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Set of nodes: M = {1, ..., m}

! Observations of the ith node: Xn
i = (Xi1, ..., Xin)

! Denote by XMt the correlated rvs (X1t, ..., Xmt)

! XM1, ..., XMn are finite, discrete valued, i.i.d. rvs

- with known probability distribution.
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Available Nodes: A0 = M
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Nodes Remaining: A1 = {1, 2, 3, 4, 5, 6, 7}

Communication in round j depends on:
local observations and the communication in the previous rounds.
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Round 2: F2

Nodes Remaining: A2 = {2, 3, 4, 6, 7}

Communication in round j depends on:
local observations and the communication in the previous rounds.
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Communication in round j depends on:
local observations and the communication in the previous rounds.
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Round r: Fr

Nodes Remaining: Ar−1 = {2, 4, 6} = Ar

Communication in round j depends on:
local observations and the communication in the previous rounds.

Assumption: Ar = Ar−1
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Communication in round j depends on:
local observations and the communication in the previous rounds.

Assumption: Ar = Ar−1

The overall communication depends on Ar = Ar−1 ⊆ ... ⊆ A1

- F denotes the overall communication.
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K constitutes a secret key if:

1. Recoverability: Pr (Ki = K, i ∈ Ar) ≈ 1

2. Security: I(K ∧ F) ≈ 0

The rate of the SK: 1

n
H(K)
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Definition (Achievable (r, t)-fault-tolerant SK rate)

R ≥ 0 is an achievable (r, t)-fault-tolerant SK rate if there is an r-rounds
adaptive protocol that generates an SK of rate greater than R whenever
not more than t nodes drop out.
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K constitutes a perfect secret key if:

1. Perfect Recoverability: Pr (Ki = K, i ∈ Ar) = 1

2. Perfect Security: I(K ∧ F) = 0

The rate of the SK: 1

n
H(K)
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Definition (Achievable (r, t)-fault-tolerant perfect SK rate)

R ≥ 0 is an achievable (r, t)-fault-tolerant perfect SK rate if there is an
r-rounds adaptive protocol that generates a perfect SK of rate greater
than R whenever not more than t nodes drop out.
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Fault-Tolerant Secret Key Capacity

(r, t)-fault-tolerant SK capacity Cr,t(M):

Supremum of all achievable (r, t)-fault-tolerant rates.

(r, t)-fault-tolerant perfect SK capacity Cr,t
0 (M):

Supremum of all achievable (r, t)-fault-tolerant perfect SK rates.

Lemma

For r ≥ 1,
C1,t

0 (M) ≤ Cr,t(M) ≤ Cr+1,t(M).
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An Upper Bound on Fault-Tolerant SK Capacity

Theorem (Csiszár-Narayan 2004)

The secret key capacity (for t=0) is given by

C(M) = H (XM)−min (R1 +R2 + ...+Rm) ,

where the min is taken over (R1, ..., Rm) that satisfy:

∑

i∈B

Ri ≥ H
(

XB | XM\B

)

, B ! M.

min value above is the minimum rate of communication for omniscience.

Lemma (Upper Bound on Cr,t(M))

C1,t
0 (M) ≤ Cr,t(M) ≤ Cr+1,t(M) ≤ min

A⊆M
|A|≥m−t

C(A), r ≥ 1.

Proof Idea: Consider the sequence of sets A1 = ... = Ar−1 = Ar = A.
13 / 29



Formulation

An Upper Bound

Symmetric
Observations

Exchangeablity

PIN Model

Monotonicity of SK Capacity

Theorem (Chan-Zheng 2010)

C(M) = min
P={C1,...,Ck}

1
k
D (XM||XC1 .XC2 ...XCk

) ,

where the minimization is over all partitions P of M.

Lemma (Monotonicity of C(M))

C(M) ≥ min
A⊆M

|A|=m−1

C(A).

Lemma (Upper Bound on Cr,t(M))

C1,t
0 (M) ≤ Cr,t(M) ≤ Cr+1,t(M) ≤ min

A⊆M
|A|=m−t

C(A), r ≥ 1.
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Is this Upper Bound Tight??

Lemma (Upper Bound on Cr,t(M))

C1,t
0 (M) ≤ Cr,t(M) ≤ Cr+1,t(M) ≤ min

A⊆M
|A|=m−t

C(A), r ≥ 1.
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Is this Upper Bound Tight??

Lemma (Upper Bound on Cr,t(M))

C1,t
0 (M) ≤ Cr,t(M) ≤ Cr+1,t(M) ≤ min

A⊆M
|A|=m−t

C(A), r ≥ 1.

Yes.
When the observations of the nodes are symmetric
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Exchangeable Random Variables

PX1,...,Xm = PXσ(1),...,Xσ(m) , for all permutations σ of {1, ..., m}

For disjoint sets B1, B2: H (XB1 |XB2) depends only on |B1|, |B2|

Define: g(i|j) = H (X1, ..., Xi|Xi+1, ..., Xi+j)

Lemma (Minimum Rate of Communication for Omniscience)

For

αm =
g(m− 1|1)

m− 1
,

(αm, ...,αm) is an optimal rate-vector for omniscience, i.e., RCO = mαm.

Lemma

αm is nonincreasing in m.

Proof: Uses properties g(i|j) inherited from H(·).
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Optimal Fault-Tolerant SK Generation Protocol

2-rounds adaptive protocol:

1. Each node communicates using random mapping of rate αm.
A1 = set of nodes that communicate in round 1, |A1| = k

2. Nodes in A1 send further communication of rate αk − αm

- if A2 (= A1 the protocol fails.

Observation: Two random mappings of rates R1 and R2 can serve as a
single random mapping of rate R1 +R2 in (multiterminal) Slepian-Wolf
coding.

Performance of the protocol:

- Nodes in A2 = A1 recover Xn
A1

- Rate of communication = kαk

- Nodes in A2 generate SK of rate C(A2)
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Optimal Fault-Tolerant SK Generation Protocol

Theorem (Fault-Tolerant SK Capacity)

For exchangeable rvs, for r ≥ 2,

Cr,t(M) = min
A⊆M

|A|=m−t

C(A) = g(m− t|0)−
(m− t)g(m− t− 1|1)

m− t− 1
.
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The Pairwise-Independent-Network Model

Graph G = (V, E)
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Ye-Reznik 2007, Nitinawarat et.al. 2010

Bij : unbiased bit corresponding to the edge eij

Random Variables {Bij : i, j ∈ M} are mutually independent.

! Xi = {Bij corresponding to edges eij incident on i}
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The Pairwise-Independent-Network Model

Assumption: The graph G is complete

Symmetry: For B1 ∩ B2 = ∅, H (XB1 |XB2 ) depends only on |B1|, |B2|.

C1,t
0 (M) ≤ C2,t(M) = g(m− t|0)−

(m− t)g(m− t− 1|1)
m− t− 1

=
m− t

2
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Generating 1-bit Fault-Tolerant SK

Assume that G is a (t+ 1)-connected, spanning graph.

! Noninteractive protocol to generate 1-bit of fault-tolerant SK:

i
{

Bij ⊕ Bij′ : eij, eij′ ∈ E
}

ei1 ei2

eim

For A ⊆ M with |A| ≥ m− t: let eA be an edge between nodes in A.

Claim: H (BeA | (FA, Xi)) = 0 and I (BeA ∧ FA) = 0, i ∈ A.

BeA constitutes a 1-bit SK for A
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Generating 1-bit Fault-Tolerant SK

Assume that G is a (t+ 1)-connected, spanning graph.

! Noninteractive protocol to generate 1-bit of fault-tolerant SK:

i
{

Bij ⊕ Bij′ : eij, eij′ ∈ E
}

ei1 ei2

eim

This noninteractive protocol generates 1-bit SK for each spanning tree.

Nitinawarat et.al. use the interactive protocol of Csiszár-Narayan.
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Optimal Fault-Tolerant SK Generation Protocol

Assumption: The graph G is complete

Noninteractive protocol above gives 1-bit of SK for each spanning tree

Find a “fault-tolerant” spanning tree packing

- sufficiently many spanning trees must remain when nodes drop out

! Consider n = 2: Any two nodes share 2 independent bits

! Can find a spanning tree packing such that:
- any subset A contains |A| spanning trees

Thus, a subset of size ≥ m− t can pack m− t spanning trees

Secret key rate attained: m−t

2
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2

1

1

2 3

4m

2 3

4

m

1

3

4m

2

Theorem

For the PIN model corresponding to a complete graph,

C1,t
0 (M) = Cr,t(M) =

m− t

2
, r ≥ 2.
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An Alternative Protocol

A protocol to generate +m
2
, − t bits of SK for n = 1:

First consider m even.

Tree remains connected if a leaf node drops out.

! Fix a matching in G.
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An Alternative Protocol

A protocol to generate +m
2
, − t bits of SK for n = 1:

First consider m even.

Tree remains connected if a leaf node drops out.

! Fix a matching in G.

! There is a spanning tree corresponding to each edge in the matching.
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Future Directions

! This work is a first step towards the larger goal of
information-theoretic SK agreement for dynamic groups.

! Incorporate rejoining of terminals that drop out.

! What if the central switch has additional side information?
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