Universal Multiparty Data Exchange

Himanshu Tyagi

Department of Electrical Communication Engineering

Joint work with Shun Watanabe

Data Exchange for Maintaining Mirror Servers

Data Exchange for Maintaining Mirror Servers

Data Exchange for Maintaining Mirror Servers

Data Exchange for Rendering 3D Videos¹

¹Suggested by Parimal Parag

Data Exchange for Project Management Server

1. The Multiparty Data Exchange Problem

2. Description of Protocol

3. Examples

4. Results and Discussion

The Multiparty Data Exchange Problem

Multiparty Data Exchange

Parties seek to recover each other's data by communicating as few bits as possible

Product Cycle for a Practical Data Compression Scheme

Product Cycle for a Practical Data Compression Scheme

Source Model for Data Exchange

Set of parties, $\mathcal{M} = \{1, ..., m\}$

Observations $X_{\mathcal{M}}^n = \{X_{\mathcal{M}t}\}_{t=1}^n$ are iid with common pmf $P_{X_{\mathcal{M}}}$

 π constitutes an $\epsilon\text{-omniscience}$ protocol if

$$P\left(\widehat{\mathbf{X}}_{1} = \dots = \widehat{\mathbf{X}}_{m} = X_{\mathcal{M}}^{n}\right) \ge 1 - \epsilon$$

 $|\pi| = \max$. no. of bits communicated during an execution of π $|\pi|_{av} = avg$. no. of bits communicated during an execution of π

 $|\pi|=$ max. no. of bits communicated during an execution of π $|\pi|_{\rm av}=$ avg. no. of bits communicated during an execution of π

R is an ϵ -achievable rate if \exists an ϵ -omniscience protocol π with $|\pi| \leq nR$, $\forall n$ suff. large

 $R^{\epsilon}_{\text{CO}}\left(\mathcal{M}|\mathbf{P}_{X_{\mathcal{M}}}\right) = \min\{R: R \text{ is an } \epsilon\text{-achievable rate}\}$

 $|\pi|=$ max. no. of bits communicated during an execution of π $|\pi|_{\rm av}=$ avg. no. of bits communicated during an execution of π

R is an ϵ -achievable rate if \exists an ϵ -omniscience protocol π with $|\pi| \le nR$, $\forall n$ suff. large

 $R^{\epsilon}_{\text{CO}}\left(\mathcal{M}|\mathbf{P}_{X_{\mathcal{M}}}\right) = \min\{R: R \text{ is an } \epsilon\text{-achievable rate}\}$

Minimum communication for omniscience:

 $R_{CO}\left(\mathcal{M}|\mathbf{P}_{X_{\mathcal{M}}}\right) = \lim_{\epsilon \to 0} R^{\epsilon}_{CO}\left(\mathcal{M}|\mathbf{P}_{X_{\mathcal{M}}}\right)$

 $|\pi|=$ max. no. of bits communicated during an execution of π $|\pi|_{\rm av}=$ avg. no. of bits communicated during an execution of π

R is an ϵ -achievable rate if \exists an ϵ -omniscience protocol π with $|\pi| \le nR$, $\forall n$ suff. large

 $R^{\epsilon}_{\text{CO}}\left(\mathcal{M}|\mathbf{P}_{X_{\mathcal{M}}}\right) = \min\{R: R \text{ is an } \epsilon\text{-achievable rate}\}$

Minimum communication for omniscience:

$$R_{\text{CO}}\left(\mathcal{M}|\mathbf{P}_{X_{\mathcal{M}}}\right) = \lim_{\epsilon \to 0} R_{\text{CO}}^{\epsilon}\left(\mathcal{M}|\mathbf{P}_{X_{\mathcal{M}}}\right)$$

Minimum average communication for omniscience:

 $R_{\rm CO}^{\rm av}\left(\mathcal{M}|\mathbf{P}_{X_{\mathcal{M}}}\right)$ defined similarly with $|\pi|_{\rm av}$ in place of $|\pi|$

Characterization of Min. Comm. for Omniscience

[Csiszár-Naryan 04]

$$R_{\rm CO}\left(\mathcal{M}|\mathbf{P}_{X_{\mathcal{M}}}\right) = R_{\rm CO}^{\rm av}\left(\mathcal{M}|\mathbf{P}_{X_{\mathcal{M}}}\right) = \min_{R_1,\ldots,R_m} \sum_{i=1}^m R_i,$$

where minimum is over all $(R_1,...,R_m)$ in the set $\mathcal{R}_{\texttt{CO}}(\mathcal{M})$ given by

$$\mathcal{R}_{\text{CD}}(\mathcal{M}) = \{ (R_1, ..., R_m) : \sum_{i \in B} R_i \ge H(X_B | X_{B^c}), \quad \forall B \subsetneq \mathcal{M} \}$$

Characterization of Min. Comm. for Omniscience

[Csiszár-Naryan 04]

$$R_{\text{CO}}\left(\mathcal{M}|\mathbf{P}_{X_{\mathcal{M}}}\right) = R_{\text{CO}}^{\text{av}}\left(\mathcal{M}|\mathbf{P}_{X_{\mathcal{M}}}\right) = \min_{R_{1},\dots,R_{m}}\sum_{i=1}^{m}R_{i},$$

where minimum is over all $(R_1,...,R_m)$ in the set $\mathcal{R}_{\texttt{CO}}(\mathcal{M})$ given by

$$\mathcal{R}_{CO}(\mathcal{M}) = \{ (R_1, ..., R_m) : \sum_{i \in B} R_i \ge H(X_B | X_{B^c}), \quad \forall B \subsetneq \mathcal{M} \}$$

[Chan-Zheng 10]

$$\min_{(R_1,\ldots,R_m)\in\mathcal{R}_{\rm CO}(\mathcal{M})}\sum_{i=1}^m R_i = \max_{\sigma\in\Sigma(\mathcal{M})}\frac{1}{|\sigma|-1}\mathbb{H}_{\sigma},$$

where

$$\mathbb{H}_{\sigma} = \sum_{i=1}^{|\sigma|} H(X_{\mathcal{M}}|X_{\sigma_i})$$

The Protocol

Product Cycle for a Practical Data Compression Scheme

Naive Universal Protocol

- Use n^{α} symbols to estimate $P_{X_{\mathcal{M}}}$
- This will facilitate estimation within variational distance $\mathcal{O}(n^{-\alpha/2})$
- ▶ Excess no. of bits communicated over $nR_{CO}(\mathcal{M}|P_{X_{\mathcal{M}}})$ is order:

$$\min_{\alpha \in (0,1)} n^{\alpha} + n^{1 - \alpha/2} = n^{2/3}$$

Naive Universal Protocol

- Use n^{α} symbols to estimate $P_{X_{\mathcal{M}}}$
- This will facilitate estimation within variational distance $\mathcal{O}(n^{-\alpha/2})$
- ▶ Excess no. of bits communicated over $nR_{CO}(\mathcal{M}|P_{X_{\mathcal{M}}})$ is order:

$$\min_{\alpha \in (0,1)} n^{\alpha} + n^{1 - \alpha/2} = n^{2/3}$$

[T-Viswanath-Watanabe 15]

For m = 2 when $P_{X_1X_2}$ is known, excess is $\mathcal{O}(n^{1/2})$

Naive Universal Protocol

- Use n^{α} symbols to estimate $P_{X_{\mathcal{M}}}$
- This will facilitate estimation within variational distance $\mathcal{O}(n^{-\alpha/2})$
- ▶ Excess no. of bits communicated over $nR_{CO}(\mathcal{M}|P_{X_{\mathcal{M}}})$ is order:

$$\min_{\alpha \in (0,1)} n^{\alpha} + n^{1 - \alpha/2} = n^{2/3}$$

[T-Viswanath-Watanabe 15]

For m = 2 when $P_{X_1X_2}$ is known, excess is $\mathcal{O}(n^{1/2})$

Can we obtain a similar excess rate without knowing P_{X_M} ?

 $\mathcal{R}_{\rm CD}(\mathcal{M}|\mathbf{P}_{X_1X_2}) = \{(R_1, R_2) : R_i \ge H(X_1, X_2|X_i), i \in \{1, 2\}\}$

 $\mathcal{R}_{\rm CD}(\mathcal{M}|\mathbf{P}_{X_1X_2}) = \{(R_1, R_2) : R_i \ge H(X_1, X_2|X_i), i \in \{1, 2\}\}$

Universal Protocol 1:

1. Party 1 increases the rate until party 2 can decode

 $\mathcal{R}_{\rm CD}(\mathcal{M}|\mathbf{P}_{X_1X_2}) = \{(R_1, R_2) : R_i \ge H(X_1, X_2|X_i), i \in \{1, 2\}\}$

Universal Protocol 1:

1. Party 1 increases the rate until party 2 can decode

 $\mathcal{R}_{CO}(\mathcal{M}|\mathbf{P}_{X_1X_2}) = \{(R_1, R_2) : R_i \ge H(X_1, X_2|X_i), i \in \{1, 2\}\}$

Universal Protocol 1:

- 1. Party 1 increases the rate until party 2 can decode
- 2. Party 2 increases the rate until Party 1 can decode

 $\mathcal{R}_{CO}(\mathcal{M}|\mathbf{P}_{X_1X_2}) = \{(R_1, R_2) : R_i \ge H(X_1, X_2|X_i), i \in \{1, 2\}\}$

Universal Protocol 1:

- 1. Party 1 increases the rate until party 2 can decode
- 2. Party 2 increases the rate until Party 1 can decode

$\mathcal{R}_{\rm CO}(\mathcal{M}|\mathbf{P}_{X_1X_2}) = \{(R_1, R_2) : R_i \ge H(X_1, X_2|X_i), i \in \{1, 2\}\}$

$\mathcal{R}_{\rm CO}(\mathcal{M}|\mathbf{P}_{X_1X_2}) = \{(R_1, R_2) : R_i \ge H(X_1, X_2|X_i), i \in \{1, 2\}\}$

Observation 1: $R_1^* - R_2^* = H(X_1|X_2) - H(X_2|X_1) = H(X_1) - H(X_2)$

$\mathcal{R}_{CO}(\mathcal{M}|\mathcal{P}_{X_1X_2}) = \{(R_1, R_2) : R_i \ge H(X_1, X_2|X_i), i \in \{1, 2\}\}$

Observation 1: $R_1^* - R_2^* = H(X_1|X_2) - H(X_2|X_1) = H(X_1) - H(X_2)$

Universal Protocol 2:

1. Parties compute their types (empirical distributions) $P_{\mathbf{x}_i}$ and share

$\mathcal{R}_{CO}(\mathcal{M}|\mathcal{P}_{X_1X_2}) = \{(R_1, R_2) : R_i \ge H(X_1, X_2|X_i), i \in \{1, 2\}\}$

Observation 1: $R_1^* - R_2^* = H(X_1|X_2) - H(X_2|X_1) = H(X_1) - H(X_2)$

Universal Protocol 2:

1. Party with higher value of $H(P_{\mathbf{x}_i})$ initializes communication

$\mathcal{R}_{\rm CO}(\mathcal{M}|\mathbf{P}_{X_1X_2}) = \{(R_1, R_2) : R_i \ge H(X_1, X_2|X_i), i \in \{1, 2\}\}$

Observation 1: $R_1^* - R_2^* = H(X_1|X_2) - H(X_2|X_1) = H(X_1) - H(X_2)$

Universal Protocol 2:

- 1. Party with higher value of $H(P_{\mathbf{x}_i})$ initializes communication
- 2. Party 2 starts communicating when $R_1 = H(P_{x_1}) H(P_{x_2})$

$\mathcal{R}_{CO}(\mathcal{M}|\mathcal{P}_{X_1X_2}) = \{(R_1, R_2) : R_i \ge H(X_1, X_2|X_i), i \in \{1, 2\}\}$

Observation 1: $R_1^* - R_2^* = H(X_1|X_2) - H(X_2|X_1) = H(X_1) - H(X_2)$

Universal Protocol 2:

- 1. Party with higher value of $H(P_{\mathbf{x}_i})$ initializes communication
- 2. Party 2 starts communicating when $R_1 = H(P_{x_1}) H(P_{x_2})$
- 3. Parties increase the rates until they recover each other

$\mathcal{R}_{CO}(\mathcal{M}|\mathcal{P}_{X_1X_2}) = \{(R_1, R_2) : R_i \ge H(X_1, X_2|X_i), i \in \{1, 2\}\}$

Observation 1: $R_1^* - R_2^* = H(X_1|X_2) - H(X_2|X_1) = H(X_1) - H(X_2)$

Universal Protocol 2:

- 1. Party with higher value of $H(P_{\mathbf{x}_i})$ initializes communication
- 2. Party 2 starts communicating when $R_1 = H(P_{x_1}) H(P_{x_2})$
- 3. Parties increase the rates until they recover each other

$\mathcal{R}_{CO}(\mathcal{M}|\mathcal{P}_{X_1X_2}) = \{(R_1, R_2) : R_i \ge H(X_1, X_2|X_i), i \in \{1, 2\}\}$

Observation 1: $R_1^* - R_2^* = H(X_1|X_2) - H(X_2|X_1) = H(X_1) - H(X_2)$ Observation 2: Both parties will simultaneously decode each other Universal Protocol 2:

- 1. Party with higher value of $H(P_{\mathbf{x}_i})$ initializes communication
- 2. Party 2 starts communicating when $R_1 = H(P_{x_1}) H(P_{x_2})$
- 3. Parties increase the rates until they recover each other

Ideal Assumptions: Oracle model

- Continuous rate: Rate can be increased continuously
- ► Ideal decoder: An ideal decoder with following features is available
 - 1. Returns correct \mathbf{x}_A , $A \subset \mathcal{M}$, as soon as $(R_i, i \in A) \in \mathcal{R}_{CD}(A)$
 - 2. If the condition above does not hold for any A, returns a NACK

The OMN Subroutine

$\mathtt{OMN}(\sigma,\mathbf{H},\mathbf{R})$

Inputs

 $\mathbf{H} = (H_{\sigma_1}, ..., H_{\sigma_k}) \text{ is a decreasing sequence}$ $\mathbf{R} = (R_1, ..., R_m)$

Outputs

 $\ensuremath{\mathcal{O}}$: the set of subsets that attain omniscience

 $\mathbf{R}^{\texttt{out}}$: rates of communication when <code>OMN</code> terminates

Execution

While all decoders output NACK

- 1. All parties with $R_i > 0$, $i \in \sigma_l$, increase their rates at "slope" $1/|\sigma_l|$
- 2. A new party $j \equiv \sigma_j$ starts communicating if

$$R_{\sigma_1} - R_{\sigma_j} = H_{\sigma_1} - H_{\sigma_j}$$

3. Each party is running the ideal decoder

If OMN is called with a valid rate vector ${\bf R}$

- If a new subset \boldsymbol{A} attains local omniscience:
- (i) A is of the form $\{\sigma_{i_1}, ..., \sigma_{i_l}\}$;
- (ii) \mathbf{R}^{out} is as if the parties in A were together from the start

If OMN is called with a valid rate vector ${\bf R}$

If a new subset \boldsymbol{A} attains local omniscience:

(i) A is of the form $\{\sigma_{i_1}, ..., \sigma_{i_l}\}$;

(ii) \mathbf{R}^{out} is as if the parties in A were together from the start

The sum rate R_A is given by

$$R_{A} = \mathbb{H}_{\sigma_{f}(A)}(A) = \frac{1}{l-1} \sum_{j=1}^{l} H(X_{A}|X_{\sigma_{i_{j}}})$$

Protocol under Ideal Assumptions

Initialization

$$\mathbf{R} = (0, -1, -1, ..., -1)$$
$$\mathbf{H} = (H(\mathbf{P}_{\mathbf{x}_1}), ..., H(\mathbf{P}_{\mathbf{x}_m}))$$
$$\sigma = \sigma_f(\mathcal{M})$$

Execution

While omniscience is not attained

- 1. Call $\text{OMN}(\sigma, \mathbf{H}, \mathbf{R})$; let output be $\mathcal O$ and \mathbf{R}^{out}
- 2. Update:

$$\label{eq:states} \begin{split} \mathbf{R} &= \mathbf{R}^{\mathrm{out}} \\ \sigma &= \mathsf{parts} \text{ consist of subsets that have attained local omniscience} \\ \mathbf{H} &= (H_{\sigma_1},...,H_{\sigma_k}) \end{split}$$

3. Go to step 1

 $\underline{m=3}$

 $X_1 \sim \text{Ber}(1/2), \quad X_3 \sim \text{Ber}(q), \quad X_2 = X_1 \oplus X_3, \qquad h(q) > 1/2$

- Finest partition is dominant
- The unique optimal rate assignment is given by $\mathbf{R}^* = (1/2, 1/2, h(q) 1/2)$

 $\underline{m=3}$

 $X_1 \sim \text{Ber}(1/2), \quad X_3 \sim \text{Ber}(q), \quad X_2 = X_1 \oplus X_3, \qquad h(q) > 1/2$

- Finest partition is dominant
- The unique optimal rate assignment is given by $\mathbf{R}^* = (1/2, 1/2, h(q) 1/2)$

1. $H(X_1) = H(X_2) = 1 > H(X_3) \Rightarrow$ Parties 1 and 2 start at slope 1

 $\underline{m=3}$

 $X_1 \sim \text{Ber}(1/2), \quad X_3 \sim \text{Ber}(q), \quad X_2 = X_1 \oplus X_3, \qquad h(q) > 1/2$

- Finest partition is dominant
- The unique optimal rate assignment is given by $\mathbf{R}^* = (1/2, 1/2, h(q) 1/2)$

1. $H(X_1) = H(X_2) = 1 > H(X_3) \Rightarrow$ Parties 1 and 2 start at slope 1

 $\underline{m=3}$

 $X_1 \sim \text{Ber}(1/2), \quad X_3 \sim \text{Ber}(q), \quad X_2 = X_1 \oplus X_3, \qquad h(q) > 1/2$

- Finest partition is dominant
- The unique optimal rate assignment is given by $\mathbf{R}^* = (1/2, 1/2, h(q) 1/2)$

1. $H(X_1) = H(X_2) = 1 > H(X_3) \Rightarrow$ Parties 1 and 2 start at slope 1

2. Party 3 starts when $R_1 = R_2 = H(X_1) - H(X_3) = 1 - h(q)$

 $\underline{m=3}$

 $X_1 \sim \text{Ber}(1/2), \quad X_3 \sim \text{Ber}(q), \quad X_2 = X_1 \oplus X_3, \qquad h(q) > 1/2$

- Finest partition is dominant
- The unique optimal rate assignment is given by $\mathbf{R}^* = (1/2, 1/2, h(q) 1/2)$

1. $H(X_1) = H(X_2) = 1 > H(X_3) \Rightarrow$ Parties 1 and 2 start at slope 1

2. Party 3 starts when $R_1 = R_2 = H(X_1) - H(X_3) = 1 - h(q)$

 $\underline{m=3}$

 $egin{aligned} W_1, W_2 &\sim extsf{Ber}(1/2), & V_1, V_2 &\sim extsf{Ber}(q), & q < 1/2 \ X_1 &= (W_1, W_2), & X_2 &= (W_1 \oplus V_1, W_2), & X_3 &= W_2 \oplus V_2 \end{aligned}$

 $\underline{m=3}$

 $egin{aligned} W_1, W_2 &\sim ext{Ber}(1/2), & V_1, V_2 &\sim ext{Ber}(q), & q < 1/2 \ X_1 &= (W_1, W_2), & X_2 &= (W_1 \oplus V_1, W_2), & X_3 &= W_2 \oplus V_2 \end{aligned}$

- Partition $\{12|3\}$ is dominant

1. Parties 1 and 2 start at slope 1

 $\underline{m=3}$

 $egin{aligned} W_1, W_2 &\sim ext{Ber}(1/2), & V_1, V_2 &\sim ext{Ber}(q), & q < 1/2 \ X_1 &= (W_1, W_2), & X_2 &= (W_1 \oplus V_1, W_2), & X_3 &= W_2 \oplus V_2 \end{aligned}$

- 1. Parties 1 and 2 start at slope 1
- 2. They attain local omniscience when $R_1 = h(q) = R_2$

 $\underline{m=3}$

 $egin{aligned} W_1, W_2 &\sim extsf{Ber}(1/2), & V_1, V_2 &\sim extsf{Ber}(q), & q < 1/2 \ X_1 &= (W_1, W_2), & X_2 &= (W_1 \oplus V_1, W_2), & X_3 &= W_2 \oplus V_2 \end{aligned}$

- 1. Parties 1 and 2 start at slope 1
- 2. They attain local omniscience when $R_1 = h(q) = R_2$

 $\underline{m=3}$

 $egin{aligned} W_1, W_2 &\sim ext{Ber}(1/2), & V_1, V_2 &\sim ext{Ber}(q), & q < 1/2 \ X_1 &= (W_1, W_2), & X_2 &= (W_1 \oplus V_1, W_2), & X_3 &= W_2 \oplus V_2 \end{aligned}$

- 1. Parties 1 and 2 start at slope 1
- 2. They attain local omniscience when $R_1 = h(q) = R_2$
- 3. Parties 1 and 2 increase rates at slope 1/2

 $\underline{m=3}$

 $egin{aligned} W_1, W_2 &\sim extsf{Ber}(1/2), & V_1, V_2 &\sim extsf{Ber}(q), & q < 1/2 \ X_1 &= (W_1, W_2), & X_2 &= (W_1 \oplus V_1, W_2), & X_3 &= W_2 \oplus V_2 \end{aligned}$

- 1. Parties 1 and 2 start at slope 1
- 2. They attain local omniscience when $R_1 = h(q) = R_2$
- 3. Parties 1 and 2 increase rates at slope 1/2

 $\underline{m=3}$

 $egin{aligned} W_1, W_2 &\sim extsf{Ber}(1/2), & V_1, V_2 &\sim extsf{Ber}(q), & q < 1/2 \ X_1 &= (W_1, W_2), & X_2 &= (W_1 \oplus V_1, W_2), & X_3 &= W_2 \oplus V_2 \end{aligned}$

- 1. Parties 1 and 2 start at slope 1
- 2. They attain local omniscience when $R_1 = h(q) = R_2$
- 3. Parties 1 and 2 increase rates at slope 1/2
- 4. Parties 3 starts when $R_1 + R_2 R_3 = H(X_1, X_2) H(X_3) = 1 + h(q)$

 $\underline{m=3}$

 $egin{aligned} W_1, W_2 &\sim extsf{Ber}(1/2), & V_1, V_2 &\sim extsf{Ber}(q), & q < 1/2 \ X_1 &= (W_1, W_2), & X_2 &= (W_1 \oplus V_1, W_2), & X_3 &= W_2 \oplus V_2 \end{aligned}$

- 1. Parties 1 and 2 start at slope 1
- 2. They attain local omniscience when $R_1 = h(q) = R_2$
- 3. Parties 1 and 2 increase rates at slope 1/2
- 4. Parties 3 starts when $R_1 + R_2 R_3 = H(X_1, X_2) H(X_3) = 1 + h(q)$

 $\underline{m=4}$

$$\begin{split} W_1, W_2, W_3 &\sim \text{Ber}(1/2), \quad V_1, V_2 &\sim \text{Ber}(q), \qquad q < 1/2 \\ X_1 &= (W_1, W_2), \quad X_2 = (W_1 \oplus V_1, W_2), \quad X_3 = W_2 \oplus V_2, \quad X_4 = W_3 \end{split}$$

The facts of the matter

Real World Protocol

 \blacktriangleright Parties increase rates in steps of $\Delta>0$

► Use a typical decoder:

Find the type $P_{\overline{X}_A}$ s.t.

1. $(R_i, i \in A) \in \mathcal{R}_{CO}(A|\overline{X}_A)$, and

2. \exists unique \mathbf{x}_A of type $P_{\overline{X}_A}$ consistent with hash values

Probability of error small, but greater than 0

Theorem

For every $\Delta > 0$ and every sequence x_M , the probability of error for our protocol is bounded above by

$$C_1\left(\frac{\log|\mathcal{X}_{\mathcal{M}}|}{\Delta}+m\right)p(n)2^{-n\Delta}.$$

Furthermore, if an error does not occur, the number of bits communicated by the protocol for input x_M is bounded above by

$$nR_{CO}(\mathcal{M}|\mathbf{P}_{\mathbf{x}_{\mathcal{M}}}) + nC_{2}\Delta + C_{3}\left(\frac{\log|\mathcal{X}_{\mathcal{M}}|}{\Delta} + m\right) + C_{4}\log n.$$

Corollary

For $\Delta = \frac{1}{\sqrt{n}}$ and every distribution P_{X_M} , our protocol has a probability of error ϵ_n vanishing to 0 as $n \to \infty$ and average length $|\pi|_{av}$ less than

 $nR_{CO}(\mathcal{M}|\mathbf{P}_{X_{\mathcal{M}}}) + \mathcal{O}(\sqrt{n\log n}).$

Furthermore, for a fixed R > 0, the fixed-length variant of our protocol has probability of error ϵ_n vanishing to 0 as $n \to \infty$ for all distributions P_{X_M} that satisfy

$$R > R_{\rm CO}\left(\mathcal{M}|\mathbf{P}_{X_{\mathcal{M}}}\right) + \mathcal{O}\left(n^{-1/2}\sqrt{\log n}\right).$$

Product Cycle for Practical Multiparty Data Compression

How rsync works:

- 1. File 1 sends an easy hash (rolling checksum)
- 2. File 2 compares with its own hash
- 3. If no match, send the file
- 4. Else Send better hash (MD5) - If No match send the file
 - Else Accept files as the same

*image from RGS

How rsync works:

- 1. File 1 sends an easy hash (rolling checksum)
- 2. File 2 compares with its own hash
- 3. If no match, send the
- 4. Else Send better hash - If No match send
 - Else Accept files a

Remote Rayne NAS

Dare to think beyond rsync!

Paper Cycle for a Practical Data Compression Scheme

