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Abstract
We propose a new algorithm to evaluate fractal dimension 
and lacunarity of images at various box sizes by modifying 
the traditional sliding box counting method using Brownian 
motion expansions, and demonstrate the effectiveness of these 
quantities in image segmentation. In this approach, the mass 
variation (total pixel value) in each scale is used during the 
conventional sliding box approach, and then the power law 
formula is applied to determine both fractal dimension and 
lacunarity for the respective box sizes.  Exploiting the synergy 
between fractal properties, the ratio of lacunarity to fractal 
dimension is used to determine an optimal threshold for edge 
detection in Canny method. The proposed segmentation results 
have been compared to Otsu method for Brodatz, UIUC, Berkeley 
University images, and show improved capabilities.

Keywords
Fractal Dimension, Lacunarity, Mass and Moment, Edge 
detection, Segmentation.

I. Introduction
Approaches to fix an optimal threshold value for image 
segmentation remains a difficult challenge and hence hot 
research topic in image analysis [1,2].  There are dozens of 
methods to select this threshold [3] but the Canny method 
remains the most popular.  This method may be summarized in 
the following steps: (i) convert the image to grayscale; (ii) reduce 
noise using Gauss filter mask; (iii) compute the magnitude and 
angle of gradient; (iv) suppress regions where the gradient is 
below maximum to remove pixels from regions other than edges 
and (v) determine a hysteresis threshold value to eliminate 
regions whose gradient magnitude falls below this threshold. 
The quality of segmentation is decided by the optimal threshold 
determined in the last step and Otsu method proposed in 1979 
is one of the successful approaches to do this automatically [ 
4, 5]. In this paper we compute the threshold exploiting fractal 
properties such as lacunarity and dimension.
Fractal concepts for Image analysis have constantly gained 
importance during the past few decades [6]. Fractal geometry 
has found wide application in various disciplines since the 
term fractal was coined by Mandelbrot [7-12]. This concept 
has provided a theoretical framework to describe and analysis 
several natural phenomena and complex structures through 
properties such as fractal dimension, and lacunarity [13-15].  
Arguably, the most widely used fractal property is the fractal 
dimension.  It characterizes how much space the pattern fills 
[14, 10].  However its application in image analysis is limited 
as most natural images are characterized by different values 
of fractal dimensions for different scales [13, 16-18]. Most 
images are therefore considered multifractal.  Similarly, fractal 
lacunarity is another scale-dependent property of fractals which 
could be used for image analysis. Lacunarity describes how 
the pattern fills the space and allows to quantify the degree of 
translational invariance of the analyzed objects [19].  

Several mathematical methods have been developed to 
compute fractal dimension and Lacunarity of images [20-24]. 
But the most popular used is box counting method due to the 
simplicity in the algorithm, compared to the original Hausdorff 
definition [20]. The main issue with these approaches is 
that these use a least square best fit method to determine 
a unique value for the fractal dimension of a given image.  
While this approach gives a global value and is highly suited 
for analyzing truly fractal (self-similar) geometries [25, 26], it 
is not a convenient measure for textural images. We therefore 
propose a new method of computation of fractal properties 
based on a Brownian motion expansion concept. This approach 
can be used to analyze both fractal and non-fractal patterns. 
As demonstration of its practical application, the proposed 
approach has been used to set the optimal threshold for image 
segmentation. The rest of the paper is organized as follows. In 
the next section, a brief description of approaches to compute 
fractal dimension and lacunarity based on traditional sliding 
box counting method is presented. Section III focuses on the 
proposed method and its demonstration while simulations of 
image analysis using the proposed approach and a discussion 
is provided in section IV.

II.  Theorical development 
Lacunarity is interpreted as a measure of the lack of rotational 
or translational invariance of an image. In a broader sense, 
it is a measure of the degree of non-homogeneity within an 
object, image or pattern. Methods for calculating lacunarity 
were given in general terms by Mandelbrot [11, 12] and these 
were refined later to use the sliding box algorithm. [27-30].  This 
method for determining the lacunarity of a digitized image can 
be described as the follows. 
A small box of size r  is placed over the top left-hand corner 
of an image, and the grayscale values of pixels covered by the 
box are added together to determine the mass of this box rm
. Then this box slides in fixed steps (this value may differ, but 
boxes should overlap) to the right until it reaches the extreme 
right. In this paper we fix step is equal to one which is mostly 
used of an efficient analysis of the image.After this, the original 
box at the left is slid down by a step, and the scan continues 
until the entire image has been covered. With this process 
the mass rm of the box at each position (i, j)   is determined 
for the scale r . Next, the procedure is repeated with a slightly 
bigger box size or scale value. 
Based on the above computation one can get the frequency 
distribution N(r) , which can be converted to a probability 
distribution rQ(m , r) by normalizing with the number of boxes 
N(r) of size r . The lacunarity is determined using the first and 
second moments as [15]:

(2)

2(1)

Z (r)Ë(r)=
Z (r)  

                                                                      (1)

Where  
(1)

rM
Z (r)= mQ(m ,r)∑                                                             (2)
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(2) 2
rM

Z (r)= m Q(m ,r)∑
                                                       (3)

Using the power law distribution of mass for multi-fractals, eq. 
(1) can be written as [8]:
                               (4)
Where, for,   and D(r) being the prefactor, the Euclidean 
dimension and the fractal dimension respectively.  The value 
of  depends on the scale value chosen.  
Several algorithms and theories are available for the 
computation of fractal dimension of images.  Many of these 
are based on the probability distribution of mass given by:

D(r)
rM(r)=k r                                                                            (5)

Where rM(r),k ,r,D(r) represent the total mass, the prefactor of 
the mass, the box size and the Minkowski or mass dimension, 
respectively. In eq. (5), rk depends on the box size chosen.
Furthermore, if M(r) is mass D(r)  is called the mass dimension; 
and if M(r) is moments D(r)  is called the fractal dimension.  
In practice, fractal dimension for images is determined by 
plotting log(M(r)) vs. log(r)  in eq. (5).  Usually the slope m
of this log-log curve is related to the fractal dimension D(r) by 
the expression:

lD(r)=2-s . However this approach is limited by 
the estimation of ls  for this curve.  In practice, we find that ls  
is different for different box sizes, and one uses least square 
approximation to find a unique value for D(r) .  
Similarly, the curve representing lacunarity for various box sizes 
is obtained by log(M(r)) vs. log(r) plot of eqn. (4).  A modified 
unique measure of lacunarity of truly fractal images has been 
obtained in [8].  However, in the proposed approach below, we 
demonstrate the use of scale-dependent fractal dimension 
and lacunarity in estimating the threshold values required in 
image segmentation. 

III. Proposed Method  
Determination of Lacunarity and Dimension for a specified scale 
Let I be a pattern or any image with size height×width pixels, 
and p(i,j) the pixel value in the thi row and the thj column.  In the 
sliding box counting method the expanded image size depends 
on the size of the sliding box (scale). For example at scale r
the total number of boxes required to cover the entire image 
is ( ) ( )height-r+1 × width-r+1  and the total number of pixels 
of the expanded image will be( ) ( ) 2height-r+1 × width-r+1 ×r .In 
this paper the box is a square box of size r×r , and the minimum 
box size r is two the maximum is height-r+1for the height, or  
width-r+1 for the width.
Let   rI  , M(r) be the expanded image and the total mass of the 
original I at scale r . These may be obtained as: 

              (6)

And 

             (7)

Where h=height-r+1,w=width-r+1 , rI (i,j)  is the sub-image 
of mass rm (l,k)   for the position (l,k)  of the box of scale r  

and rm (l,k) is the sum of the total pixel value covered by the 

box calculated using:
j+ri+r

r
l=i k=j

m (l,k)= p(l,k)∑∑                                                          (8)

The total mass of the expanded image 
rI at scale r is the sum 

of sub- image mass as:
h w

r
i= 1 j=1

M(r) = m (i,j)∑∑                                                       (9)

Based on the above concepts, we analyze the mass variation 
between the consecutive boxes within rI  using the fractal 
Brownian motion [31].
As introduced by Mandelbrot in [12] fractal Brownian motion is 
a non-stationary self-affine random process that can describe 
the random fractals in nature. According to the fractal Brownian 
motion, the variation between consecutive boxes inside the 
image for a fixed r can be obtained from 

           (10)

This assumes that the mass distribution of boxes obeys 
the normal power law distribution .  In eq. (10) E(•)
is the expectation, is the variation of mass (∆mr) between 
consecutive sub-images.  To compute ∆kr the following two 
directions should be considered:
The horizontal variation ∆kr,horit is given as,

            (11)

Similarly, the vertical variation ∆kr,vent is 

            (12) 

Finally the total variation is computed as: 
                          (13)

Therefore, for a given scale value, ∆mr= ∆kr.  The total variation 
of the first moments of consecutive boxes (horizontal and 
vertical) is:

         (14)

Where rfm r rm (i,j) = m (i,j) ×Q(m (i,j),r) . From eq. (2) we 
obtain the total first moment as, 

h h
(1)

rfm
i=1 j=1

1Z (r) = m (i,j)
M(r)∑∑                                                    (15)

By substituting eqs. (15) and (14) to eq. (10) we get the fractal 
dimension fmD (r) for a specified scale r  as:

           (16)

Similarly, if rsmm (i,j)  and ∆krsm are the second moment of 
the box (i,j)  and the variation of second moment of two 
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consecutive boxes at scale r ; the total second moment of the 
entire image is.

h w
(2)

rsm
i=1 j=1

1Z (r)= m (i,j)
M(r)∑∑                                           (17)

Since we have assumed that the mass follows the power law 
distribution, the second moment can be written as a of the 
fractal dimension [8]: 
 z(2) (r) = ∆krsm r

D(r)                                                     (18)
The variation of second moment can be calculated as 

          (19)

Using eq. (18) and (19) in eq. (10) we can get an alternate 
expression for the fractal dimension 

smD (r) from the second 
moment as:

            (20)

It may be verified that eq(16) and (20) result in exactly the 
same values for the dimension at a given scale.  
The lacunarity for a specified box size ( )rΛ can be computed 
by applying the first and second moments in eq. (15) and (17) 
to eq. (1).  Alternately, one may use the fractal dimension 
computed by either of the above approaches in eq. (4), to 
obtain the prefactor  as  

                                                      (22)

As in the case of dimension, both these approaches result in 
exactly the same values for scale-dependent lacunarity.  

Fig 1 : Represent the fractal dimension curve for the following 
images: Lena, Pirate Fig0726 images used the proposed 
method.  From fig 1 all the curve of fractal dimension for the 
very small box size are greater than two. So this method allows 
to resolve limitation of box size. From fig 1, we can see the 
method allow getting the fractal dimension at any scale (box 
size) value.  Using the best fit method the fractal dimension 
is 1.4075, 1.4274 and 1.3751 for Lena, Cameraman and Fig. 
0726 image, respectively. These values of fractal dimension 
correspond to the fractal value of the proposed method for the 
maximum box size (255) for Lena and Pirate image and box 
size 230 for Fig. 0726 image. Fig 2 represents the lacunarity 
using the propose method. 

Fig. 1: Scale-dependent dimension of images, Lena, Cameraman 
and Fig0726 computed using the proposed method (eq. 4).

Fig. 2: Lacunaritycurve  Lena, Cameraman  and Fig. 0726 
computed using the proposed method (eq. 21). 

B. Determination of the Segmentation Threshold
Image segmentation is a critical step towards visual pattern 
recognition and image understanding. Many segmentation 
techniques have been motivated by specific application 
purposes. Canny algorithm is used for extracting the contour 
of edges of object by setting appropriate parameters for
and minT  are the Gauss function distribution, the high and low 
threshold values respectively.  The quality of segmentation 
depends on the threshold chosen [32, 33]. High value of 
the maximum threshold reduces the number of edges to be 
detected, leaving only the most obvious edges; a low value 
increases the number of edges produced, and can result in 
a large number of undesirable edge pixels.  High value of low 
threshold reduces the number of edges which are detected. 
Setting the low threshold lower increases the extent of the 
edges, but may produce edge lines where edges are not 
required. 
Otsu [3, 4] algorithm was introduced to improve the quality 
of edges in Canny method by efficiently computing the high 
threshold value. The basic principle of this approach is as 
follows. The gray pixels [0,L]  of the original image is first split 
into two classes [0,t] and [t,L] , where L  is the maximum 
gray pixel value. Then the best threshold maxT is computed 
using the criterion function defined as the variance between 
the two parts, which is expressed as: 

            (21)

Where  are the 
probability of the first and second parts, and their average 
gray value respectively, and vp is probability of the pixel value.  
The maximum variance corresponds to the maximum threshold 

maxT of  eq. (21) and the lower threshold  min maxT =0.5 T×
.  maxT is critical to the quality of efficient detection edges.  
Yuyand Zhou et al, shown that threshold obtained by maximum 
between-class variance method (i.e. Otsu method) is biased 
when the area of object and background differs significantly 
and may lead to failure segmentation. In this paper we proposed 
fractal theory to improve the quality of segmentation.
Based on the discussion above, fractal dimension measures the 
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geometrical complexity of images and lacunarity characterizes 
the spatial heterogeneity of the texture in the image.  We 
therefore define the ratio of Lacunarity to fractal dimension  
to characterize the homogeneity to the fullness of the image 
of each scale. Fig. 3. Represents curves of the coefficient ñ for 
images Lena, Cameraman, and Fig. 0726  images. 

Fig. 3: Coefficient  for images Lena, Cameraman, and Fig 
0726 .

The box size corresponding to the maximum value of the 
coefficient  is taken as the optimal box size (scale value

optr ) for a given image. In the proposed method we compute 
the vertical and horizontal variances (∆kr,horit, ∆kr,vert and for 
this optimal box size.  These are used to find the new upper 
threshold maxT as

         (23)
As in Otsu method, we also have a lower threshold low maxT =0.5 T×
. These values are used to replace the threshold required in the 
step (v) of the Canny method.  Table 1 shows the computation 
of optimal threshold for various images. 

Table 1: Thresholds coefficients and box size 
Optimal Threshold Value
Image Proposed Method Otsu 

Method
Coeffi-
cient   

Box 
size

Optimal 
Threshold

Optimal 
Threshold

Lena.tif 0.89 50.00 50.05 127.00
Cameraman.
tif

1.09 120.00 123.66 89.00

Fig0726.tif 1.01 170.00 104.54 65.00

The above table contain the threshold parameters, with 
which we have get the following simulation results of Lena, 
Cameraman, and fig 0726  images (fig 4, 5, and 6). 

Fig. 4: Lena original image and the segmentation results of 
the two methods 

Fig. 5: Cameraman original image and the segmentation results 
of the two methods

Fig. 6: fig. 0726 original image and the segmentation results 
of the two methods

The performance of edge segmentation of Otsu and fractal 
method are analyzed on above three images.We Use the 
synergy of Fractal dimension and Lacunarity to compute and 
efficient threshold for hysteresis step in Canny edge extraction 
process. The simulation result shown that for a fix Gauss 
function value (in this paper  =0.75d ) fractal theory  can give 
better in segmentation than Otsu Method. For example in fig 
4, 5 and 6 Otsu method fails to eliminated and non-essential 
edge. 

V. Conclusion
The proposed algorithm is akin to gliding box-counting 
algorithms used to estimating the both parameters (lacunarity 
and fractal Dimension). Then exploiting the synergy between 
fractal dimension and lacunarity, the two parameters have been 
used to calculate the optimal threshold for edge segmentation. 
Simulation shown that the propose method comparing to Otsu 
method provide an efficient segmentation results.
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