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Improved Well-Conditioned Model Order Reduction
Method Based on Multilevel Krylov Subspaces
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Abstract— Reduced order models (ROMs) based on the
asymptotic waveform evaluation enable fast and efficient para-
metric analysis of large-scale matrix systems exhibiting nonlinear
dependence on certain desired parameter(s). However, they are
known to be narrowband due to the inherently ill-conditioned
moment generation process. While well-conditioned approaches
exist that enforce the moment-matching criteria by introducing
some correction terms, these are not optimal and are difficult to
parallelize. This letter introduces a well-conditioned multilevel
Krylov model order reduction (WMKMOR) technique which is
accurate over a larger band and faster to set up than existing
approaches. Also, the multiple levels of Krylov subspaces in
WMKMOR are generated independently. The improvement in
ROM bandwidth using this technique is demonstrated for a finite-
element model of an electromagnetic scattering example.

Index Terms— Asymptotic waveform evaluation (AWE),
finite-element method (FEM), model order reduction (MOR),
scattering.

I. INTRODUCTION

MODEL order reduction (MOR) methods enable fast and
efficient parametric analysis of large-scale computa-

tional models. Essentially, MOR techniques involve computing
and projecting onto a lower dimensional subspace capturing
the behavior of the original system in a specified band of
parameter variations. This letter focuses on a class of MOR
techniques based on moment matching known as asymptotic
waveform evaluation (AWE).

AWE and its derivatives have been widely used in the
computational electromagnetics (EMs) [1], [2] and the circuit
simulation communities [3], [4]. However, the traditional AWE
suffers from an inherently ill-conditioned moment genera-
tion process leading to error accumulation and stagnation
as the reduced order model (ROM) size increases [2]. The
well-conditioned AWE (WCAWE) [2], [5] tackled the stagna-
tion by enforcing orthonormalization through some correction
terms in its iterations. However, it lacks on the following
aspects.

1) It is iterative and therefore inherently sequential.
2) It is relatively cumbersome to implement compared to

the regular AWE.
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3) It lacks any Krylov subspace structure.
To address these issues, we introduced the concept of multi-
level Krylov subspaces [6], where the moment vector space
is shown to be embedded inside a multilevel Krylov subspace
structure. In this letter, we refine the idea further and employ
the implicit orthonormalization of the constituent Krylov sub-
spaces (without breaking the moment-matching property) to
construct an ROM that is much more accurate and faster to
set up. Although the idea can be applied to other engineering
domains, for demonstration, we choose an EM scattering
problem modeled using the finite-element method (FEM).

II. WELL-CONDITIONED MULTILEVEL

KRYLOV SUBSPACES

EM FEM models incorporating absorbing boundaries and/or
media with losses lead to matrix systems that depend nonlin-
early on the frequency of excitation. Such systems can be
represented as

A(s)x(s) = b(s) (1)

where A is a complex matrix, x is the solution vector, b is
the excitation vector, and s is the frequency parameter. Such
systems commonly arise from the FEM modeling of EM
scattering problems with ABC boundaries [1].

Expanding (1) in a Taylor series about a center frequency
s0 followed by matching like powers on either side leads to
the iteration

x0 = A−1
0 b0

xn =
n∑

i=1

Pi xn−i + τn, n ≥ 1 (2)

where Pn = −A−1
0 An , τn = A−1

0 bn , xn is the nth derivative
of the solution vector x at s0, and the subscripts denote the
derivative order with respect to s.

The original system (1) is then projected onto the
subspace spanned by these moment vectors, i.e.,Vn =
span [x0, x1, . . . , xn−1], leading to the ROM

Ãx̃ = b̃ (3)

where Ã = VH
n AVn and b̃ = VH

n b.
Equation (3) can be solved quickly and efficiently to find x̃,

and the approximate solution to the full system (1) recon-
structed as xROM = Vn x̃. However, the process in (2) is
ill-conditioned as it suffers from round-off errors. WCAWE
attempts to construct a well-conditioned basis for Vn using
some correction terms. However, WCAWE is cumbersome to
implement and lacks any Krylov structure. Another technique,
SAPOR [7], uses the second-order Krylov subspace but is
based on linearization and limited to the second-order systems
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with excitation vector depending linearly on the frequency.
We now introduce a multilevel Krylov subspace structure
that is simple, parallelizable, and applicable to systems and
excitations with arbitrary nonlinear dependence on frequency.

Rearranging (2) and introducing some notations, we get

x0 = f0

x1 = f1 + τ1

x2 = f2 + P1t1 + τ2
...

xn = fn +
n−1∑

i=1

Pi tn−i + τn (4)

where

f0 = A−1
0 b0,

fn =
n∑

i=1

Pi fn−i , n ≥ 1

t1 = τ1

tn−1 =
n−2∑

i=1

Pi tn−i−1 + τn−1, n ≥ 3 (5)

The excitation derivatives τi can have significantly larger
magnitudes than the other summands in (4). This results in
significant round-off errors in xi as i increases. To minimize
these errors, we propose to isolate the influence of each τi by
letting it to generate its own Krylov subspace. If we start with
the following notation:

X n = [x0, x1, . . . , xn]
K0

n = [f0, f1, . . . , fn]
W1 = [τ1]
W2 = [P1t1 + τ2]

...

Wn =
[

n−1∑

i=1

Pi tn−i + τn

]
(6)

then (4) implies that

Xn ⊂ K0
n + T 1

n (7)

where T 1
n = ∑n

i=1 Wi and the superscripts denote the space
id (or level). An nth second-order Krylov subspace is defined
as [8]

Kn(A, B; v) = span {r0, r1, r2, . . . , rn−1} (8)

where

r0 = v, r1 = Ar0

r j = Ar j−1 + Br j−2 for j ≥ 2 (9)

for square matrices A and B and the seed vector v. Simi-
larly, we define K0

n = Kn+1(P1, P2, . . . , Pp; f0) in (6) as an
(n + 1)th dimensional pth-order Krylov subspace seeded by
the vector f0, where p is the maximum order of derivative
possible for matrix A in (1). Clearly, the iterates of K0

n are
unaffected by ti and τi . Thus, from (7), the AWE space Xn
is embedded inside a bigger space formed by augmenting the
generalized Krylov subspace K0

n with T 1
n . Kumar et al. [9]

had demonstrated that this augmentation results in an ROM

Algorithm 1 The Well-Conditioned MKMOR

for id = 0, 1, 2, . . . , (b − 1) do
v̂id

1 = A−1
0 bid

Uid[1,1] = ∥∥v̂id
1

∥∥
vid

1 = v̂id
1 Uid,−1

[1,1]
for n = 2, 3, . . . , (order − id)do

v̂id
n = P1vid

n−1 −
min(a1,n−1)∑

m=2
PmVid

n−mPU2 (n, m) en−m

for α = 1, 2, . . . , n − 1do
Uid[α,n] = vid,∗

α v̂id
n

v̂id
n = v̂id

n − Uid[α,n]vid
α

endfor
Uid[n,n] = ∥∥v̂id

n

∥∥
vid

n = v̂id
n Uid,−1

[n,n]
endfor

endfor
WC AW E

(
T b

order

)

with enhanced accuracy. This can be attributed to the reduced
round-off errors due to the separate and independent genera-
tion of the Krylov and the augmenting subspaces. To extend
this idea further, note that T 1

n has the same structure as (2)
and has dimension one less than that of Xn . This makes it a
candidate for further splitting. Therefore, (7) implies that

Xn ⊂ K0
n + (

K1
n + T 2

n

)
(10)

where K1
n is an nth dimensional pth-order Krylov subspace

seeded by the vector τ1. Note that space-id (superscript) 1 in
T 1

n corresponds to that in K1
n . Continuing with this approach,

if b (≤ n) is the maximum number of derivatives of the b
vector to incorporate, we observe that

Xn ⊂ S = K0
n + (

K1
n + (

K2
n + . . .

(
Kb−1

n + T b
n

)))

=
b−1∑

i=0

Ki
n + T b

n (11)

where Ki
n is an (n − i + 1)th dimensional pth-order Krylov

subspace generated by the seed vector τi . If b = n, then
Kn

n = T n
n = [τn] and S = ∑n

i=0 Ki
n . Finally, each Ki

n
can be orthonormalized using WCAWE by a thread i in a
chosen parallelization setting. We name this procedure as
well-conditioned multilevel Krylov MOR (WMKMOR) and
are shown in Algorithm 1.

The symbol eq represents the vector of zeros
except in the position q where the value is 1, and
PUw(n, m) = ∏m

t=wU−1
[t :n−m+t−1,t :n−m+t−1] are the correction

terms with w = 1or 2, as described in [2] and [5].

III. NUMERICAL EXAMPLE

To demonstrate the improvement in accuracy achieved using
WMKMOR, we choose as an example a patch buried in a
dielectric-filled cavity recessed in a perfect electric conduc-
tor (PEC) ground plane [10]. The full FEM model in (1) is
based on the total field formulation, first-order ABC and has
80 138 degrees of freedom. The frequency band of interest
is 4–6 GHz with the expansion point for the ROM chosen at
the center. We define a residual r = (AVn x̃ − b) and specify
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Fig. 1. Relative errors for ROMs based on WMKMOR, enlarged WCAWE
with the same size (136) as WMKMOR, WCAWE, and AWE all using
15 excitation vector derivatives. Inset: top view of the geometry. The patch
(3.66×2.8 cm2) is buried halfway in a dielectric-filled cavity (7.32×5.2 cm2)
0.316 cm deep recessed in the PEC ground. A plane wave is incident at
φinc = 45° and θ inc = 60°. The dielectric has a relative permittivity εr = 2.17
and a loss tangent 0.001.

a tolerance ξ = 1e − 5 such that the ROM size can increase
until

rrel = �r�
�b�

∣∣∣∣
sedge

< ξ. (12)

Both r and b are evaluated at sedge ∈ {4, 6} [11], [2].
This led to 16 vectors generated by WCAWE involving up to
15 excitation derivatives. This implies that 16 levels of Krylov
subspaces be independently generated and orthonormalized
for WMKMOR. These subspaces are then joined and the
composite space reorthonormalized.

To compare the ROM with respect to the FEM model,
we define

Relative error = �xROM − xFEM�2

�xFEM�2
. (13)

Fig. 1 shows the comparison of the relative errors of
WCAWE and WMKMOR. Clearly, the multilevel Krylov
subspace structure of WMKMOR leads to about 2 orders of
accuracy gain at the band edges than WCAWE. However,
whereas WCAWE generates 16 vectors, WMKMOR ends up
generating a total of 136 vectors due to its multiple levels.
Therefore, for fair comparison, we let WCAWE iterations
to continue further till its subspace size matches that of
WMKMOR, both using 15th-order derivatives of the excitation
vector b. Clearly, this “enlarged” WCAWE subspace exhibits
stagnation since it can no longer match moments if excitation
derivatives higher than order 15 are not included.

To compare ROM speed with FEM, we define [2]

Breakeven point = ROM setup time

FEM solve time − ROM solve time
.

(14)

Table I shows the breakeven points for the two. Again,
a faster setup time for WMKMOR leads to lower (better)
breakeven point in comparison with WCAWE and its expanded
version. Also, WMKMOR captures 76% more bandwidth than
that captured by WCAWE.

Note that for a chosen residual tolerance ξ , if n vectors are
generated by WCAWE, WMKMOR generates about (n)(n +
1)/2 vectors. Thus, although WMKMOR is fast and accurate

TABLE I

BREAKEVEN POINTS FOR VARIOUS ROMS WITH
RESPECT TO THE FEM MODEL

over a wider band than WCAWE and its extended version,
ξ dictates the memory footprint of the algorithm and has
to be chosen judiciously. We recommend using multipoint
expansions in larger bands.

IV. CONCLUSION

A novel approach has been introduced to improve the
accuracy of AWE-based ROMs. We introduce the notion of
multilevel pth-order Krylov subspaces and show that the AWE
space is embedded inside this multilevel structure. These
subspaces are generated independently and in parallel. While
the first-order and second-order Krylov subspaces can be
orthonormalized using the Arnoldi/Lanczos process and the
linearization-based SAPOR method, respectively, orthonor-
malizing the pth-order Krylov subspaces in the multilevel
structure requires a well-conditioned approach that maintains
the moment-matching property. To achieve this, multiple
instances of WCAWE orthonormalize the structure, in parallel.
The resulting WMKMOR method is shown to be far more
accurate in a given band and faster to set up than WCAWE
ROM of similar size.
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