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Secure Computing of Functions
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≈ 1 : Recoverability

I (g (Xn
M) ∧ F) ≈ 0 : Secrecy

◮ Single-letter function: g (Xn
M) = (g (XM1) , ..., g (XMn)).

◮ Notation: G = g (XM) , Gn = g (Xn
M).

When is a given function g securely computable?
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A Necessary Condition

Secret Key Generation

COMMUNICATION NETWORK

F1 F2

K1 K2 Ka

A

Xn

1
Xn

2

Fa

Xn

a
Xn

m

Fm ≡ F: Public Communication

≡ K: Secret Key

I(K ∧ F) ∼= 0

◮ Secret Key Capacity C(A) ≡ Largest achievable rate of K.

[Csiszár-Narayan ‘04]

C(A) = H (XM) − R(A),

R(A) = Min. sum rate of communication for omniscience at A.
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I(K ∧ F) ∼= 0

◮ Secret Key Capacity C(A) ≡ Largest achievable rate of K.

[Csiszár-Narayan ‘04]

C(A) = H (XM) − R(A),

R(A) = Min. sum rate of communication for omniscience at A.

If g is securely computable by A,

H(G) ≤ C(A).
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Is H(G) < C(A) sufficient?

All terminals wish to compute: A = M [TNG ‘10]

If H(G) < C(M) ⇒ a protocol for SC of g by M exists.

◮ Noninteractive communication suffices.

◮ Randomization is not needed.

◮ Idea: Omniscience can be obtained using communication F ⊥⊥
∼

Gn.
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◮ g(x1, x1, x2) = x2.

◮ Let H(X2) < H(X1) = C(A).→ H(G) < C(A) is satisfied.

However, g is clearly not securely computable.
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And Now For Something Completely Different

[Monty Python ’69]

It’s

A New Necessary Condition for Secure Computability
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A New Necessary Condition

If Gn is securely computable by A:
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Gn: Side Information for Decoding

Provide Gn as side information to terminals in Ac.

- Available only for decoding but not for communicating.

Gn forms a secret key for all terminals, termed an aided secret key.

- Let Cg,A(M) be that largest achievable rate of such a key.
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Gn: Side Information for Decoding

Provide Gn as side information to terminals in Ac.

- Available only for decoding but not for communicating.

Gn forms a secret key for all terminals, termed an aided secret key.

- Let Cg,A(M) be that largest achievable rate of such a key.

For a g securely computable by A,

H(G) ≤ Cg,A(M)
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Aided Secret Key Capacity

Theorem

The aided secret key capacity is

Cg,A(M) = H(XM) − Rg,A(M),

where

Rg,A(M) = min. sum rate of communication for omniscience at M

when Gn is available as side information for decoding to terminals in Ac.
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Characterization of Securely Computable Functions

Theorem

If g is securely computable by A : H(G) ≤ Cg,A(M).

Conversely, g is securely computable by A if: H(G) < Cg,A(M).

For securely computable function g:

◮ Omniscience can be obtained at A using F ⊥⊥
∼

Gn.

◮ Noninteractive communication suffices.

◮ Randomization is not needed.
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Sketch of the Proof

Consider random binning of appropriate rate at each terminal:

◮ To allow omniscience at M,
with Gn given to the terminals in Ac for decoding.

◮ To keep bin indices independent of Gn.
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Sketch of the Proof
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⇔ H (XM | G) > Rg,A(M).
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n
i ) of rate Ri:
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- it enables omniscience at M with side information Gn

given to the terminals in Ac only for decoding.

3. Observe: I(FM ∧ Gn) ≤

m
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4. To prove:
With high probability I

`

Fi ∧ Gn, FM\{i}

´

∼= 0, for each i.
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Independence Properties of Random Mappings
The Balanced Coloring Lemma

◮ To prove:

With high probability I
`

Fi ∧ Gn, FM\{i}

´

∼= 0, for each i.

◮ Shall show:

For almost all (y, z):

Fi | {G
n = y, FM\{i} = z} ≈ uniform.

◮ Family of distributions on Xn
i :

˘

PXn

i
|{Gn=y,FM\{i}=z

¯

.

◮ Seek conditions for random mappings to be uniformly distributed

- w.r.t. a given family of distributions.

10 / 11



Independence Properties of Random Mappings
The Balanced Coloring Lemma

◮ Balanced Coloring Lemma:

[R. Ahlswede-I. Csiszár, ’98], [I. Csiszár-P.N., ’04]

Given a family of distributions with probabilities uniformly bounded
above,

Pr (random coloring ≈ uniform, w.r.t. all pmfs in the family) ≥ q,

where q depends on the size of the family, the uniform bound and the
rate of coloring.

◮ For the case at hand: a slightly generalized version is applied.

- q = q(n) grows to 1 super-exponentially in n.
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Secure Computability of Multiple Functions

COMMUNICATION NETWORK
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g1 g2 gm

Secrecy Condition: I (F ∧ Gn
1 , ..., Gn

m) ≈ 0.

Which functions g1, ..., gm are securely computable?

Omniscience is not allowed in general

◮ For m = 2: X1 ⊥⊥ X2 gi(x1, x2) = xi.
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