remark 4. Underlying the proof of C(X1, X2) ≤ I(X1 ∧
X2) in [2] was a reduction of SK agreement to OT, which
is extended in our proof below to prove (37). In contrast, the
proof of the bound C(X1, X2) ≤ H(X1|X2) in [2] relied on
manipulations of entropy terms. Below we give an alternative
reduction argument to prove (38).

Remark 5. In general, our bounds are stronger than those
presented in [79]. For instance, the latter is loose when the
observations consist of mixtures of IID RVs. Further, while
both (38) and [79, Theorem 5] (specialized to OT) suffice to
obtain the second bound in Corollary 14, in contrast to (37),
[79, Theorem 2] does not yield the first bound in Corollary
14.

Remark 6. For simplicity of presentation, we did not allow
local randomization in the formulation above. However, it can
be easily included as a part of X1 and X2 by replacing Xi

with (Xi, Ui), i = 1, 2, where U1, U2, (X1, X2) are mutually
independent. Since our proofs are based on reduction of
SK agreement to OT, by noting that mss(X2, U2|X1, U1) =
mss(X2|X1) and that the availability of local randomness does
not change our upper bound on SK length in Theorem 3,
the results above remain valid even when local randomness
is available.

Remark 7. The (ε, δ1, δ2)-OT capacity Cε,δ1,δ2(X1, X2) can
be defined, without requiring δ1, δ2 to go to 0 as in the
definition of Cε(X1, X2). However, the right-side of (39)
constitutes an upper bound for Cε,δ1,δ2(X1, X2) only when
ε + δ1 + 2δ2 < 1, and establishing the validity of this bound
for24 ε+ δ1 + 2δ2 ≥ 1 remains an open problem.

We prove Lemmas 15 and 16 next. The proof of Theorem
13 follows by Theorem 3, along with the Markov relation
X1—V1—X2 and the data processing inequality (5); the

23A reduction of SK to OT in a computational secrecy setup appeared in
[25].

24For ε+ δ1 + δ2 ≥ 1, Cε,δ1,δ2 (X1, X2) can be shown to be unbounded
in the manner of the discussion preceding Corollary 12.
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corollary follows by Stein’s Lemma (see Section II-B).
Proof. of Lemma 15. Let K̂ be the estimate of KB formed

by Party 2. The following protocol generates an (ε+δ1+2δ2)-
SK of length l

(i) Party 1 generates two random strings K0 and K1 of
length l, and Party 2 generates a random bit B. Two
parties run the OT protocol, and Party 2 obtains an
estimate K̂ of KB .

(ii) Party 2 sends B over the public channel.
(iii) Using B, Party 1 computes KB .

We will show that the RVs KB , K̂ constitute an (ε+δ1+2δ2)-
SK. The reliability for this SK is guaranteed since both
parties agree on KB with probability greater than 1 − ε. For
establishing secrecy, note that if Party 2 sends B instead
of B, the eavesdropper cannot determine KB from (B,F)
by the secrecy condition for Party 1. On the other hand,
by the secrecy condition for Party 2, the overall observation
(K0,K1, X1,F) of Party 1 has roughly the same distribution
even when B is replaced by B. Thus, the eavesdropper cannot
determine KB from (B,F) as well.

Formally, by Proposition 1 and Remark 3, it suffices to show
that for some distribution QV0FB (see Remark 3),

d (PKBV0FB ,Punif ×QV0FB) ≤ δ1 + 2δ2.

Observe that condition (36) is the same as

d
(
PK0K1X1F|B=0,PK0K1X1F|B=1

)
≤ 2δ2. (40)

Let QV0FB (v, f, b) = PV0F|B
(
v, f |b

)
PB (b). Then,

d (PKBV0FB ,Punif ×QV0FB)

=
1

2

∑
b

d
(
PKbV0F|B=b,Punif ×QV0F|B=b

)
=

1

2

∑
b

d
(
PKbV0F|B=b,Punif × PV0F|B=b

)
≤ 1

2

∑
b

[
d
(
PKbV0F|B=b,Punif × PV0F|B=b

)
+ d

(
PKbV0F|B=b,PKbV0F|B=b

)]
= d

(
PKBV0FB ,Punif × PV0FB

)
+

1

2

∑
b

d
(
PKbV0F|B=b,PKbV0F|B=b

)
≤ δ1 + 2δ2,

where the last inequality uses (35) and (40), together with the
fact that V0 is a function of X2 as well as X1.

Proof. of Lemma 16. The following protocol generates an
(ε+ δ1 + 2δ2)-SK of length l.

(i) Party 1 generates two random strings K0 and K1 of
length l, and Party 2 generates a random bit B. Two
parties run the OT protocol.

(ii) Upon observing F, Party 2 samples X̃2 according to the
distribution
PX2|V1BF

(
·|V1, B,F

)
.

(iii) Party 2 sends B over the public channel.
(iv) Party 1 computes KB and Party 2 computes K̃ =

K̂(X̃2, B,F).

We will show that the RVs KB , K̃ constitute an (ε+δ1+2δ2)-
SK. Heuristically, this protocol entails Party 2 emulating X̃2,
pretending that the protocol was executed for B instead of B.
Since the communication of Party 1 is oblivious of the value
of B, plugging X̃2 into K̂ will lead to an estimate of KB

provided that the emulated X̃2 preserves the joint distribution.
By Proposition 1 and (35), it suffices to show that

P
(
KB 6= K̃

)
≤ ε+ 2δ2. (41)

To that end, note

P
(
KB 6= K̃

)
=

1

2

∑
k, b, v,f

PKbV1F|B (k, v, f |b)×

P
(
K̂(X2, b, f) 6= k | V1 = v,B = b,F = f

)
≤ 1

2

∑
k, b, v,f

PKbV1F|B
(
k, v, f |b

)
×

P
(
K̂(X2, b, f) 6= k | V1 = v,B = b,F = f

)
+ 2δ2

=
1

2

∑
k, b, v,f

PKbV1F|B (k, v, f |b)×

P
(
K̂(X2, b, f) 6= k | V1 = v,B = b,F = f

)
+ 2δ2

= P
(
KB 6= K̂

)
+ 2δ2.

where the inequality uses (40) and the last equality uses the
Markov relation X2—V1BF—K0K1, which holds in the view
of the interactive communication property of Lemma 6; (41)
follows by (34).

C. Bit commitment

Two parties observing correlated observations X1 and X2

want to implement information theoretically secure BC using
interactive public communication, i.e., the first party seeks
to report to the second the results of a series of coin tosses
that it conducted at its end in such a manner that, at a later
stage, Party 2 can detect if Party 1 was lying [7]. Formally, a
BC protocol consists of two phases: the commit phase and
the reveal phase. In the commit phase, Party 1 generates
a random string K, distributed uniformly over {0, 1}l and
independent jointly of (X1, X2). Furthermore, the two parties
communicate interactively with each other using an interactive
communication F. In the reveal phase, Party 1 “reveals” its
data, i.e., it sends X ′1 and K ′, claiming these were its initial
choices of X1 and K, respectively. Subsequently, Party 2
applies a (randomized) test function T = T (K ′, X ′1, X2,F),
where T = 0 and T = 1, respectively, indicate K ′ = K and
K ′ 6= K.

Definition 10 (Bit commitment). An execution of a protocol
realizing an (ε, δ1, δ2)-BC of length l consists of an interactive
communication F to be sent during the commit phase and a
{0, 1}-valued randomized test function T to be used in the
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reveal phase such that the following conditions are satisfied:

P (T (K,X1, X2,F) 6= 0) ≤ ε, (42)
d (PKX2F,PK × PX2F) ≤ δ1, (43)

P (T (K ′, X ′1, X2,F) = 0,K ′ 6= K) ≤ δ2, (44)

for any choice of RVs K ′ and X ′1 that have the same range-
sets as K and X1, respectively25, and satisfy

(K ′, X ′1)—(K,X1,F)—X2.

The first condition above is the soundness condition, which
captures the reliability of BC when Party 1 is honest. The
next condition is the hiding condition, which ensures that
Party 2 cannot ascertain the secret in the commit phase.
Finally, the binding condition in (44) restricts the probability
with which Party 1 can cheat in the reveal phase. Denote by
Lε,δ1,δ2(X1, X2) the largest l such that a protocol realizing an
(ε, δ1, δ2)-BC of length l exists.

For n-length IID sequences Xn
1 , X

n
2 generated from PX1X2 ,

the largest rate of Lε,δ1,δ2(X1, X2) is called the BC capacity.

Definition 11 (BC capacity). For 0 < ε, δ1, δ2 < 1, the
(ε, δ1, δ2)-BC capacity of (X1, X2) is defined as

Cε,δ1,δ2(X1, X2) = lim inf
n→∞

1

n
Lε,δ1,δ2(X

n
1 , X

n
2 ).

The BC capacity is defined as

C(X1, X2) = lim
ε,δ1,δ2→0

Cε,δ1,δ2(X1, X2).

The following result of Winter, Nascimento, and Imai
[80] (see, also, [66, Chapter 8]) gives a simple formula for
C(X1, X2).

Theorem 17. [80] For RVs X1, X2, let V1 = mss(X2|X1).
The BC capacity is given by

C(X1, X2) = H(V1|X2).

In this section, we present an upper bound on
Lε,δ1,δ2(X1, X2), which in turn leads to a strong converse for
BC capacity.

Theorem 18 (Single-shot bound for BC length). Given
0 < ε, δ1, δ2, ε + δ1 + δ2 < 1, for RVs X1, X2 and
V1 = mss(X2|X1), the following inequality holds:

Lε,δ1,δ2(X1, X2) ≤ − log βη
(
PV1V1X2

,PV1|X2
PV1|X2

PX2

)
+ 2 log(1/ξ),

for all ξ with η = ε+ δ1 + δ2 + ξ.

Corollary 19 (Strong converse for BC capacity). For 0 <
ε, δ1, δ2, ε+ δ1 + δ2 < 1, the (ε, δ1, δ2)-BC capacity satisfies

Cε,δ1,δ2(X1, X2) ≤ H(V1|X2),

where V1 = mss(X2|X1).

Theorem 18 is obtained by a reduction of SK agreement to
BC, which is along the lines of [80], [33], [56]; the following

25Note that this restriction is valid since a dishonest Party 1 seeks to replace
K with K′ in the reveal phase, without being caught by Party 2.

lemma captures the resulting bound.

Lemma 20 (Reduction of SK to BC). For 0 < ε, δ1, δ2,
ε+ δ1 + δ2 < 1, it holds that

Lε,δ1,δ2(X1, X2) ≤ Sε+δ1+δ2(X1, (V1, X2)|X2),

where V1 = mss(X2|X1).

Remark 8. While local randomization was not allowed in the
foregoing discussion, as before (see Remark 6) our results do
not change with the availability of local randomness.
Remark 9. For ε, δ1, δ2 > 0, ε + δ1 + δ2 < 1, the following
bound on Lε,δ1,δ2(X1, X2) was derived in [56, Lemma 4]:

Lε,δ1,δ2(X1, X2) ≤
H(V1|X2) + h(δ1) + h(ε+ δ2)

1− ε− δ1 − δ2
,

where h(·) is the binary entropy function. However, this bound
is weaker than Theorem 18, in general, and is not sufficient
for deriving Corollary 19.

Theorem 18 follows by using Lemma 20 with Theorem 3,
along with the Markov relation X1—V1—X2 and the data
processing inequality (5); the Corollary 19 follows by Stein’s
Lemma (see Section II-B). We prove Lemma 20 below.

Proof of Lemma 20. The reduction argument presented
here is along the lines of [33, Proposition 9] (see, also, [56,
Lemma 4]). Given an (ε, δ1, δ2)-BC of length l, consider
SK agreement by two parties observing X1 and (V1, X2),
respectively, with the eavesdropper observing X2. To generate
a SK, the parties run the commit phase of the BC protocol,
i.e., Party 1 generates K ∼ unif{0, 1}l and the parties send
the interactive communication F. We show that the committed
secret K constitutes a (ε + δ2, δ1)-SK. Indeed, by the hiding
condition (43), the SK K satisfies the secrecy condition (2)
with δ = δ1. To establish the reliability of this SK, we show
that, roughly, K is the unique string which is compatible with
(V1, X2,F), namely that any other string will fail the test T ,
since otherwise a dishonest Party 1 can change the string in
the reveal phase, contradicting the binding condition. Thus,
Party 2 can obtain an estimate of K by finding the unique
string that is compatible with (V1, X2,F).

Formally, we complete the proof by showing that there
exists K̂ = K̂(V1, X2,F) such that

P
(
K̂ 6= K

)
≤ ε+ δ2. (45)

To that end, for randomized test T , let (k̂, x̂1) =
(k̂(v, f), x̂1(v, f)) be a function of (v, f) given by

(k̂, x̂1) = argmax
k,x1

P (T (k, x1, X2,F) = 0 | V1 = v,F = f)

= argmax
k,x1

∑
x2

PX2|V1F (x2|v, f) P (T (k, x1, x2, f) = 0) ,

and let (K̂, X̂1) = (k̂(V1,F), x̂1(V1,F)). Note that while
the estimated secret K̂ is a function of (v, f) and does not
depend on X2 directly, the latter is needed to facilitate the
communication F in the emulation of the commit phase. For
(K̂, X̂1) as above, we get

P
(
T (K̂, X̂1, X2,F) = 0

)
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=
∑
v,f

PV1F (v, f)
∑
x2

PX2|V1F (x2|v, f)

P
(
T (k̂(v, f), x̂1(v, f), x2, f) = 0

)
≥
∑
v,f

PV1F (v, f)
∑
k,x1

PK,X1|V1F (k, x1|v, f)∑
x2

PX2|V1F (x2|v, f) P (T (k, x1, x2, f) = 0)

= P (T (K,X1, X2,F) = 0)

≥ 1− ε,

where the first inequality uses the definition of
(k̂(v, f), x̂1(v, f)) and the second equality uses the Markov
relation KX1—V1F—X2, which holds in the view of
the interactive communication property of Lemma 6. The
inequality above, along with the binding condition (44),
yields

1− ε ≤ P
(
K̂ = K

)
+ P

(
T (K̂, X̂1, X2,F) = 0, K̂ 6= K

)
≤ P

(
K̂ = K

)
+ δ2,

which completes the proof of (45).
We conclude this section by observing a simple application

of Theorem 18 in bounding the efficiency of reduction of BC
to OT. For a detailed discussion, see [56].
Example 1 (Reduction of BC to OT). Suppose two parties
have at their disposal an OT of length n. Using this as a
resource, what is the length l of (ε, δ1, δ2)-BC that can be
constructed?

Denoting by K0,K1 the OT strings, and by B the OT bit
of Party 2, let X1 = (K0,K1) and X2 = (B,KB). Note that
(9) holds with P = PX1X1X2 and Q = PX1|X2

PX1X2
, and

D(PX1X1X2‖PX1|X2
PX1X2) = n.

Therefore, by Theorem 18 and (10), we get

l ≤ n+ log(1/(1− ε− δ1 − δ2 − η)) + 2 log(1/η),

where 0 < η < 1 − ε − δ1 − δ2. This bound on efficiency of
reduction is stronger than the one derived in [56, Corollary 2]
(fixing n = n′ = 1 in that bound). In particular, it shows an
additive loss of logarithmic order in (1− ε− δ1 − δ2), while
[56, Corollary 2] shows a multiplicative loss of linear order.

VI. IMPLICATIONS FOR SECURE COMPUTATION WITH
TRUSTED PARTIES

In this section, we present a connection of our result
to a problem of secure function computation with trusted
parties, where the parties seek to compute a function of their
observations using a communication that does not reveal the
value of the function by itself (without the observations at
the terminals). This is in contrast to the secure computation
treated in Section V where the communication is secure but
the parties are required not to get any more information than
the computed function value. This problem was introduced
in [69] where a matching necessary and sufficient condition
was given for the feasibility of secure computation in the
asymptotic case with IID observations. Here, using Theorem

3, we derive a necessary condition for the feasibility of such
secure computing for general observations (not necessarily
IID).

Formally, consider m ≥ 2 parties observing RVs
X1, ..., Xm taking values in finite sets X1, ...,Xm, respectively.
Upon making these observations, the parties communicate
interactively in order to securely compute a function g :
X1 × ... × Xm → G in the following sense: The ith party
forms an estimate G(i) of the function based on its observation
Xi, local randomization Ui and interactive communication F,
i.e., G(i) = G(i)(Ui, Xi,F). For 0 ≤ ε, δ < 1, a function g is
(ε, δ)-securely computable if there exists a protocol satisfying

P
(
G = G(1) = · · · = G(m)

)
≥ 1− ε, (46)

d (PGF,PG × PF) ≤ δ, (47)

where G = g (XM). The first condition captures the reliability
of computation and the second condition ensures the secrecy
of the protocol. Heuristically, for secrecy we require that an
observer of (only) F must not get to know the computed value
of the function. We seek to characterize the (ε, δ)-securely
computable functions g.

In [69], an asymptotic version of this problem was ad-
dressed. The parties observe Xn

1 , ..., X
n
m and seek to compute

Gt = g (X1t, ..., Xmt) for each t ∈ {1, ..., n}; consequently,
the RVs {Gt, 1 ≤ t ≤ n} are IID. A function g is securely
computable if the parties can form estimates G(n)

(1) , ..., G
(n)
(m)

such that

P
(
Gn = G

(n)
(1) = · · · = G

(n)
(m)

)
≥ 1− εn,

d (PGnF,PGn × PF) ≤ εn,

where lim
n→∞

εn = 0. The following characterization of securely
computable functions g is known.

Theorem 21. [69] For the asymptotic case described above, a
function g is securely computable if H(G) < C, where H(G)
is the entropy of the RV G = g(XM) and C = C(XM) is the
SK capacity given in Theorem 11.

Conversely, if a function g is securely computable, then
H(G) ≤ C.

Heuristically, the necessary condition above follows upon
observing that if the parties can securely compute the function
g, then they can extract a SK of rate H(G) from RVs Gn.
Therefore, H(G) must be necessarily less than the maximum
rate of a SK that can be generated, namely the SK capacity
C. Using this heuristic, we present a necessary condition for
a function g to be (ε, δ)-securely computable.

Corollary 22. For 0 ≤ ε, δ < 1 with ε+ δ < 1, if a function
g is (ε, δ)-securely computable, then

Hξ
min(PG)

≤ 1

|π| − 1

[
− log βµ

(
PXM ,QπXM

)
+ |π| log(1/η)

]
+ 2 log(1/2ζ) + 1, ∀QπXM

∈ Q(π), (48)

for every µ = ε + δ + 2ξ + ζ + η with ξ, ζ, η > 0 such that
µ < 1, and for every partition π of M.
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Proof. The proof is based on extracting an ε-SK from the
RV G that the parties share. Specifically, Lemma 2 with
X = G, Y = const, and condition (47) imply that there exists
K = K(G) with log |K| = bHξ

min(PG) − 2 log(1/2ζ)c and
satisfying

d
(
PK(G)F,Punif × PF

)
≤ d

(
PK(G)F,PK(G) × PF

)
+d
(
PK(G) × PF,Punif × PF

)
≤ d (PGF,PG × PF) + d

(
PK(G),Punif

)
≤ δ + 2ξ + ζ.

Thus, in the view of Proposition 1, the RV K constitutes26

an (ε + δ + 2ξ + ζ)-SK. An application of Theorem 3 gives
(48).

We conclude this section with two illustrative examples.

Example 2. (Computing functions of independent observa-
tions using a perfect SK). Suppose the ith party observes
Ui, where the RVs U1, ..., Um are mutually independent.
Furthermore, all parties share a κ-bit perfect SK K which is
independent of UM. How many bits κ are required to (ε, δ)-
securely compute a function g (U1, ..., Um)?

Note that the data observed by the ith party is given by Xi =
(Ui,K). A simple calculation shows that for every partition π
of M,

βε

PXM ,

|π|∏
i=1

PXπi

 ≥ (1− ε)κ1−|π|,

and therefore, by Corollary 22 a necessary condition for g to
be (ε, δ)-securely computable is

Hξ
min(PG) ≤ κ+

1

|π| − 1

(
|π| log 1

η
+ log

1

1− µ

)
+ 2 log

1

2ζ
+ 1, (49)

for every ξ, ζ, η > 0 satisfying µ = ε + δ + 2ξ + ζ + η < 1.
Note that the finest partition, i.e., |π| = m, gives the tightest
bound in (49).

For the special case when Ui = Bni , a sequence of
independent, unbiased bits, and

g (Bn1 , ..., B
n
m) = B11 ⊕ ...⊕Bm1, ..., B1n ⊕ ...⊕Bmn,

i.e., the parties seek to compute the (element-wise) parities
of the bit sequences, it holds that Hξ

min(PG) ≥ n. Therefore,
(ε, δ)-secure computation is feasible only if n ≤ κ+O(1). We
remark that this necessary condition is also (almost) sufficient.
Indeed, if n ≤ κ, all but the mth party can reveal all their bits
Bn1 , . . . , B

n
m−1 and the mth party can send back Bn1 ⊕ . . .⊕

Bnm⊕Kn, where Kn denotes any n out of κ bits of K. Clearly,
this results in a secure computation of g.

Example 3. (Secure transmission). Two parties sharing a κ-
bit perfect SK K seek to exchange a message M securely.27

To this end, they communicate interactively using a commu-

26Strictly speaking, the estimates K1, ...,Km of K formed by different
parties constitute the (ε+ δ + 2ξ + ζ)-SK in the sense of (3).

27A message M is a RV with known distribution PM .

nication F, and based on this communication Party 2 forms
an estimate M̂ of the message M by Party 1. This protocol
accomplishes (ε, δ)-secure transmission if

P
(
M = M̂

)
≥ 1− ε,

d (PMF,PM × PF) ≤ δ.

The classic result of Shannon [62] implies that (0, 0)-secure
transmission is feasible only if κ is at least log ‖M‖, where
‖M‖ denotes the size of the message space.28 But, can we
relax this constraint for ε, δ > 0? In this example, we will
give a necessary condition for the feasibility of (ε, δ)-secure
transmission by relating it to the previous example.

Specifically, let the observations of the two parties consist
of X1 = (M,K), X2 = K. Then, (ε, δ)-secure transmis-
sion of M is tantamount to securely computing the function
g(X1, X2) = M . Therefore, using (49), (ε, δ)-secure trans-
mission of M is feasible only if

Hξ
min(PM ) ≤ κ+ 2 log

1

η
+ log

1

1− µ
+ 2 log

1

2ζ
+ 1, (50)

for every ξ, ζ, η > 0 satisfying µ = ε+ δ + 2ξ + ζ + η < 1.
Condition (50) brings out a trade-off between κ and ε + δ

(cf. [38, Problems 2.12 and 2.13]). For an illustration, consider
a message M consisting of a RV Y taking values in a set
Y = {0, 1}n ∪ {0, 1}2n and with the following distribution:

PY (y) =

{
1
2 ·

1
2n y ∈ {0, 1}n

1
2 ·

1
22n y ∈ {0, 1}2n .

For ε+ δ = 0, we know that secure transmission will require
κ to be more than the worst-case message length 2n. But
perhaps by allowing ε+δ to be greater than 0, we can make do
with fewer SK bits; for instance, perhaps κ equal to H(M) =
(3/2)n+1 will suffice (note that the average message length
equals (3/2)n). The necessary condition above says that this
is not possible if ε+ δ < 1/2. Indeed, since Hξ

min(PY ) ≥ 2n
for ξ = 1/4, we get from (50) that the message M = Y can
be (ε, δ)-securely transmitted only if 2n ≤ κ + O(1), where
the constant depends on ε and δ.

VII. DISCUSSION

In this work, we focused on converse results and presented
single-shot upper bounds on the efficiency of using corre-
lated randomness for SK agreement and secure computation
protocols. When the underlying observations are IID, the
resulting upper bounds were shown to be tight in several
cases. It is natural to ask how tight are these bounds for
IID observations of fixed, finite length. For the SK agreement
problem, it is possible to mimic the approach in [44], [1],
[16], [60] to obtain protocols that first use communication
for information reconciliation and then extract SKs using
privacy amplification. The challenge in the multiparty setup
is to identify the appropriate information to be reconciled.
For the case of two parties observing IID sequences, relying
on Theorem 3, recently the second-order asymptotic term in
the maximum length of a SK was established in [29], [30].

28This is a slight generalization of Shannon’s original result; see [38,
Theorem 2.7] for a proof.
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Coming up with finite-length schemes that match the converse
bounds for the various secure computation problems studied
above is work in progress.

Our converse results in Sections V and VI entail reducing
SK agreement to the secure computation task at hand, followed
by an application of Theorem 3. The strength of Theorem 3
lies in its validity for interactive communication. The admissi-
bility of interactive communication makes this bound useful in
cryptography where interaction is natural to consider, and it is
foreseeable, and indeed tempting, that this approach can lead
to converse bounds for other problems in information theoretic
secrecy and cryptography; an instance arises in [31].

In fact, our bound can find applications in problems involv-
ing interactive communication without any secrecy require-
ments. For instance, it is used in [71] to derive a lower bound
for the length of the interactive communication needed for
two parties to exchange their correlated data. Furthermore, it
is used in [70] to derive a lower bound on the communication
complexity for simulating protocols.

Note that similar to [52], [28] the choice of Q in Theorem
3 is arbitrary. In the applications to capacity results considered
in this paper and in deriving the second-order asymptotics
for the two party SK agreement problem in [29], Q equal
to the product of marginals of P suffices. However, in a more
involved application of Theorem 3, such as that in [71], [70],
a judicious choice of Q is needed.

A quantum version of the two party secret key agreement
problem of [44], [1] has been considered in [19], [11]. An
extension of Theorem 3 to the case of quantum observations
can be used to obtain converse results for such problems.
In the classical case, for two parties with IID observations,
Theorem 3 shows that the (ε, δ)-SK capacity is bounded above
by

min
QX1|ZQX2|ZQZ

D(PX1X2Z‖QX1|XQX2|ZQZ)

= I(X1 ∧X2|Z), (51)

where the equality follows from the Topsøe identity [65]. On
the other hand, in the quantum case, the identity (51) does not
hold [32]. Thus, a direct extension of Theorem 3 to quantum
observations will not yield the quantum conditional mutual
information bound for SK capacity derived in [11]. Finding
an appropriate extension of Theorem 3 to the case of quantum
observations is an interesting direction for future research.

ACKNOWLEDGMENT

Main part of this work was carried out when SW was
visiting University of Maryland, College Park. SW would
like to thank Prakash Narayan for his kind hospitality and
valuable discussions. The authors would like to thank Prakash
Narayan for helpful comments on an earlier draft of this paper.
Also, the authors would also like to thank an anonymous
reviewer whose detailed comments helped in improving the
presentation of the paper. HT was supported in part by the U.S.
National Science Foundation under the grant CCF1117546.
SW was supported in part by Japan Society for the Promotion
of Science Postdoctoral Fellowships for Research Abroad.

REFERENCES

[1] R. Ahlswede and I. Csiszár, “Common randomness in information theory
and cryptography–part i: Secret sharing,” IEEE Trans. Inf. Theory,
vol. 39, no. 4, pp. 1121–1132, July 1993.

[2] ——, “On oblivious transfer capacity,” Information Theory, Combina-
torics, and Search Theory, pp. 145–166, 2013.

[3] D. Beaver, “Precomputing oblivious transfer,” in Advances in Cryptology
- CRYPTO, 1995, pp. 97–109.

[4] A. Beimel, Y. Ishai, R. Kumaresan, and E. Kushilevitz, “On the
cryptographic complexity of the worst functions,” in In TCC, 2014, pp.
317–342.

[5] C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer, “Generalized
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