
Converses for Information Theoretic Cryptography

Himanshu Tyagi

Joint work with Shun Watanabe



Marriage of Cryptography and Computation

Behind every successful secure transmission

there is a (computational) cryptography primitive

Matchmakers of early 80s
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Limitations of Computational Cryptography

Computationally expensive

Not feasible to put a cryptographic primitive on every small device

No “formal” proof of security

Proof is in the eating of the pudding (which we ordered online)
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Limitations of Computational Cryptography

Computationally expensive

Not feasible to put a cryptographic primitive on every small device

No “formal” proof of security

Proof is in the eating of the pudding (which we ordered online)

Kilian 1988, “Founding cryptography on oblivious transfer"
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Information Theoretic Cryptography

... is provably secure and efficiently implementable

provided we have some shared correlative randomness:

e.g. noisy channels, correlated randomness, quantum observations

Inherent randomness in
the wireless medium

Randomness in physical data
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Concerns for Information Theoretic Cryptography

◮ Engineering problem:

- How does one make correlated randomness available?

physically unclonable functions, biometrics,
secret keys from channel fades, quantum key distribution, ...

- How can we model eavesdropper’s side information?

timing attack, side channel attack, wormhole attack, ...

◮ Analysis often relies on simplifying assumptions on statistics:

- Universal protocols?

constructions based on hash families and error correcting codes

- Nonasymptotic performance?

converses based on reduction arguments
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Outline

1. Secret key generation

◮ Secret keys from correlated observations
◮ Upper bound for secret key length

2. Oblivious transfer

◮ Oblivious transfer via erasure channel
◮ Converse result for oblivious transfer

3. Bit commitment
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Secret Key Agreement



Multiparty Secret Key Agreement

[Maurer 93] [Ahlswede-Csiszár 93] [Csiszár-Narayan 04]

F

KmK2K1

X1 X2 Xm

COMMUNICATION NETWORK

Party i computes Ki(Xi,F) ∈ K; Eavesdropper observes F, Z

K1, ...,Km constitute an (ǫ, δ)-secret key of length logK if

P (K1 = K2 = ... = Km) ≥ 1− ǫ, :Recoverability

1

2
‖PK1FZ − Punif × PFZ‖1 ≤ δ, :Secrecy
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Two-party Secret Key Agreement

Z

K1

Party 2Party 1

X1 X2

K2

F

K constitutes a secret key of length logK if

P (K = K1 = K2) ≥ 1− ǫ, :Recoverability

1

2
‖PKFZ − Punif × PFZ‖1 ≤ δ, :Secrecy

Definition

Sǫ,δ(X1,X2 | Z) , maximum length of a secret key
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Biometric Security as Secret Key Agreement

Public Server

X1

Secure Server

F (X1)

K(X1)
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Biometric Security as Secret Key Agreement

F (X1)

X1

Secure Server

K(X1)

Public Server

X2
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Biometric Security as Secret Key Agreement

Public Server

Secure Server

K(X1)

F (X1)

=?

X2
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Biometric Security as Secret Key Agreement

Public Server

Secure Server

K(X1)

F (X1)

=?

X2

Similar approach can be applied for physically uncloneable functions
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Efficient Secret Key Construction

[Dodis-Ostrovsky-Reyzin-Smith 04]

X1 and X2 are n-length binary vectors with Hamming distance d

1. Error correcting code with minimum distance 2d+ 1

F (X1)
X2ECCX1 X1

2. 2-universal hash family: Multiplication over GF (2n)

X1 K(X1)(X1*R)b
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Alternative Definition of a Secret Key

K1, ...,Km constitute an (ǫ, δ)-secret key of length logK if

P (K1 = K2 = ... = Km)≥ 1− ǫ,

1

2
‖PK1FZ − Punif × PFZ‖1≤ δ

K1, ...,Km constitute an ǫ-secret key of length logK if

1

2
‖PK1K2...KmFZ − Punif,m × PFZ‖1≤ ǫ,

where

Punif,m (k1, ..., km) =
1

|K|
1(k1 = ...km).
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Alternative Definition of a Secret Key

K1, ...,Km constitute an (ǫ, δ)-secret key of length logK if

P (K1 = K2 = ... = Km)≥ 1− ǫ,

1

2
‖PK1FZ − Punif × PFZ‖1≤ δ

K1, ...,Km constitute an ǫ-secret key of length logK if

1

2
‖PK1K2...KmFZ − Punif,m × PFZ‖1≤ ǫ,

where

Punif,m (k1, ..., km) =
1

|K|
1(k1 = ...km).

Lemma

(ǫ, δ)-SK ⇒ (ǫ+ δ)-SK, and conversely, ǫ-SK ⇒ (ǫ, ǫ)-SK.
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Multiparty Secret Key Agreement

F

KmK2K1

X1 X2 Xm

COMMUNICATION NETWORK

K1, ...,Km constitute an ǫ-secret key of length logK if

1

2
‖PK1K2...KmFZ − Punif,m × PFZ‖1 ≤ ǫ.

Definition

Sǫ(X1, ...,Xm | Z) , maximum length of an ǫ-secret key
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Upper bound for Sǫ(X1, ..., Xm | Z)



No Correlation No Secret Key

If X1 and X2 are independent conditioned on Z:

Sǫ(X1,X2|Z) ≈ 0
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No Correlation No Secret Key

If X1 and X2 are independent conditioned on Z:

Sǫ(X1,X2|Z) ≈ 0

If for some partition π = {π1, ..., πk} of {1, ...,m},

Xπ1
, ...,Xπk

are independent conditioned on Z:

Sǫ(X1, ...,Xm|Z) ≈ 0
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No Correlation No Secret Key

If X1 and X2 are independent conditioned on Z:

Sǫ(X1,X2|Z) ≈ 0

If for some partition π = {π1, ..., πk} of {1, ...,m},

Xπ1
, ...,Xπk

are independent conditioned on Z:

Sǫ(X1, ...,Xm|Z) ≈ 0

Bound Sǫ(X1, ...,Xm|Z) in terms of “how far” is PX1,...,XmZ

is from a conditionally independent distribution
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Digression: Binary Hypothesis Testing

Consider the following binary hypothesis testing problem:

H0 : X ∼ P

vs.

H1 : X ∼ Q

Define
βǫ(P,Q) , inf

∑

x∈X

Q(x)T (0|x),

where the inf is over all random tests T : X → {0, 1} s.t.
∑

x∈X

P (x)T (1|x) ≤ ǫ.
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Digression: Binary Hypothesis Testing

Consider the following binary hypothesis testing problem:

H0 : X ∼ P

vs.

H1 : X ∼ Q

Define
βǫ(P,Q) , inf

∑

x∈X

Q(x)T (0|x),

where the inf is over all random tests T : X → {0, 1} s.t.
∑

x∈X

P (x)T (1|x) ≤ ǫ.

Data processing. For every stochastic matrix W : X → Y

βǫ(P,Q) ≤ βǫ(PW,QW )
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Reduction Argument

Given a partition π = {π1, ..., πk} of {1, ...,m}

◮ Let Q(x1, ..., xm|z) =
∏k

i=1
Q(xπi

|z)

For the binary hypothesis testing:

H0 : X1, ...,Xm, Z ∼ P,

H1 : X1, ...,Xm, Z ∼ Q,

consider the degraded observations K1, ...,Km,F, Z.
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Reduction Argument

Given a partition π = {π1, ..., πk} of {1, ...,m}

◮ Let Q(x1, ..., xm|z) =
∏k

i=1
Q(xπi

|z)

For the binary hypothesis testing:

H0 : X1, ...,Xm, Z ∼ P,

H1 : X1, ...,Xm, Z ∼ Q,

consider the degraded observations K1, ...,Km,F, Z.

Let WK1...KmF|X1...XmZ represent the protocol.
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Reduction Argument

Consider the degraded binary hypothesis testing:

H0 : K1, ...,Km,F, Z ∼ PK1...,KmFZ = PW

H1 : K1, ...,Km,F, Z ∼ QK1...,KmFZ = QW

Consider a test with the acceptance region A defined by:

A ,

{

log
Punif,m(K1, ....,Km)

QK1...Km|FZ(K1...Km|F, Z)
≥ λπ

}

where
λπ = (|π| − 1) log |K| − |π| log(1/η)
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Reduction Argument

Consider the degraded binary hypothesis testing:

H0 : K1, ...,Km,F, Z ∼ PK1...,KmFZ = PW

H1 : K1, ...,Km,F, Z ∼ QK1...,KmFZ = QW

Consider a test with the acceptance region A defined by:

A ,

{

log
Punif,m(K1, ....,Km)

QK1...Km|FZ(K1...Km|F, Z)
≥ λπ

}

where
λπ = (|π| − 1) log |K| − |π| log(1/η)

Likelihood ratio test with PK1...Km|FZ replaced by Punif,m

- recall: 1
2
‖PK1K2...KmFZ − Punif,m × PFZ‖1 ≤ ǫ
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Reduction Argument

Missed Detection: QK1...KmFZ(A) ≤ |K|1−|π|η−|π|

False Alarm: PK1...KmFZ(A
c) ≤ ǫ+ η

18



Reduction Argument

Missed Detection: QK1...KmFZ(A) ≤ |K|1−|π|η−|π| - easy

False Alarm: PK1...KmFZ(A
c) ≤ ǫ+ η - requires work

Key steps:

◮ QK1...Km|FZ =
∏k

i=1
QKπi

|FZ

◮ Apply Hölder’s inequality to the product form
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Reduction Argument

Missed Detection: QK1...KmFZ(A) ≤ |K|1−|π|η−|π| - easy

False Alarm: PK1...KmFZ(A
c) ≤ ǫ+ η - requires work

Key steps:

◮ QK1...Km|FZ =
∏k

i=1
QKπi

|FZ

◮ Apply Hölder’s inequality to the product form

Lemma

For every 0 ≤ ǫ < 1 and 0 < η < 1− ǫ,

Sǫ(X1, ...,Xm|Z) ≤
1

|π| − 1
[− log βǫ+η (PW,QW ) + |π| log (1/η)] .
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Reduction Argument

Missed Detection: QK1...KmFZ(A) ≤ |K|1−|π|η−|π| - easy

False Alarm: PK1...KmFZ(A
c) ≤ ǫ+ η - requires work

Key steps:

◮ QK1...Km|FZ =
∏k

i=1
QKπi

|FZ

◮ Apply Hölder’s inequality to the product form

Lemma

For every 0 ≤ ǫ < 1 and 0 < η < 1− ǫ,

Sǫ(X1, ...,Xm|Z) ≤
1

|π| − 1
[− log βǫ+η (PW,QW ) + |π| log (1/η)] .

By data processing: βǫ+η (PW,QW ) ≥ βǫ+η (P,Q)
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Conditional Independence Testing Bound

Theorem

For every 0 ≤ ǫ < 1 and 0 < η < 1− ǫ,

Sǫ(X1, ...,Xm|Z) ≤
1

|π| − 1
[− log βǫ+η (P,Q) + |π| log (1/η)] ,

where

Q(x1, ..., xm|z) =

k
∏

i=1

Q(xπi
|z).

For two parties:

Sǫ(X1,X2|Z) ≤ − log βǫ+η

(

PX1X2Z ,PX1|ZPX2|ZPZ

)

+ 2 log (1/η)
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Conditional Independence Testing Bound

Theorem

For every 0 ≤ ǫ < 1 and 0 < η < 1− ǫ,

Sǫ(X1, ...,Xm|Z) ≤
1

|π| − 1
[− log βǫ+η (P,Q) + |π| log (1/η)] ,

where

Q(x1, ..., xm|z) =

k
∏

i=1

Q(xπi
|z).

For two parties:

Sǫ(X1,X2|Z) ≤ − log βǫ+η

(

PX1X2Z ,PX1|ZPX2|ZPZ

)

+ 2 log (1/η)

Connections to meta-converse of Polyanskiy, Poor, and Vérdu
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Oblivious Transfer



Oblivious Transfer: Basic Building Block of Cryptography

Kilian 88:

Every secure function computation can be accomplished using OT

Rabin 81:
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Oblivious Transfer: Basic Building Block of Cryptography

Kilian 88:

Every secure function computation can be accomplished using OT

Rabin 81:

Example: Any noisy communication channel!
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One-of-Two Oblivious Transfer

[Even, Goldreich, Lempel 85]

Party 1

KB

BK0, K1

F
Party 2

An instance of Private Information Retrieval

◮ K0, K1 are binary strings of length l

B is a bit

B must remain “concealed” from Party 1

KB must remain “concealed” from Party 2
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Information Theoretically Secure OT

Party 1

KB

BK0, K1

F
Party 2

◮ K0, K1 are random binary strings of length l

B is a random bit

Observations of party 1 are almost independent of B

Observations of party 2 are almost independent of KB

23



Information Theoretically Secure OT

Party 1

KB

BK0, K1

F
Party 2

◮ K0, K1 are random binary strings of length l

B is a random bit

Observations of party 1 are almost independent of B

Observations of party 2 are almost independent of KB

Cannot be done without additional resources!
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Making IT Secure OT Possible

Additional Resources:

1. Noisy channels: [Crépeau-Kilian 88], [Crépeau 97], ...

X2

0

1

0

1

Party 2

DMC W used n times

Party 1

X1

Party 1

X1

0

1

0

1

e X2

Party 2

2. Correlated randomness: ..., [Nascimento-Winter 08]

Party 1 Party 2

Xn
1

n independent samples from PX1X2

Xn
2
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Information Theoretically Secure OT

X2

K̂ ≈ KB

BK0, K1

F
X1

◮ Reliability: P
(

K̂ 6= KB

)

≤ ǫ

◮ Security 1:
1

2
‖PBK0K1X1F

− PB × PK0K1X1F
‖
1
≤ δ1

◮ Security 2:
1

2

∥

∥PK
B
BX2F

− PK
B
× PBX2F

∥

∥

1
≤ δ2
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Information Theoretically Secure OT

X2

K̂ ≈ KB

BK0, K1

F
X1

◮ Reliability: P
(

K̂ 6= KB

)

≤ ǫ

◮ Security 1:
1

2
‖PBK0K1X1F

− PB × PK0K1X1F
‖
1
≤ δ1

◮ Security 2:
1

2

∥

∥PK
B
BX2F

− PK
B
× PBX2F

∥

∥

1
≤ δ2

How large can the length l of OT be?
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Oblivious Transfer Using Erasure Channel

[Crépeau 97, Nascimento-Winter 08]

Combinatorial erasure channel:

Erases half of the transmitted bits randomly

{B0, φ}
Channel
Erasure

BK0, K1

{B0, B1}

{φ,B1}

One-bit Oblivious Transfer
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Oblivious Transfer Using Erasure Channel

[Crépeau 97, Nascimento-Winter 08]

Combinatorial erasure channel:

Erases half of the transmitted bits randomly

F = I ⊕ B

Channel
Erasure

B

{B0, B1}

{φ,B1}

{B0, φ}

K0, K1

One-bit Oblivious Transfer
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Oblivious Transfer Using Erasure Channel

[Crépeau 97, Nascimento-Winter 08]

Combinatorial erasure channel:

Erases half of the transmitted bits randomly

K1 ⊕ BF

Channel
Erasure

B

{B0, B1}

{φ,B1}

{B0, φ}

K0, K1

K0 ⊕ BF

One-bit Oblivious Transfer
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Converse for oblivious transfer



Reduction of SK Agreement to OT

We bound the length of OT by reducing it to SK

Reduction 1:

KB

X1 X2

F

KB

Reduction 2:

X1, X2X1

F

KB KB

Eavesdropper observes X2
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Reduction 1 of SK Agreement to OT

BX1 X2

F

KB KB

B

K0

K1

(ǫ, δ1, δ2)-OT of length l yields (ǫ+ δ1 + 2δ2)-OT of length l

Using the conditional independence testing bound:

l ≤ Sǫ+δ1+2δ2(X1,X2) <∼ − log βǫ+δ1+2δ2 (PX1X2
,PX1

PX2
)
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Reduction 2 of SK Agreement to OT

X1, X2X1

F

B

K0

K1

B

KB KB

X2

1. Party 2 simulates X̃2 pretending that it observed B

2. It estimates K̂ from (X̃2, B) instead of (X2, B)

(ǫ, δ1, δ2)-OT of length l yields (ǫ+ δ1 + 4δ2)-OT of length l

l ≤ Sǫ+δ1+4δ2(X1, (X1,X2)|X2)

<
∼ − log βǫ+δ1+4δ2

(

PX1X1X2
,PX1|X2

PX1|X2
PX2

)
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Bounds on the Efficiency of OT

Theorem

For an (ǫ, δ1, δ2)-OT of length l

l<∼ − log βǫ+δ1+2δ2 (PX1X2
,PX1

PX2
)

l<∼ − log βǫ+δ1+4δ2

(

PX1X1X2
,PX1|X2

PX1|X2
PX2

)

OT Capacity (for IID observations):

Maximum rate (l/n) of OT length (with δ1n, δ2n → 0)

Cǫ(X1,X2) ≤ min{I(X1 ∧X2),H(X1 | X2)}

“Strong” version of the Ahlswede-Csiszár upper bound
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Bit Commitment



Chess Players’ Dilemma

[Blum 82], ..., [Nascimento-Winters-Imai 03]

If I make the last move, you will get the whole night to think!
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Chess Players’ Dilemma

[Blum 82], ..., [Nascimento-Winters-Imai 03]

If I make the last move, you will get the whole night to think!

Zero-knowledge proofs, authentication, verifiable secret sharing, ...
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Bit Commitment

[Blum 82], ..., [Nascimento-Winters-Imai 03]

Commit Phase

F
Party 2Party 1

K

Party 1 has an l-bit message K

K must remain concealed fom party 2
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Bit Commitment

[Blum 82], ..., [Nascimento-Winters-Imai 03]

Reveal Phase

K

Party 2Party 1

K F

?

K must be reliably recoverable

Party 1 should not be able to cheat
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Information Theoretic Bit Commitment

FK

X1 X2

Commit

K

X1 X2

Reveal

?
K,X1

F

Party 2 constructs a test T for the hypothesis: “Secret is k"

Recovery: P (T (K,X1,X2,F) = 1) ≤ ǫ

Security:
1

2
‖PKX2F

− PK × PX2F
‖
1
≤ δ1

Binding: P (T (K ′,X ′
1,X2,F) = 0,K ′ 6= K) ≤ δ2

35



Converse for bit commitment



Bound on the Efficiency of BC

[Imai-Morozov-Nascimento-Winter 06]

Reduction of SK generation to OT

X1

F

X2

X1, X2

Theorem

For an (ǫ, δ1, δ2)-BC of length l,

l <∼ − log βǫ+δ1+δ2

(

PX1X1X2
,PX1|X2

PX1|X2
PX2

)
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Bound on the Efficiency of BC

[Imai-Morozov-Nascimento-Winter 06]

Reduction of SK generation to OT

X1

F

X2

X1, X2

Theorem

For an (ǫ, δ1, δ2)-BC of length l,

l <∼ − log βǫ+δ1+δ2

(

PX1X1X2
,PX1|X2

PX1|X2
PX2

)

Example: Constructing BC from n-length OT

l ≤ n+O(log(1− ǫ− δ1 − δ2))
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In Closing ...

Our converse results give us a tool to evaluating the performance

of various information theoretic cryptography primitives

For other implications:

H. Tyagi and S. Watanabe, “A bound for multiparty secret key agreement and

implications for a problem of secure computing,” EUROCRYPT, 2014

H. Tyagi and S. Watanabe, “Converses for secret key agreement and secure

computing,” arXiv:1404.5715, 2014

How close to optimal can we get with efficient schemes?
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