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Lossless Source Coding



The lossless source coding problem

Encoder Decoderl bitsX X̂

Let Lε(X) be the minimum l such that there exists T ⊆ X

1. |T | ≤ 2l

2. Pr (X ∈ T ) ≥ 1− ε

Characterize Lε(X)
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An upper bound

[Han-Verdú ’93] Suppose that there exists a λ > 0 such that

Pr (X ∈ {x : − log P (x) ≤ λ}) ≥ 1− ε.

Then,
Lε(X) ≤ λ.

A large prob. upper bound for h(X) = − log P (X)

is an upper bound for Lε(X)
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Shannon’s source coding theorem: Upper bound

Using Markov’s inequality:

Pr (h(X) ≤ E[h(X)]/ε) ≥ 1− ε.

The quantity H(X) = E[h(X)] is the Shannon entropy of X.

Thus,
Lε(X) ≤ H(X)/ε.

[Shannon 1948] For Xn = (X1, ..., Xn) consisting of n i.i.d. samples,

h(Xn) =
n∑
i=1

h(Xi).

Thus, by the law of large numbers

Lε(X
n) ≤ nH(X1) +O(

√
n).
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A Rényi entropy based upper bound

Rényi entropy of order 0 ≤ α 6= 1:

Hα(X) =
1

1− α
log
∑
x∈X

P(x)α.

Consider the set

Tα =

{
x ∈ X : h(x) ≤ Hα(X) +

1

1− α
log

1

ε

}
, 0 ≤ α < 1.
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{
x ∈ X : h(x) ≤ Hα(X) +

1

1− α
log

1

ε

}
, 0 ≤ α < 1.

Then,
Pr (X ∈ Tα) ≥ 1− ε.

We have shown: For every 0 ≤ α < 1

Lε(X) ≤ Hα(X) +
1

1− α
log

1

ε
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A lower bound

[Han-Verdú ’93]

Suppose that there exists a λ > 0 such that

Pr (X ∈ {x : − log P (x) ≥ λ}) ≥ 1− δ.

Then,

Lε(X) ≥ λ− log
1

1− ε− δ
.

A large prob. lower bound for h(X) = − log P (X)

is a lower bound for Lε(X)

6



A lower bound

[Han-Verdú ’93]
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Shannon’s source coding theorem: Lower bound

Using Chebyshev’s inequality:

Pr

(
h(X) ≥ E[h(X)]−

√
V

ε

)
≥ 1− ε,

where V = V(h(X)). Thus,

Lε(X) ≥ H(X)−
√
V

ε
− log

1

1− ε− δ
.

[Shannon 1948] For Xn = (X1, ..., Xn) consisting of n i.i.d. samples,
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Shannon’s source coding theorem: Lower bound

Using Chebyshev’s inequality:

Pr

(
h(X) ≥ E[h(X)]−

√
V

ε

)
≥ 1− ε,

where V = V(h(X)). Thus,

Lε(X) ≥ H(X)−
√
V

ε
− log

1

1− ε− δ
.

[Shannon 1948] For Xn = (X1, ..., Xn) consisting of n i.i.d. samples,

lim
n→∞

Lε(X
n)

n
= H(X).
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A Rényi entropy based lower bound

Consider the set

Tβ =

{
x ∈ X : h(x) ≥ Hβ(X)− 1

β − 1
log

1

δ

}
, 1 < β.

Then,

1 =
∑
x∈Tβ

P(x) +
∑
x∈T cβ

P(x)

≤ Pr (X ∈ Tβ) +
∑
x∈T cβ

P(x)β · P(x)1−β

< Pr (X ∈ Tβ) + δ2−(1−β)Hβ(X)
∑
x∈T cβ

P(x)β

< Pr (X ∈ Tβ) + δ.
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A new source coding theorem

Theorem 1. For every ε ∈ (0, 1) and 0 ≤ α < 1

Lε(X) ≤ Hα(X) +
1

1− α
log

1

ε
.

Conversely, for every δ < 1− ε and 1 < β

Lε(X) ≥ Hβ(X)− 1

β − 1
log

1

1− ε− δ
.
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The strong converse property

For a sequence X(n), define

R∗ε = lim sup
n

Lε(X
(n))

n
,

and
R∗ = lim

ε→0
R∗ε .

The sequence is said to satisfy the strong converse property if

R∗ε = R∗, for all ε ∈ (0, 1).

We saw earlier that for X(n) = Xn i.i.d. PX ,

R∗ε = R∗ = H(X).

Thus, i.i.d. source satisfies the strong converse property.

What other sources satisfy the strong converse property?
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A sufficient condition for strong converse

Theorem 2. Consider a source sequence X(n) such that

lim sup
n

1

n
V
(
h
(
X(n)

))
<∞.

Then, X(n) satisfies the strong converse property.

Application: For Xn i.i.d. PX ,

V(h (Xn)) = nV(h(X1)).

Thus, we recover the strong converse property for the i.i.d. case.
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A sufficient condition for strong converse

Proof: Using our coding theorem, for every 0 ≤ α < 1 and 1 < β

lim sup
n

1

n
Hα

(
X(n)

)
≤ R∗ε ≤ lim sup

n

1

n
Hβ

(
X(n)

)

Note that
lim
α↑1

Hα(X) = lim
β↓1

Hβ(X) = H(X).

Our proof will be complete if we can exchange the limits in order and n.

1. Hα(X) is nonincreasing in α.

2. limα→1
d
dαHα(X) = V(h(X)).

Thus, under the condition of the theorem,

the convergence of Hα(X
(n)) to H(X(n)) is uniform in n.

So, we can exchange the limits indeed.
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A sufficient condition for strong converse

Theorem 2. Consider a source sequence X(n) such that

lim sup
n

1

n
V
(
h
(
X(n)

))
<∞.

Then, X(n) satisfies the strong converse property.

In fact,

R∗ε = lim
n→∞

H
(
X(n)

)
n

, ∀ε ∈ (0, 1).
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Other Coding Theorems



What do the following coding problems have in common?

I Channel coding
I Optimal exponent for missed detection probability
I Lossy source coding
I Multiterminal lossless source coding

The optimal lengths are determined by

large prob. bounds on log P(X)
Q(X) for appropriate P and Q and X ∼ P.
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Rényi divergence and typical sets

Rényi divergence of order 0 ≤ α 6= 1:

Dα(P,Q) =
1

α− 1
log
∑
x∈X

P(x)αQ(x)1−α.

For every 0 ≤ α < 1, the set

Tα =

{
x ∈ X : log

P(x)

Q(x)
≥ Dα(P,Q)− 1

1− α
log

1

ε

}
satisfies Pr (X ∈ Tα) ≥ 1− ε.

For every 1 < β, the set

Tβ =

{
x ∈ X : log

P(x)

Q(x)
≤ Dβ(P,Q) +

1

β − 1
log

1

ε

}
satisfies Pr (X ∈ Tβ) ≥ 1− ε.
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What could we do with our Rényi typical sets?

Could obtain asymptotically tight single-shot bounds for
I length of channel codes

I exponent of missed detection error in binary hypothesis testing

I length of multiterminal lossless source codes
I length of lossy source codes

For all but the last problem,
we could recover the strong converse property for the i.i.d. case.
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What would we like to do with our Rényi typical sets?

I A sufficient condition for strong converse to hold for channel coding;

I A suff. condition for strong converse to hold for lossy source coding;

I Studying the implications for source and channels with memory;

I Application to multiterminal coding theorems
- similar to the program started by Oohama.
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