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The Multiparty Data Exchange Problem
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Parties seek to recover each other’s data by communicating as few bits as
possible
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Source Model for Data Exchange
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Set of parties, M = {1, ...,m}

Observations Xn
M = {XMt}

n
t=1 are iid with common pmf PXM

π constitutes an ǫ-omniscience protocol if

P
(
X̂1 = ... = X̂m = Xn

M

)
≥ 1− ǫ
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Minimum Communication for Omniscience

|π| = max. no. of bits communicated during an execution of π

|π|av = avg. no. of bits communicated during an execution of π
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Minimum Communication for Omniscience

|π| = max. no. of bits communicated during an execution of π

|π|av = avg. no. of bits communicated during an execution of π

R is an ǫ-achievable rate if ∃ an ǫ-omniscience protocol π

with |π| ≤ nR, ∀n suff. large

Rǫ
CO
(M|PXM

) = min{R : R is an ǫ-achievable rate}

Minimum communication for omniscience:

RCO (M|PXM
) = lim

ǫ→0
Rǫ

CO
(M|PXM

)

Minimum average communication for omniscience:

Rav

CO
(M|PXM

) defined similarly with |π|av in place of |π|
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Characterization of Min. Comm. for Omniscience

[Csiszár-Naryan 04]

RCO (M|PXM
) = Rav

CO
(M|PXM

) = min
R1,...,Rm

m∑

i=1

Ri,

where minimum is over all (R1, ..., Rm) in the set RCO(M) given by

RCO(M) = {(R1, ..., Rm) :
∑

i∈B

Ri ≥ H(XB |XBc), ∀B ( M}
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[Csiszár-Naryan 04]

RCO (M|PXM
) = Rav

CO
(M|PXM

) = min
R1,...,Rm

m∑

i=1

Ri,

where minimum is over all (R1, ..., Rm) in the set RCO(M) given by

RCO(M) = {(R1, ..., Rm) :
∑

i∈B

Ri ≥ H(XB |XBc), ∀B ( M}

[Chan-Zheng 10]

min
(R1,...,Rm)∈RCO(M)

m∑

i=1

Ri = max
σ∈Σ(M)

1

|σ| − 1
Hσ,

where

Hσ =

|σ|∑

i=1

H(XM|Xσi
)
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Naive Universal Protocol

◮ Use nα symbols to estimate PXM

◮ This will facilitate estimation within variational distance O(n−α/2)

◮ Excess no. of bits communicated over nRCO(M|PXM
) is order:

min
α∈(0,1)

nα + n1−α/2 = n2/3
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◮ This will facilitate estimation within variational distance O(n−α/2)

◮ Excess no. of bits communicated over nRCO(M|PXM
) is order:

min
α∈(0,1)

nα + n1−α/2 = n2/3

[T-Viswanath-Watanabe 15]

For m = 2 when PX1X2
is known, excess is O(n1/2)

Can we obtain a similar excess rate without knowing PXM
?
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Protocol for Two Parties
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Who Starts?
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Observation 1: R∗

1 −R∗

2 = H(X1|X2)−H(X2|X1) = H(X1)−H(X2)

Observation 2: Both parties will simultaneously decode each other

Universal Protocol 2:

1. Party with higher value of H(Pxi) initializes communication

2. Party 2 starts communicating when R1 = H(Px1
)−H(Px2

)

3. Parties increase the rates until they recover each other
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Ideal Assumptions: Oracle model

◮ Continuous rate: Rate can be increased continuously

◮ Ideal decoder: An ideal decoder with following features is available

1. Returns correct xA, A ⊂ M, as soon as (Ri, i ∈ A) ∈ RCO(A)

2. If the condition above does not hold for any A, returns a NACK
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The OMN Subroutine

OMN(σ,H,R)

Inputs

H = (Hσ1
, ..., Hσk

) is a decreasing sequence

R = (R1, ..., Rm)

Outputs

O : the set of subsets that attain omniscience

R
out : rates of communication when OMN terminates

Execution

While all decoders output NACK

1. All parties with Ri > 0, i ∈ σl, increase their rates at “slope” 1/|σl|

2. A new party j ≡ σj starts communicating if

Rσ1
−Rσj = Hσ1

−Hσj

3. Each party is running the ideal decoder
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Main Observation: The Recursive Structure of OMN

If OMN is called with a valid rate vector R

If a new subset A attains local omniscience:

(i) A is of the form {σi1 , ..., σil};

(ii) R
out is as if the parties in A were together from the start
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Main Observation: The Recursive Structure of OMN

If OMN is called with a valid rate vector R

If a new subset A attains local omniscience:

(i) A is of the form {σi1 , ..., σil};

(ii) R
out is as if the parties in A were together from the start

The sum rate RA is given by

RA = Hσf (A)(A) =
1

l − 1

l∑

j=1

H(XA|Xσij
)
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Protocol under Ideal Assumptions

Initialization

R = (0,−1,−1, ....,−1)

H = (H(Px1
), ..., H(Pxm))

σ = σf (M)

Execution

While omniscience is not attained

1. Call OMN(σ,H,R); let output be O and R
out

2. Update:

R = R
out

σ = parts consist of subsets that have attained local omniscience

H = (Hσ1
, ..., Hσk

)

3. Go to step 1
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Example 1

m = 3

X1 ∼ Ber(1/2), X3 ∼ Ber(q), X2 = X1 ⊕X3, h(q) > 1/2

- Finest partition is dominant

- The unique optimal rate assignment is given by R
∗ = (1/2, 1/2, h(q)− 1/2)
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Example 2

m = 3
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Example 3

m = 4

W1,W2,W3 ∼ Ber(1/2), V1, V2 ∼ Ber(q), q < 1/2

X1 = (W1,W2), X2 = (W1 ⊕ V1,W2), X3 = W2 ⊕ V2, X4 = W3

- Partition {123|4} is dominant

h(q)

1+2h(q)
3

1+h(q)
2

R

t

1+2h(q)
2

1

5+4h(q)
6

R1, R2

R3
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The facts of the matter



Real World Protocol

◮ Parties increase rates in steps of ∆ > 0

◮ Use a typical decoder:

Find the type PXA
s.t.

1. (Ri, i ∈ A) ∈ RCO(A|XA), and

2. ∃ unique xA of type PXA
consistent with hash values

◮ Probability of error small, but greater than 0
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Individual Sequence Performance

Theorem

For every ∆ > 0 and every sequence xM, the probability of error for our

protocol is bounded above by

C1

(
log |XM|

∆
+m

)
p(n)2−n∆.

Furthermore, if an error does not occur, the number of bits

communicated by the protocol for input xM is bounded above by

nRCO(M|PxM
) + nC2∆+ C3

(
log |XM|

∆
+m

)
+ C4 log n.
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Universal Performance

Corollary

For ∆ = 1√
n

and every distribution PXM
, our protocol has a probability

of error ǫn vanishing to 0 as n → ∞ and average length |π|av less than

nRCO(M|PXM
) +O(

√
n log n).

Furthermore, for a fixed R > 0, the fixed-length variant of our protocol

has probability of error ǫn vanishing to 0 as n → ∞ for all distributions

PXM
that satisfy

R > RCO (M|PXM
) +O

(
n−1/2

√
log n

)
.
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rsync

How rsync works:

1. File 1 sends an easy hash (rolling checksum)

2. File 2 compares with its own hash

3. If no match, send the file

4. Else Send better hash (MD5)
- If No match send the file

- Else Accept files as the same

*image from RGS
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rsync

How rsync works:

1. File 1 sends an easy hash (rolling checksum)

2. File 2 compares with its own hash

3. If no match, send the file

4. Else Send better hash (MD5)
- If No match send the file

- Else Accept files as the same

*image from RGS

Dare to think beyond rsync!
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