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Multiparty Secret Key Agreement

COMMUNICATION NETWORK

Party i computes K;(X;,F) € K; Eavesdropper observes F, Z
Ky, ..., K, constitute an (¢, d)-secret key of length log K if
Ky=..=K;)>1—¢, :Recoverability

P (K
1
§||PK1FZ Punit X Prz|l1 <9, :Secrecy



Alternative Definition of a Secret Key

K1, ..., K, constitute an e-secret key of length log K if

1
— 1P\ Ky.. kFZ — Punit.m X Prz|[1< €,
2

where
1

Punif,m (kl’ ceey km) - w

1L(ky = ...kom)-



Alternative Definition of a Secret Key

K1, ..., K, constitute an e-secret key of length log K if

1
§”PK1K2...KmFZ — Puniem X Prz|[1< €,

where
1

Punif,m (kl’ ceey km) - w]l

(k1 = ko).

Lemma
(6,0)-SK= (e + 6)-SK, and conversely, e-SK = (¢, €)-SK.
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Multiparty Secret Key Agreement

COMMUNICATION NETWORK

Kl KQ Km,
K1, ..., K, constitute an e-secret key of length log K if

1
§||PK1K2...KmFZ — Punit.m X Przl1 <e

Definition

Se(X1,..s X | Z) & maximum length of an e-secret key






No Correlation No Secret Key

If X1 and X5 are independent conditioned on Z:

Se(Xl,X2|Z) ~0



No Correlation No Secret Key

If X1 and X5 are independent conditioned on Z:

Se(Xl,X2|Z) ~0

If for some partition © = {7y, ..., } of {1,...,m},

X7, ...s X, are independent conditioned on Z:

Se(X1, .y Xim|Z) = 0



No Correlation No Secret Key

If X1 and X5 are independent conditioned on Z:

Se(Xl,X2|Z) ~0

If for some partition m = {my,...,m} of {1,...,m},

X7, ...s X, are independent conditioned on Z:

Se(X1, .y Xim|Z) = 0

Bound S¢(X7, ..., X;,,|Z) in terms of “how far" is Px,  x,.z

is from a conditionally independent distribution



Digression: Binary Hypothesis Testing

Consider the following binary hypothesis testing problem:
HO: X~P

vS.

Hl: X~@Q

Define
) £ inf Z Q(z)T(0]x),

zeX
where the inf is over all random tests 7 : X — {0, 1} s.t.

ZP T(1l)z) <

TEX



Digression: Binary Hypothesis Testing

Consider the following binary hypothesis testing problem:
HO: X~P

vS.

Hl: X~@Q

Define
) £ inf Z Q(z)T(0]x),

zeX
where the inf is over all random tests 7 : X — {0, 1} s.t.

ZP T(1l)z) <

TEX

Data processing. For every stochastic matrix W : X — )

Be(P.Q) < B(PW, QW)



Reduction Argument

Given a partition m = {7y, ..., m} of {1,...,m}

> Let Q(x1, ., o |2) = [15, Qar,|2)
For the binary hypothesis testing:

HO : Xlu"'7Xm7ZNP7
Hl: Xi,..Xm,Z~Q,

consider the degraded observations K7, ..., K,,,, F, Z.



Reduction Argument

Given a partition m = {7y, ..., m} of {1,...,m}

> Let Q(x1, ., o |2) = [15, Qar,|2)
For the binary hypothesis testing:

HO : Xlu"'7Xm7ZNP7
Hl: Xi,..Xm,Z~Q,

consider the degraded observations K7, ..., K,,,, F, Z.

Let Wk, . K,.F|X,..X,.z represent the protocol.



Reduction Argument

Consider the degraded binary hypothesis testing:

HO: Ky,..,.K,,F,Z~Pg, k,rz=PW
Hl: Ky,...Kn,F,Z~Qk, k.Fz=QW

Consider a test with the acceptance region A defined by:

.Aé {log Punif,m(Klu--'-aKm) > )\ }
Qry . .k Fz(Ki . Kn|F,Z) =7

where
Ar = (7] = 1) log |K| — || log(1/n)



Reduction Argument

Consider the degraded binary hypothesis testing:

HO: Ky,..,.K,,F,Z~Pg, k,rz=PW
Hl: Ky,...Kn,F,Z~Qk, k.Fz=QW

Consider a test with the acceptance region A defined by:

.Aé {log Punif,m(Klu--'-aKm) > )\ }
Qry . .k Fz(Ki . Kn|F,Z) =7

where
Ar = (7] = 1) log |K| — || log(1/n)

Likelihood ratio test with Py, k., rz replaced by Pupit m

- recall: 1P, ky.. k7 — Puniem X Przl1 <€



Reduction Argument

Missed Detection: Q.. x, rz(A) < |1~ I7lyI7l

False Alarm: Pr,. Kk,Fz(A°) <e+n



Reduction Argument

Missed Detection: Qx, . k,,Fz(A) < |IC\1_‘”|77_‘”| - easy

False Alarm: Pr,. k,Fz(A°) <e+n - requires work

Lemma (Reduction)

Forevery0<e<land0<n<1-—g¢,

Se(X1, -, Xml|Z) < —log Betn (PW, QW) + |7|log (1/n)] .

L
|| =1
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Reduction Argument

Missed Detection: Qx, . k,,Fz(A) < |IC\1_‘”|77_‘”| - easy

False Alarm: Pr,. k,Fz(A°) <e+n - requires work

Lemma (Reduction)

Forevery0<e<land0<n<1-—g¢,

Se(X1, -, Xml|Z) < —log Betn (PW, QW) + |7|log (1/n)] .

L
|| =1

By data processing: et (PW, QW) > Beiy (P, Q)

©



Conditional Independence Testing Bound
(Theorem .

Theorem
Forevery0<e<land0<n<1-—g¢,

Se(X1, .oy Xm|Z) < [~ log Betry (P, Q) + |7|log (1/7)],

1
|m =1

where
k

Q(x1, ..oy T |2) = H Q(xr,|2).

=1

For two parties:

Se(X1, X2|Z) < —10g Bern (Px, %22, Px1 2P x0) 2P 2) + 210g (1/1)

10



Conditional Independence Testing Bound
(Theorem .

Theorem
Forevery0<e<land0<n<1-—g¢,

SE(Xlu 7Xm|Z) S |7T|%1 [_ 1Og/6€+77 (P7 Q) + |7T| lOg (1/77)] )
where
k
Q(x1, ..oy T |2) = HQ(xm|z)
i=1

For two parties:

Se(X1, X2|Z) < —10g Bern (Px, %22, Px1 2P x0) 2P 2) + 210g (1/1)

Connections to meta-converse of Polyanskiy, Poor, and Vérdu

10






1. Strong Converse for Secret Key Agreement

[Maurer ‘93] [Ahlswede-Csiszar ‘93] [Csiszar-Narayan ‘04]
Consider 11D observations X7,..., X, = X7, .., X}, Z=10

1
(€,6)-Secret Key Capacity: C s := liminf ESE,(S(X{"‘, e X))

Secret Key Capacity: (' := in(sf Ces-

12



1. Strong Converse for Secret Key Agreement

[Maurer ‘93] [Ahlswede-Csiszar ‘93] [Csiszar-Narayan ‘04]
Consider 11D observations X7,..., X, = X7, .., X}, Z=10

1

(€,6)-Secret Key Capacity: C s := liminf =S, 5(X7, ..., X))
non
Secret Key Capacity: (' := in(sf Ces-

For0 < ¢€,0 withe+ 0 < 1,

CE(;:C,

)

and for all e +6 > 1,
C.s = 00.

)
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2. Information Theoretically Secure OT

X

1 X
F
Ky, K3 >

K%KB

[Even-Goldreich-Lempel 85], ..., [Nascimento-Winters 06]

> Reliability: P (K £ KB) <e
) 1
> Securlty 1: 5 ||PBKOK1X1F — PB X PKoKleFHl < 51

1
» Security 2: 5 |’PK§BX2F — PK§ X PBXQFH1 <

13



2. Information Theoretically Secure OT

X1 X‘Z
F
Ky, K3 >
f( ~ KB
[Even-Goldreich-Lempel 85], ..., [Nascimento-Winters 06]

> Reliability: P (K £ KB) <e
) 1
> Securlty 1: 5 ||PBKOK1X1F — PB X PKoKleFHl < 51

1
» Security 2: 5 |’PK§BX2F — PK§ X PBXQFH1 <

How large can the length [ of OT be?
13



Bounds on the Efficiency of OT

Theorem (Reduction of SK Agreement to OT)
For an (e, 01,62)-OT of length |

IS min {Sei 6,426, (X1, X2), Sers,425, (X1, (X1, X2) | X2)}

14



Bounds on the Efficiency of OT

Theorem (Reduction of SK Agreement to OT)
For an (e, 01,62)-OT of length |

'S min {S6+51+252 (le X2)7 S6+51+252 (le (X17 XQ) | XQ)}
OT Capacity (for IID observations):
Maximum rate (I/n) of OT length (with 41, d2, — 0)

Ce(X1,X2) <min{I(X; A Xo), H(X1 | X2)}

“Strong” version of the Ahlswede-Csiszar upper bound

14



3. Information Theoretic Bit Commitment

Commit Reveal

X X X X
KX}
?

Party 2 constructs a test T for the hypothesis: “Secret is k"

Recovery: P (T(K, X1, X2, F)=1) <e
) 1
Security: 5 |IPrxoFr — Px x Px,rll; < &1

Binding: P (T(K’, X}, X5, F) = 0,K' # K) < 6,

15



3. Information Theoretic Bit Commitment

Commit Reveal

X X X X
KX}
?

Party 2 constructs a test T for the hypothesis: “Secret is k"

Recovery: P (T(K, X1, X2, F)=1) <e

) 1
Security: 5 |IPrxoFr — Px x Px,rll; < &1
Binding: P (T(K', X!, X5, F) = 0,K' # K) < 05

How large can the length [ of BC be?
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Bound on the Efficiency of BC

Theorem (Reduction of SK Agreement to BC)

For an (e, 01,62)-BC of length [,

IS Seyov6, (X1, (X1, X2)| Xo)
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Bound on the Efficiency of BC

Theorem (Reduction of SK Agreement to BC)

For an (e, 01, 02)-BC of length [,
l S Se+61+52 (X17 (Xl’ XQ)’X2>
Efficiency of reduction of BC to OT

Given n-length OT: X; = Ky, K1 Xy =Kp,B.
The possible length [ of BC is bounded as:

I <n+O0(og(l —e—d —d9))
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Bound on the Efficiency of BC

Theorem (Reduction of SK Agreement to BC)
For an (e, 01, 02)-BC of length [,

IS Seysyv6, (X1, (X1, X2)| Xo)

Efficiency of reduction of BC to OT
Given n-length OT: X; = Ky, K1 Xy =Kp,B.
The possible length [ of BC is bounded as:

I <n+O0(og(l —e—d —d9))

Improves a bound of [Ranellucci et. al. 11]

16



Bound on the Efficiency of BC

Theorem (Reduction of SK Agreement to BC)

For an (e, 01, 02)-BC of length [,

IS Seysyv6, (X1, (X1, X2)| Xo)

[Nascimento-Winters-lmai 03] BC capacity C = H(X; | X2)
Strong converse for BC capacity

06751752(X1,X2) < H(Xl ‘ XQ), €+ 51 + 52 <1

16



4. Secure Computing with Trusted Parties

Parties are trusted, the communication channel is not

COMMUNICATION NETWORK

Party i computes G;(X;,F); Eavesdropper observes F, Z
A function g is (€, )-secure computable if
P(Gi=Gy=..=Gpn=9(X1,...Xn)) >1—¢, :Recoverability

1
§||PGFZ —Pa x Prz|l1 <6, :Secrecy
17



Characterization of securely computable functions

[Tyagi-Gupta-Narayan '11] IID case with Z = ()

A function g is secure computable (asymptotically) iff

H(G)<C

18



Characterization of securely computable functions

[Tyagi-Gupta-Narayan '11] IID case with Z = ()

A function g is secure computable (asymptotically) iff
H(G)<C

A single-shot necessary condition

Theorem

If a function g is (e, 0 )-secure computable, then

—1
HY(P6) S =1 108 Betst2¢ (Pxpz: Qxpe2),

where
k

Q(@1, .. wm)2) = [ [ Qan]2).

i=1
18



In Closing...

We derived converse results for IT cryptography,

which are valid for the single-shot case

19
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H. Tyagi and S. Watanabe, “ Converses for secret key agreement
and secure computing,” arXiv:1404.5715, 2014
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In Closing...

We derived converse results for IT cryptography,

which are valid for the single-shot case
Key idea: Reduction of hypothesis testing to crypto primitives

By observing the outputs of any IT secure crypto primitive

we can measure the correlation in the observations

H. Tyagi and S. Watanabe, “ Converses for secret key agreement
and secure computing,” arXiv:1404.5715, 2014

How close do efficient schemes come to these performance
bounds??
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