

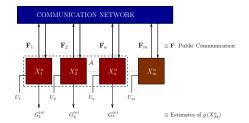
When is a Function Securely Computable?

H. Tyagi¹ P. Narayan¹ P. Gupta²

¹Department of Electrical and Computer Engineering and Institute of System Research University of Maryland, College Park, USA.

²Bell Labs, Alcatel-Lucent.

Secure Computing of Functions



Secure computability of g by \mathcal{A} :

$$\begin{split} \Pr\left(G_{i}^{(n)} = g\left(X_{\mathcal{M}}^{n}\right), i \in \mathcal{A}\right) &\approx 1: \quad \text{Recoverability} \\ I\left(g\left(X_{\mathcal{M}}^{n}\right) \wedge \mathbf{F}\right) &\approx 0: \quad \text{Secrecy} \end{split}$$

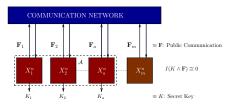
• Single-letter function: $g(X_{\mathcal{M}}^n) = (g(X_{\mathcal{M}1}), ..., g(X_{\mathcal{M}n})).$

• Notation: $G = g(X_{\mathcal{M}}), \quad G^n = g(X_{\mathcal{M}}^n).$

When is a given function g securely computable?

A Necessary Condition

Secret Key Generation



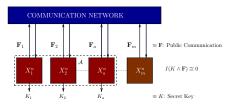
Secret Key Capacity C(A) ≡ Largest achievable rate of K.
 [Csiszár-Narayan '04]

$$C(\mathcal{A}) = H(X_{\mathcal{M}}) - R(\mathcal{A}),$$

 $R(\mathcal{A}) = Min.$ sum rate of communication for omniscience at \mathcal{A} .

A Necessary Condition

Secret Key Generation



Secret Key Capacity C(A) ≡ Largest achievable rate of K.
 [Csiszár-Narayan '04]

$$C(\mathcal{A}) = H(X_{\mathcal{M}}) - R(\mathcal{A}),$$

 $R(\mathcal{A}) = Min.$ sum rate of communication for omniscience at \mathcal{A} .

If g is securely computable by \mathcal{A} ,

 $H(G) \le C(\mathcal{A}).$

Is $H(G) < C(\mathcal{A})$ sufficient?

All terminals wish to compute: A = M [TNG '10]

If $H(G) < C(\mathcal{M}) \Rightarrow$ a protocol for SC of g by \mathcal{M} exists.

- Noninteractive communication suffices.
- Randomization is not needed.
- ▶ Idea: Omniscience can be obtained using communication $\mathbf{F} \perp\!\!\!\perp G^n$.

Is $H(G) < C(\mathcal{A})$ sufficient?

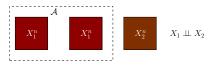
All terminals wish to compute: A = M [TNG '10]

If $H(G) < C(\mathcal{M}) \Rightarrow$ a protocol for SC of g by \mathcal{M} exists.

- Noninteractive communication suffices.
- Randomization is not needed.

• Idea: Omniscience can be obtained using communication $\mathbf{F} \perp\!\!\!\perp G^n$.

Counterexample for $\mathcal{A} \subsetneq \mathcal{M}$



▶ $g(x_1, x_1, x_2) = x_2$.

▶ Let $H(X_2) < H(X_1) = C(\mathcal{A}) \rightarrow H(G) < C(\mathcal{A})$ is satisfied.

However, g is clearly not securely computable.

And Now For Something Completely Different

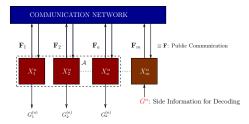
[Monty Python '69]

lt's

A New Necessary Condition for Secure Computability

A New Necessary Condition

If G^n is securely computable by \mathcal{A} :



Provide G^n as side information to terminals in \mathcal{A}^c .

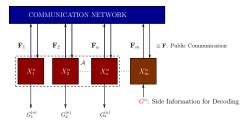
- Available only for decoding but not for communicating.

 ${\cal G}^n$ forms a secret key for all terminals, termed an aided secret key.

- Let $C_{g,\mathcal{A}}(\mathcal{M})$ be that largest achievable rate of such a key.

A New Necessary Condition

If G^n is securely computable by \mathcal{A} :



Provide G^n as side information to terminals in \mathcal{A}^c .

- Available only for decoding but not for communicating.

 ${\cal G}^n$ forms a secret key for all terminals, termed an aided secret key.

- Let $C_{g,\mathcal{A}}(\mathcal{M})$ be that largest achievable rate of such a key.

For a g securely computable by \mathcal{A} ,

 $H(G) \leq C_{g,\mathcal{A}}(\mathcal{M})$

Aided Secret Key Capacity

Theorem

The aided secret key capacity is

$$C_{g,\mathcal{A}}(\mathcal{M}) = H(X_{\mathcal{M}}) - R_{g,\mathcal{A}}(\mathcal{M}),$$

where

 $R_{g,\mathcal{A}}(\mathcal{M}) = \min$ sum rate of communication for omniscience at \mathcal{M} when G^n is available as side information for decoding to terminals in \mathcal{A}^c .

Characterization of Securely Computable Functions

Theorem

If g is securely computable by $\mathcal{A} : H(G) \leq C_{g,\mathcal{A}}(\mathcal{M}).$

Conversely, g is securely computable by A if: $H(G) < C_{g,A}(\mathcal{M})$.

For securely computable function g:

- Omniscience can be obtained at \mathcal{A} using $\mathbf{F} \perp\!\!\!\perp G^n$.
- Noninteractive communication suffices.
- Randomization is not needed.

Consider random binning of appropriate rate at each terminal:

- To allow omniscience at *M*, with Gⁿ given to the terminals in A^c for decoding.
- To keep bin indices independent of G^n .

1.
$$H(G) < C_{g,\mathcal{A}}(\mathcal{M}) = H(X_{\mathcal{M}}) - R_{g,\mathcal{A}}(\mathcal{M})$$

 $\Leftrightarrow H(X_{\mathcal{M}} \mid G) > R_{g,\mathcal{A}}(\mathcal{M}).$

- 1. $H(G) < C_{g,\mathcal{A}}(\mathcal{M}) = H(X_{\mathcal{M}}) R_{g,\mathcal{A}}(\mathcal{M})$ $\Leftrightarrow H(X_{\mathcal{M}} \mid G) > R_{g,\mathcal{A}}(\mathcal{M}).$
- 2. Generate random mappings $F_i = F_i(X_i^n)$ of rate R_i : $\sum_i R_i \approx R_{g,\mathcal{A}}(\mathcal{M})$ with $(R_1, ..., R_m)$ s.t.
 - it enables omniscience at \mathcal{M} with side information G^n given to the terminals in \mathcal{A}^c only for decoding.

- 1. $H(G) < C_{g,\mathcal{A}}(\mathcal{M}) = H(X_{\mathcal{M}}) R_{g,\mathcal{A}}(\mathcal{M})$ $\Leftrightarrow H(X_{\mathcal{M}} \mid G) > R_{g,\mathcal{A}}(\mathcal{M}).$
- 2. Generate random mappings $F_i = F_i(X_i^n)$ of rate R_i : $\sum_i R_i \approx R_{g,\mathcal{A}}(\mathcal{M})$ with $(R_1,...,R_m)$ s.t.

- it enables omniscience at \mathcal{M} with side information G^n given to the terminals in \mathcal{A}^c only for decoding.

3. Observe:
$$I(F_{\mathcal{M}} \wedge G^n) \leq \sum_{i}^{m} I(F_i \wedge G^n, F_{\mathcal{M} \setminus \{i\}}).$$

- 1. $H(G) < C_{g,\mathcal{A}}(\mathcal{M}) = H(X_{\mathcal{M}}) R_{g,\mathcal{A}}(\mathcal{M})$ $\Leftrightarrow H(X_{\mathcal{M}} \mid G) > R_{g,\mathcal{A}}(\mathcal{M}).$
- 2. Generate random mappings $F_i = F_i(X_i^n)$ of rate R_i : $\sum_i R_i \approx R_{g,\mathcal{A}}(\mathcal{M})$ with $(R_1,...,R_m)$ s.t.

- it enables omniscience at \mathcal{M} with side information G^n given to the terminals in \mathcal{A}^c only for decoding.

3. Observe:
$$I(F_{\mathcal{M}} \wedge G^n) \leq \sum_{i=1}^{m} I(F_i \wedge G^n, F_{\mathcal{M} \setminus \{i\}}).$$

 To prove: With high probability I (F_i ∧ Gⁿ, F_{M\{i}}) ≈ 0, for each i.

Independence Properties of Random Mappings The Balanced Coloring Lemma

- ► To prove: With high probability I (F_i ∧ Gⁿ, F_{M\{i}}) ≈ 0, for each i.
- Shall show:

For almost all (\mathbf{y}, \mathbf{z}) :

$$F_i \mid \{G^n = \mathbf{y}, F_{\mathcal{M} \setminus \{i\}} = \mathbf{z}\} \approx \mathsf{uniform}.$$

- Family of distributions on $X_i^n : \{P_{X_i^n | \{G^n = \mathbf{y}, F_{\mathcal{M} \setminus \{i\}} = \mathbf{z}}\}.$
- Seek conditions for random mappings to be uniformly distributed
 w.r.t. a given family of distributions.

Independence Properties of Random Mappings The Balanced Coloring Lemma

 Balanced Coloring Lemma: [R. Ahlswede-I. Csiszár, '98], [I. Csiszár-P.N., '04]

Given a family of distributions with probabilities uniformly bounded above,

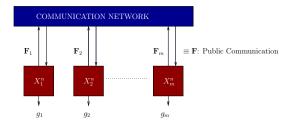
 $\Pr(\text{random coloring} \approx \text{uniform, w.r.t. all pmfs in the family}) \geq q$,

where \boldsymbol{q} depends on the size of the family, the uniform bound and the rate of coloring.

▶ For the case at hand: a slightly generalized version is applied.

- q = q(n) grows to 1 super-exponentially in n.

Secure Computability of Multiple Functions



Secrecy Condition: $I(\mathbf{F} \wedge G_1^n, ..., G_m^n) \approx 0.$

Which functions $g_1, ..., g_m$ are securely computable?

Omniscience is not allowed in general

• For
$$m = 2$$
: $X_1 \perp \perp X_2$ $g_i(x_1, x_2) = x_i$.