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Abstract

Transmit antenna selection (TAS) technology has been adopted for the uplink by the next generation

Long Term Evolution (LTE) wireless standard in order to harness the spatial diversity offered by multiple

antennas at the mobile transmitter, while keeping the hardware complexity and cost of a mobile low.

In TAS, the number of radio frequency (RF) chains for processing/up-conversion is smaller than the

number of available antenna elements, so that at any time thesignals can only be transmitted from a

(dynamically optimized) subset of antenna elements. As a result, the training procedure for AS needs

to be carefully engineered. In LTE, this is accomplished by reusing the wideband sounding reference

signal (SRS) for the purpose of AS training. Further, new mechanisms are required to facilitate feedback

from the receiver (the base station) to the transmitter about which subset is optimal and should, thus,

be used by the mobile. In LTE, this is accomplished by employing a unique masking technique on the

downlink control channel that eliminates the feedback overhead at the expense of a minor increase in

complexity at the mobile. This paper provides an in-depth and systematic overview of all physical layer

and higher layer features in the LTE standard that enable transmit AS. Also highlighted are the variety

of technical and standardization challenges that drove thespecification of AS in LTE, and the aspects

of the LTE standard that are impacted by AS.
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I. INTRODUCTION

Antenna selection (AS) provides a low-hardware-complexity solution for exploiting the spatial

diversity benefits of multiple antenna technology [1], and has been considered at the transmitter

and receiver. In receive AS, the receiver does not process signals received by all itsNr antennas.

Instead, it dynamically selects anLr-antenna subset comprising antennas that have the ‘best’

instantaneous channel conditions to the transmitter, and only processes signals received by them.

This enables the receiver to employ fewer of the expensive radio frequency (RF) chains, each

of which consists of a low noise amplifier, down-converter, and analog-to-digital converter.

Similarly, in transmit AS (TAS), the transmitter employs fewer (Lt) RF chains than the available

number of antennasNt. Each transmit RF chain consists of a digital-to-analog converter, up-

converter, filters, and power amplifier. We shall denote TAS that selectsLt antennas out ofNt

antennas byLt/Nt ×Nr. Similarly, Nt ×Lr/Nr denotes receive AS that selectsLr antennas out

of Nr antennas.

AS has the following important advantages:

1) Diversity and spectral efficiency gains:For an Nt × Nr multiple input multiple output

(MIMO) system with Nt transmit andNr receive antennas, AS that usesLt ≥ 1 RF

chains at the transmitter andLr ≥ 1 RF chains at the receiver achieves the full diversity

order of NtNr regardless of the value ofLr and Lt. The larger the diversity order, the

more robust the MIMO system is to fading. Notably, this holdseven when the receiver

has a noisy estimate of the channel, which affects the accuracy of both antenna selection

and data demodulation [2], [3].

2) Reduced hardware complexity and switches:AS exploits the presence of additional an-

tennas without increasing the number of RF chains. For this,an RF switch is required,

introducing which causes power and insertion losses. However, these losses are negligible

in the new RF micro-electro-mechanical systems (RF-MEMS) switches.

3) Flexibility and general applicability:AS can be flexibly deployed and combined with other

MIMO schemes. For instance, spatial division multiplexing(SDM) for a 2 × 2 MIMO

system, which sends out two streams simultaneously, can be extended to a2/4 × 2 AS-

SDM scheme without costly changes in the baseband processing module. Similarly, the

Alamouti 2 × 1 space-time block coding (STBC) scheme can be easily extended to a
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corresponding2/4 × 1 scheme.

4) Minimal feedback for TAS:For TAS, only the index of the subset of antennas to be

used needs to be fed back to the transmitter. Therefore, the feedback requirements are

considerably simpler compared to other feedback-based (also called closed-loop) transmit

diversity techniques. This reduced feedback burden of TAS enables it to deliver benefits

even at higher mobile speeds when the channel varies quickly.

Due to these advantages, AS has been adopted in next generation wireless systems such as

IEEE 802.11n. In the Third Generation Partnership Project (3GPP) Long Term Evolution (LTE)

standard [4], the reference antenna configuration of LTE, which is the configuration used for

performance benchmarking and is a configuration that is likely to be deployed, provides an

additional motivation for TAS. It assumes that the base station, which is also called eNodeB

in LTE, uses two antenna elements both for transmission and reception. However, a mobile,

which is also called user equipment (UE), uses two antenna elements in receive mode and

only one antenna element in transmit mode. This is done in order to allay concerns related to

increased hardware complexity and greater energy drain in UEs. This asymmetry in the number

of transmit and receive antennas in the reference configuration makes TAS on the uplink an

attractive technology for UE vendors. It enables them to develop a cheaper UE that uses only

one transmit antenna at any given time and, yet, exploits thespatial diversity benefits offered

by the two antennas that are physically present in the UE. Note that AS is also employed in

the downlinks of IEEE 802.16e/m WiMAX and LTE. However, the use of AS in the downlink

is related to multiple antenna precoding; hardware constraints are not the motivation. Table I

summarizes the motivation for AS in the cellular standards.

Figure 1 compares the symbol error rate (SER) ofM-ary phase shift keying (PSK) constel-

lations for1/2× 2 AS, no-AS (1 × 2), Alamouti STBC, and single-stream eigen-beamforming,

in which the transmitter and the receiver jointly form beamsto maximize the signal-to-noise

ratio. In the latter two cases, the transmitter has two RF chains and two transmit antennas. The

comparison is done for a frequency-flat Rayleigh fading channel and independent and identically

distributed (i.i.d.) fading across antenna elements with perfect channel estimates at the receiver.

Note that the feedback overhead for eigen-beamforming is significantly larger than in all other

schemes. We observe that the diversity order, which is the slope of the SER curve for large

SNRs, is the same as that of eigen-beamforming and open-loopAlamouti STBC, which requires
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no channel knowledge at the transmitter. This is despite AS using only one RF chain. For QPSK

and an SER of 1%, AS requires only 1 dB more SNR compared to eigen-beamforming. Further,

AS outperforms no-AS by 4 dB and Alamouti STBC by 1 dB.

While TAS is a seemingly simple and intuitive idea, several challenges – technical and

otherwise – needed to be overcome to implement it in a standard as sophisticated as LTE.

The impact on the standard can be classified into the following three different but essential

categories: (i) Training, (ii) Control signaling, and (iii) Layer 3 signaling.1 Further,in LTE, TAS

is specified to work in both the frequency division duplex (FDD) and time division duplex (TDD)

modes of operation.In the FDD mode, the UE can transmit and receive simultaneously, while

in the TDD mode, the UE can either transmit or receive but cannot do both simultaneously.

The paper makes the following contributions. It provides anin-depth and systematic overview

of all the hooks in the LTE standard that enable TAS. It also discusses the variety of technical and

standardization challenges and solutions that were considered in the process. This will hopefully

spur further research into AS and the technologies that are required to enable it in other next

generation wireless standards. Another contribution of the paper is simulation results that quantify

the performance gains of AS in the presence or absence of frequency-domain scheduling.

The paper is organized as follows. The key features of the physical layer of LTE are summa-

rized in Section II. The training mechanisms for TAS are described in Section III. Control and

Layer 3 signaling related to AS are discussed in Section IV. Aperformance evaluation of AS

in Section V is followed by our conclusions in Section VI.

II. LTE UPLINK : A QUICK OVERVIEW

The LTE uplink uses SC-OFDMA, which stands for single-carrier (SC) orthogonal frequency

division multiple access (OFDMA) [5]. This variant of OFDMAwas chosen as it leads to a lower

peak-to-average power ratio (PAPR), which allows the use ofmore efficient power amplifiers

in the UEs. We first briefly review classic OFDM. In it, the system bandwidth is divided into

many subcarriers. Data that are modulated, for example, using MPSK, are transmitted over those

subcarriers in parallel. The symbol duration and the subcarrier spacing are chosen such that the

signals on any two subcarriers are orthogonal to each other.A guard interval called the cyclic

1Receive AS, on the other hand, can be implemented without further modifications in the standard.
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prefix (CP) is pre-pended to eliminate inter-symbol interference caused by the multipath delay

dispersion in the channel. Finally, the signals from the subcarriers are added up and transmitted

over the wireless channel to the receiver.

In practice, it is not necessary to physically generate multiple subcarriers and modulate signals

onto them. Rather, the transmit signal is equivalently generated through an Inverse Fast Fourier

Transform (IFFT) of the original data stream. At the receiver, the signal is stripped off the

cyclic prefix, after which it goes through an FFT block. This is followed by a per-subcarrier

equalization; it only consists of a division by a complex scalar, which is the channel transfer

function at the subcarrier frequency.

Assigning symbols to specific modulation symbols on particular subcarriers can be viewed

as a ‘tiling’ of the time-frequency plane. Note also that OFDM is a modulation format. If

different subcarriers are assigned to (i.e., modulated with signals from) different users, we speak

of OFDMA instead.

In SC-OFDMA, the signals from the group of subcarriers that are assigned to a user undergo

an FFT before they are modulated onto the subcarriers. Essentially, this operation attempts to

undo the IFFT encountered in classic OFDM, so that the transmit signal is similar to a high-speed

PSK-modulated signal on a single carrier – hence, the name. Furthermore, the characteristics of

the transmit signal are similar to those of single-carrier modulation; this includes a lower PAPR,

which allows the use of more efficient power amplifiers. Due tothe presence of the CP, the

benefits of simple equalization at the receiver are also retained.

Finally, any OFDMA or SC-OFDMA signal requires reference signals (RS), also known as

pilots, for channel estimation. LTE foresees two types of pilots for the uplink transmission: (i)

Sounding RS (SRS), and (ii) Demodulation RS (DMRS); these will be discussed in more detail

below.

We now turn to the specifics of SC-OFDMA in LTE, which is shown in Figure 2. In the

uplink, the basic unit of time for data transmission is a slot, which is 0.5 ms long. Two adjacent

slots are called a subframe. An uplink frame consists of 10 subframes. The smallest transmission

unit in the uplink is called a physical resource block (RB), which is one slot in duration and

consists of 7 SC-OFDMA symbols. The LTE specification also allows for the use of an extended

CP. In this case, each slot contains six SC-OFDMA symbols. However, the specification of AS

is unchanged. We, therefore, focus on the ‘normal CP’ case inthis paper.
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In the frequency-domain, each RB is 180 kHz wide and consistsof 12 subcarriers of 15 kHz

bandwidth each. The assignment of RBs is for a minimum duration of 1 ms (two slots). The

system bandwidth, which ranges from 1.25 MHz to 20 MHz, is divided into several RBs. Of the

14 SC-OFDMA symbols in a subframe, two symbols are reserved for DMRSs. One SC-OFDMA

symbol in a subframe is used for carrying the SRS when required; otherwise, it carries data. The

remaining symbols carry data. Each UE can be assigned multiple RBs for transmitting data. The

exact mechanism for scheduling, which assigns different RBs to different UEs, is not specified

in the standard. For example, the eNodeB may employ either a round-robin scheduler or another

frequency-domain scheduler that trades off spectral efficiency with fairness differently. In any

case, it is the eNodeB that schedules; it communicates its decisions to the UEs on the downlink

control channel.

The standard, thus, defines two types of RSs – DMRS and SRS – which serve different

purposes. The DMRS is used to determine – with high accuracy –the channel transfer function

in the specific RB(s) used by a UE for data transmission; it is used for equalization at the receiver.

The SRS, on the other hand, enables the eNodeB to estimate thewideband frequency-domain

channel response over a large portion of the system bandwidth, and, thus, enables scheduling.

Therefore, the SRS transmitted by a UE typically occupies the entire system bandwidth or a

large portion of it. However, due to its wideband nature, theSRS might encounter a higher

degree of interference than the DMRS. Further, to reduce theSRS overhead, only one in every

six subcarriers carries a pilot symbol. Different UEs are assigned different SRS sequences to

enable the eNodeB to distinguish among them.

III. T RAINING

As discussed in Section I, the receiver in the base station needs to learn the channel from

each transmit antenna element to the receiver. We first discuss this training procedure in the

FDD mode of operation. We then discuss the differences that arise for implementing TAS in the

TDD mode.

Since the downlink and uplink are not reciprocal in the FDD mode of LTE, a periodic pilot-

based training procedure is required to help the UE select its best antenna. In order to help the

eNodeB receiver acquire channel state information for the purpose of antenna selection, the UE

alternates transmission of the SRS from its two antennas. This is because the limited number of
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transmit RF chains, which motivates TAS, imposes the fundamental constraint that the SRS can

be transmitted from only one antenna at any time.

As a result, TAS occurs over two phases in LTE. In the first uplink phase, which is elaborated

in this section, the UE basically alternates transmission of the SRS from its two antennas. The

eNodeB then estimates the (wideband) channel response of the UE from all its antennas and then

chooses the best antenna. In the second downlink phase, which is described in the next section,

control signaling from the eNodeB tells the UE which antennato use. The overall process is

illustrated in Figure 3.

In order to correctly associate its channel estimates with the transmit antennas, the eNodeB

needs to know a priori the antenna sounding pattern of the UE,which specifies which antenna

the UE should transmit from as a function of time. Therefore,the sounding pattern is precisely

defined in the standard [6, Sec. 8.2]. It depends on whether the SRS is frequency-hopping or

not, which is determined by theSRSHoppingBandwidth parameter.

If frequency-hopping is disabled, SRS is alternately transmitted from the two antennas. When

enabled, frequency-hopping can occur either as intra-frame or inter-frame hopping. In intra-

frame hopping, the UE hops from one RB to another within a subframe. This means that if

during the first slot of a subframe, the UE transmits in the lower edge of the bandwidth, then

in the second slot it transmits in the higher edge of the bandwidth. In inter-frame hopping, the

frequency allocation changes from one sub-frame to the other. The different hopping patterns are

intricately prescribed in the standard to ensure that the SRSs of different users can be of different

bandwidths and, yet, do not overlap in either time or frequency. The interested reader is referred

to [5, Sec. 5.5.3.2] for more details. Figure 4 illustrates an example of a frequency-hopping SRS

pattern along with how it is used for AS training.

Advantages:The wideband nature of the SRS enables joint space-frequency assignment, i.e.,

TAS and RB assignment for the selected antenna happen together since the eNodeB can estimate

the channel responses of both the antennas over a large portion of the system bandwidth. More

importantly, the use of the SRS for AS training ensures that AS can be supported with minimal

changes to the standard.

Disadvantages:A given antenna transmits fewer SRSs with TAS than without TAS. As a

result, the ability to track time variations in the channel decreases. The SRS is also a more

co-channel interference-prone pilot. Consequently, estimation errors may cause a sub-optimal
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antenna to get selected. However, the performance of coherent demodulation, which depends on

the accuracy of the estimates obtained using the DMRS pilots, is not affected by this. Note also

that AS is fairly robust to estimation errors [7]. Since the SRS is sent less often (every 2 to 10

ms) than the DMRS, the training delays also increase. This leads to the channel estimates, based

on which the antenna is selected, to become partially outdated by the time the UE transmits

data.

TDD mode:In the TDD mode, only some pre-specified subframes are used for uplink transmis-

sions. Therefore, this affects when and how often the SRS canbe transmitted [5, Tbl. 5.5.3.3-2].

However, the two antennas still alternately transmit the SRS to enable AS training.

A. Other Training Options Considered for AS

1) Use of DMRS for AS Training:Instead of alternating the transmission of the SRS from

different antennas, another option that was considered during the standardization deliberations

was to alternate the transmission of the DMRS between the twoantennas [8].

Advantages:Since the DMRS is sent inevery slotin which data is transmitted, the selection

delays are less. The channel estimates obtained using the DMRSs are also considerably more

accurate. Thus, unlike the SRS, the DMRS provides the eNodeBwith a less noisy and less

outdated estimate of the uplink channel, but over a narrowerportion of the system bandwidth.

Disadvantages:Fewer channel estimates are available about the antenna transmitting data

since some of the DMRS pilots are transmitted by the other unused antenna. This leads to less

accurate channel estimates, which, in turn, affects the demodulation at the receiver. Further, joint

frequency-domain scheduling and AS is not possible. Using DMRS for AS training purposes

was considered to be a bigger change in the standard specification, and was not adopted.

2) Adaptive Transmission of SRS:As we saw, the transmitter can only send the pilot from

one transmit antenna at a time. In order to maintain the same level of estimation accuracy, the

transmitter, thus, needs to send twice as many pilots. An adaptive technique was also proposed

to reduce the overhead [8]. In it, the antenna that has not been selected to transmit data sends

the SRS less often than the other antenna. Doing so clearly reduces the overall SRS sounding

overhead. Alternately, for the same sounding overhead, it decreases the average delay between

two transmissions of the SRS from the antenna that is transmitting data. However, this option

was discarded in favor of the simpler strategy of transmitting from the antennas alternately.
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IV. CONTROL AND LAYER 3 SIGNALING , AND PERFORMANCE EVALUATION

A. Control Signaling

As mentioned, a 1-bit feedback from the eNodeB is needed to indicate to the UE which selected

antenna to use for transmitting data. The data is transmitted on the Physical Uplink Shared

Channel (PUSCH). The feedback is always sent by the eNodeB inthe uplink scheduling grant.

The grant is a control message that tells the UE which time-frequency resources are assigned to

it for uplink transmission. However, no explicit control bit is allocated in LTE for this. Instead,

the header of the grant (which is said to be in ‘Format 0’) is masked as follows. The 16 cyclic

redundancy check (CRC) parity bits in the header are scrambled using modulo-2 addition by a

16-bit AS mask. UE transmit antenna 0 is indicated using the mask0000 0000 0000 0000, and

antenna 1 is indicated using the mask1000 0000 0000 0000. The receiver uses blind decoding

to determine which mask was used, and, therefore, which antenna to transmit from.

The eNodeB may also permit the UE to use open-loop TAS, wherein the UE is free to

determine which antenna to transmit from. However, the standard does not specify any aspect

related to open-loop TAS.

Pros and Cons:The implicit encoding avoids the use of an explicit bit for TAS. Thus, no

additional overhead is introduced for UEs that do not support AS or when the eNodeB does not

want to configure the UEs to use AS. Since the receiver needs todetermine this bit using blind

decoding, the number of blind decodes that the UE has to perform increases. Note, however,

that in LTE, even a UE that does not support TAS already performs close to 40 blind decodes

per frame to determine other control signaling bits.

B. Layer 3 Signaling

Layer 3 signaling is the higher layer signaling that occurs during the connection establishment

phase, and enables a UE to communicate to the eNodeB whether it supports the closed-loop AS

capability. In the Layer 3 message, the fieldue-TxAntennaSelectionSupported defines

whether the UE supports AS [9]. The eNodeB takes this capability into consideration when

configuring and scheduling the UE. Clearly, a UE that only supports open-loop AS need not

inform the eNodeB about its capability.
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C. HARQ Transmissions and AS

Automatic retransmission (ARQ) refers to the retransmission of a signal when the first trans-

mission was not successful. In Hybrid ARQ (HARQ), the receiver combines the signals from the

original transmission with that of the retransmission(s) to obtain a higher quality overall signal.

Since LTE uses HARQ, its operation when AS is enabled is also specified so as to clarify

whether the UE should retransmit using the same antenna or not [10]. In LTE, the following

two forms of HARQ are used:

• Adaptive HARQ:In adaptive HARQ, the antenna indicator is always sent via CRC masking

in the uplink grant to indicate which antenna to use. For example, for high Doppler spreads,

the eNodeB might instruct the UE to alternate between the transmit antennas. Otherwise,

the eNodeB may always select a pre-determined UE antenna forall the retransmissions.

• Non-adaptive HARQ:In non-adaptive HARQ, which antenna the UE should transmit from

is left unspecified. For low Doppler spreads, the UE could usethe same antenna as that

signaled in the uplink grant, while at high Doppler spreads the UE could choose to hop

between its antennas.

V. PERFORMANCE EVALUATION

We now present Monte Carlo simulation results to evaluate the benefits of AS in the presence

and absence of a frequency-domain scheduler at the eNodeB. The simulation scenario is as

follows. Five UEs are placed in a cell. The system bandwidth is 5 MHz. Each user is assigned

one fifth of the total number of RBs. The average data SNR at theinput of each of the receive

antenna elements is set as 10 dB per subcarrier for all UEs. The propagation channel from each

UE to the eNodeB follows a 6-path Typical Urban (TU) power delay profile, which is among the

more dispersive of the standardized channel profiles. The more frequency-selective the channel,

the less likely it is that the same transmit antenna will be optimal for all the RBs, and the smaller

the performance gain observed for TAS. The eNodeB has two uncorrelated receive antennas and

uses maximum ratio combining. The channel estimation errorin the SRS SC-OFDMA symbol

is modeled by means of an additive Gaussian noise in the SRS signal received by the eNodeB

receiver.

Different SRS transmit power settings are considered to determine how robust AS is to

estimation error. Each UE has two transmit antennas out of which one is selected on the basis of
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the 1-bit feedback from the eNodeB. A UE transmits its SRS over the entire system bandwidth

alternately from its two antennas. As mandated in LTE, when multiple RBs are assigned to

the same UE, they are all contiguous in the frequency-domain. This simplifies the frequency-

domain scheduling algorithm and enables the use of frequency-domain interpolation techniques

for channel estimation.

The simulation results presented in Figure 5 show the cumulative distribution function (CDF)

of the data SNR observed for each RB as a function of the channel estimation error and the

number of UEs scheduled per subframe. The CDF of the data SNR is a relevant measure of

performance because adaptive modulation and coding, whichis an integral component of the

LTE standard, fundamentally depends on the data SNR. The larger the SNR, the higher the

transmit data rate. The CDF also captures more statistical information about the SNR variations

than the mean SNR value.2 The performance of AS with different SRS powers is compared

to no-AS. Also shown is the performance with perfect noise-free channel estimates. Scenarios

with frequency-domain scheduling and without frequency-domain scheduling are evaluated, as

described below.

1) Without Frequency-Domain Scheduling:In this case, different RBs are assigned to different

UEs without taking into account the channel estimates obtained from the SRS. Only the antenna

is selected on the basis of these estimates. AS delivers an SNR gain of 2.2 dB at 10%ile and

1.3 dB at 50%ile (median) compared to no-AS. Furthermore, ASis quite robust to imperfect

SRS channel estimates. Even when the SRS SNR is 10 dB below thedata SNR, the 10%ile

data SNR with AS decreases by only 0.2 dB. Intuitively, this can be explained as follows. When

the SNR of the two available antennas is similar, a channel estimation error does not have a

strong effect on the achievable performance, since the choice is between two almost equally

good antennas. Instead, if the instantaneous SNRs of the twoantennas are very different, even

a noisy training sequence is sufficient to determine which antenna is the best. The impact of

DMRS-based AS training, described in Sec. III-A1, in which the more accurate DMRS estimates

are used for AS can also be inferred from this figure because its performance is well modeled

2To focus on the role of SRS, we do not model the impact of imperfect channel estimation using the DMRS on the data

SNR. This is justifiable because the channel estimate obtained from the DMRS is considerably more accurate than that obtained

from the SRS. Note that, in general, the scheduler need not assign the same number of RBs to each user. In addition to the data

SNR, a system-level simulator would measure overall systemthroughput and delay.
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by the perfect channel estimates curve. We see that using DMRS gives a median SNR gain of

0.2 dB.

2) With Frequency-Domain Scheduling:Frequency-domain scheduling aims to assign each

UE to the RBs that offers the best channel quality. The eNodeBuses the channel estimate

obtained from the SRS to determine which user to assign to each set of five contiguous RBs and

also which transmit antenna the assigned user should use. The data transmission rate of each

RB and a given transmit antenna is calculated using the channel estimate derived from the SRS

using the Shannon capacity formula. The antenna chosen is the one that leads to the highest

rate summed over all RBs being considered for assignment to aUE. Once a UE is selected for

transmitting a fixed number of contiguous RBs, it is not selected again in the same subframe.

We again see from the figure that even when the SRS SNR is 10 dB below the data SNR, the

data SNR with AS decreases only marginally. Further, AS yields a 10%ile SNR gain of 1.9 dB

and a median SNR gain of 1.1 dB over no-AS. Now, even the performance of no-AS depends

on the SRS pilot SNR, albeit marginally. Note also that frequency-domain scheduling improves

the data SNR, as a result of which the CDF shifts to the right.

VI. SUMMARY AND DISCUSSION

Antenna selection and its variants enable the use of multiple antennas at the transmitter and

receiver and reap their diversity benefits without increasing the requirements for RF hardware of

the devices. Training for Transmit AS in the LTE standard is accomplished using the wideband

SRS. The antennas in the UE alternately transmit the SRS, which enables the eNodeB to estimate

their channel responses over a large portion of the system bandwidth and select the best transmit

antenna. It also enables joint space-frequency resource allocation and optimization. The feedback

from the eNodeB is sent in an implicit manner using a zero-overhead CRC header masking

technique. Ensuring that AS has minimal impact on the overall specification and does not create

additional overhead for UEs that do not support it was a key consideration in adopting this

scheme. We also saw that joint AS and scheduling is robust to the larger channel estimation

errors that the SRS is expected to encounter. Altogether, ASis a promising technology that

has been adopted by LTE for both the FDD and TDD modes of operation in order to reap the

benefits of having multiple antennas in UEs, but at a lower hardware cost.
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TABLE I

TRANSMIT AS IN CELLULAR STANDARDS

AS standardization and motivation

Standard Downlink Uplink

IEEE 802.16e/m For precoding purposes –

3GPP LTE For precoding purposes Motivated by hardware constraints
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Fig. 1. Symbol error rate comparison of antenna selection, no antenna selection, eigen-beamforming, and open loop Alamouti

space-time block code for QPSK and 16-PSK constellations
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Fig. 2. SC-FDMA transmit chain, transmit antenna selection, and uplink frame structure of LTE
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Fig. 3. Uplink transmit antenna selection training using SRS. The SRS, which is shown as a longer vertical bar given its larger

bandwidth, is transmitted alternately from two antennas, Tx 0 and Tx 1. This enables the eNodeB to estimate the channels from

the two antennas to it, and to perform RB allocation and AS
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Fig. 4. Transmit antenna sounding patterns for a frequency-hopping SRS for multiple UEs. The indices of 0 and 1 correspond

to transmissions by transmit antennas 0 and 1, respectively. Different colors correspond to different UEs
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Fig. 5. Performance of antenna selection when SRS is used fortraining: With and without frequency-domain scheduling
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