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Abstract—We develop an alternate characterization of the
statistical distribution of the inter-cell interference power ob-
served in the uplink of CDMA systems. We show that the
lognormal distribution better matches the cumulative distribution
and complementary cumulative distribution functions of the
uplink interference than the conventionally assumed Gaussian
distribution and variants based on it. This is in spite of the fact
that many users together contribute to uplink interference, with
the number of users and their locations both being random. Our
observations hold even in the presence of power control and cell
selection, which have hitherto been used to justify the Gaussian
distribution approximation. The parameters of the lognormal
are obtained by matching moments, for which detailed analytical
expressions that incorporate wireless propagation, cellular layout,
power control, and cell selection parameters are developed.
The moment-matched lognormal model, while not perfect, is an
order of magnitude better in modeling the interference power
distribution.

Index Terms—lognormal, shadowing, uplink, CDMA, interfer-
ence, power control, handoff, cell selection.

I. INTRODUCTION

INTERFERENCE plays a crucial role in code division
multiple access (CDMA) based cellular communication

systems, which use pseudo-random spreading codes for trans-
mitting data. While the spreading codes diminish the in-
terference received from other transmissions, they do not
completely annul it. Therefore, cellular system design and
analysis requires an accurate statistical characterization of the
interference power.

The uplink interference at a base station (BS) is the non-
coherent sum of interference signals from the users served
by the BS and the users served by other BSs. Consequently,
it consists of two components: intra-cell interference and
inter-cell interference. While both are random variables, their
statistics are vastly different. In the presence of power control,
which ensures that the received signal power from each
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served user is the same, the intra-cell interference power is
determined entirely by the number of users served by the
base station [1]. On the other hand, the inter-cell interference
power is a much more complicated random variable (RV) to
characterize because the interfering signals undergo shadow-
ing and fading in their respective wireless channels. Inter-cell
interference shall, therefore, be the main focus of this paper.

In the literature, the uplink inter-cell interference power
has often been approximated by a Gaussian RV with the
same moments, with the central limit theorem being cited as
a justification for this [1]. Furthermore, it has been argued
that the Gaussian approximation becomes more accurate in
the presence of power control and cell selection [2, Chp. 4].
An improvement to the Gaussian approximation based on the
Edgeworth approximation, which uses higher order cumulants
to modify the moment generation function of the Gaussian
distribution, has also been studied [1]. In this paper, we show
that lognormal distribution is much more accurate than the
Gaussian approximation and its variants in modeling both
small and large values of the inter-cell interference even
in the presence of power control and cell selection. Such
approximations are necessary in the first place because a
closed-form expression for the probability distribution of a
sum of lognormal RVs is unknown, except for certain special
cases [3].

Intuitively, this can be understood as follows. The interfer-
ing signal from each user undergoes lognormally distributed
shadowing [4]. When the number of interfering signals and
their shadowing parameters is deterministically known, it is
well understood that the sum of lognormal RVs is well ap-
proximated by a lognormal RV [5], [6]. In other words, while
the distribution of the sum does eventually become a Gaussian
RV, the rate of convergence of the sum distribution to the
Gaussian is slow. When the number of summands is the typical
number of mobiles in a system, the lognormal distribution
better approximates the distribution at both small and large
values of interference. Consequently, several methods [3], [7]–
[10] have also been proposed for determining the parameters
of the approximating lognormal for the case with a fixed
number of interferers with a priori specified parameters.

However, it is not a foregone conclusion that the log-
normal distribution is a better model for uplink inter-cell
interference power. This is because of the following multiple
reasons, which pose a new twist to the conventional problem.
Firstly, the number of interfering mobiles itself is random in
the uplink. Additional randomness is introduced because the
transmitting mobiles can be located anywhere within a cell,
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Fig. 1. Hexagonal cellular layout showing reference cell and first- and
second-tier cells. Also, shown is the circular cell shape approximation used
in the analysis.

which affects the path loss and shadowing contribution to the
interference power. The use of power control and cell selection
add two additional dimensions to this problem since they
affect the power transmitted by the mobiles. Power control
compensates for the variable channel gain between the mobile
and its serving BS. This causes the interference power received
by other BSs to be random. Similarly, cell selection affects
the inter-cell interference received from a mobile because it
determines which BS serves and power controls a mobile.

In this paper, we hypothesize that the uplink inter-cell
interference power is better modeled by a lognormal instead of
a Gaussian, and verify our hypothesis using several numerical
examples. We extend the moment-matching method, first
used by Fenton-Wilkinson [7] for the case when the number
of interferers is deterministic, to analytically determine the
parameters of the approximating lognormal. A key enabler
that helps handle the aforementioned additional sources of ran-
domness is the application of spatial Poisson process theory to
model the spatial randomness of the interfering mobiles [11].
The elegant theory provides a tractable and practical model
for the spatial randomness observed in a CDMA uplink, and
has been used effectively in several wireless system design
problems [1], [12]. A similar spatial model for user location
for computing the cumulants of the uplink interference in
the presence of power control and cell selection was also
considered in [13]. However, it used three-dimensional Monte
Carlo integration for its computations.

We show that while the additional sources of randomness
do make the analysis more involved, the simplicity and ac-
curacy of the moment-matching method carry over to a large
extent. This holds when only power control is in operation
or when both power control and cell selection work together
in unison. We derive specific closed-form expressions – in
terms of an integral of a simple function – for the first and
second order moments of the inter-cell interference power for
the cases with (i) power control only, and (ii) with power
control and cell selection for hand-off set sizes as large as
3. These demonstrate how the hand-off set size affects the

interference. Most importantly, we show that these moments
can be used to approximate the probability distribution of the
uplink interference by a lognormal. In addition to first-tier and
second-tier interferers, our analysis also accounts for ‘zero-
tier’ inter-cell interference that arises in cell selection from
users that are geographically located within a cell but are not
served by it.

Our results thus provide a more accurate snapshot model
for the fading-averaged interference. Consequently, they have
applications in cell planning and layout, and, in general, in
cellular system design and analysis. It must be noted that while
this model is useful, it is not entirely sufficient. For example,
to analyze call session or data session specific behavior, a
more detailed time trace model or a time correlation model
(in addition to the snapshot model studied here) would also be
needed. However, this is well beyond the scope of this paper.

The paper is organized as follows. The system model is
developed in Sec. II. An analysis of the first- and second-order
moments of the interference power and an alternate lognormal
model for it is developed in Sec. II-C. Simulation results are
presented in Sec. IV, and are followed by our conclusions in
Sec. V.

II. SYSTEM MODEL

Figure 1 shows the hexagonal cellular layout consisting of
a cell 0, which we henceforth refer to as the reference cell,
and two tiers of interfering cells. A cell 𝑘 is served by BS 𝑘,
which is located at the cell’s center, with 1 ≤ 𝑘 ≤ 6 for first-
tier interferers and 7 ≤ 𝑘 ≤ 18 for second-tier interferers. In
the analysis, we shall assume the cells to be circular in shape.
Let 𝐷 denote the distance between BS 0 and a first-tier BS.
A second-tier BS is then at a distance of 2𝐷 from BS 0. We
focus on the case when the interference is determined by path
loss and shadowing. This case also covers the scenario where
Rayleigh or Ricean fading is also present because a composite
Rayleigh-lognormal or a Rice-lognormal random variable’s
distribution can be well approximated by a lognormal [4]. The
figure also shows a approximation of the hexagonal cells by
circles of radius 𝑅, which simplifies the analysis later. For
a mobile 𝑖 inside cell 𝑘, let x𝑖 denote the absolute position
vector of mobile 𝑖 (with respect to a universal center). Let
𝑑𝑘(x𝑖) denote the distance of this mobile from BS 𝑘.

A. Spatial Poisson Process Model for Users

We first specify the statistics of the number of users in a
cell and their locations, as this directly affects the distribution
of inter-cell interference. For this, we use the spatial Poisson
process model, which provides an analytically tractable and
practical model. Briefly, a homogeneous Poisson process is
characterized by an intensity parameter 𝜆 such that the prob-
ability, 𝑃 (𝑁𝑘 = 𝑙), that 𝑁𝑘 = 𝑙 users occur within a cell 𝑘
of area 𝐴 is Poisson distributed with mean 𝜆𝐴:

𝑃 (𝑁𝑘 = 𝑙) =
(𝜆𝐴)𝑙

𝑙!
exp(−𝜆𝐴). (1)

Furthermore, conditioned on 𝑁𝑘, the geographical locations of
the 𝑁𝑘 mobiles are uniformly distributed over the cell area.
We note that the analysis can be extended to handle non-
homogeneous Poisson processes as well.



934 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 3, MARCH 2010

B. Power Control and Cell Selection

When the mobile 𝑖 transmits a signal with power 𝑃𝑖,
the receive signal power at BS 𝑘 is proportional to

𝑃𝑖

(
𝑑0

𝑑𝑘(x𝑖)

)𝜂

𝑠
(𝑘)
𝑖 , where 𝑑0 is a reference distance and 𝜂 is

the path loss coefficient, which typically takes values between
2 and 4 [4]. The variable 𝑠(𝑘)𝑖 denotes the shadowing of the
uplink channel from mobile 𝑖 to BS 𝑘; it is a lognormal
random variable (RV), and can be written as

𝑠
(𝑘)
𝑖 = 100.1𝑦𝑖(𝑘) = 𝑒𝛽𝑦𝑖(𝑘), (2)

where 𝑦𝑖(𝑘) is a Gaussian RV with zero mean and variance
𝜎2𝑖 (𝑘) and 𝛽 = 0.1 log𝑒(10). For analytical simplicity, we
assume 𝜎2𝑖 (𝑘) = 𝜎 for all 𝑖 and 𝑘. Following terminology used
in the literature, we shall refer to 𝜎2𝑖 (𝑘) as the dB variance of
the lognormal RV 𝑠

(𝑘)
𝑖 . Typically, 𝜎𝑖(𝑘) takes values between

4 and 13 [14, Chp. 2.4]. We assume 𝑦𝑖(𝑘) to be independent
and identically distributed for different values of 𝑖 and 𝑘.

If 𝑘 is the serving cell for a user 𝑖 at location x𝑖, power con-

trol ensures that its transmit power is set so that 𝑃tx
𝑠
(𝑘)
𝑖

𝑑𝑘(𝑖)𝜂
= 𝛾,

where 𝛾 is the power control target [4, Chp. 18]. Hence, the
interference, 𝑅(x𝑖, 𝑘), from the user 𝑖 at BS 0 is

𝑅(x𝑖, 𝑘) = 𝑃tx
𝑠
(0)
𝑖

𝑑0(x𝑖)𝜂
= 𝛾𝑒𝛽(𝑦𝑖(0)−𝑦𝑖(𝑘))

(
𝑑𝑘(x𝑖)

𝑑0(x𝑖)

)𝜂

. (3)

Therefore, the total interference at BS 0 from 𝑁𝑘 users
served by cell 𝑘 equals

∑𝑁𝑘

𝑖=1 𝑅(x𝑖, 𝑘), which is equal to

𝛾
∑𝑁𝑘

𝑖=1 𝑒
𝛽(𝑦𝑖(0)−𝑦𝑖(𝑘))

(
𝑑𝑘(x𝑖)
𝑑0(x𝑖)

)𝜂

.
With cell selection, a user at x𝑖 located in cell 𝑘 maintains

a finite sized list called a handoff set, Γx𝑖 , of ∣Γx𝑖 ∣ geograph-
ically nearest BSs, and chooses the one with the strongest
channel. The choice depends on both path loss and shadowing.
As the notation suggests, the handoff set depends on the user
location. Different users at different locations within a cell can
have different handoff sets depending on the size allowed for
the handoff set and which BSs are closest to them. (This is
characterized in detail in Sec. III-C and Sec. III-D.)

Note: The spatial Poisson model together with power con-
trol implies that the intra-cell interference power received by
any cell of area 𝐴 from the users it serves is a Poisson random
variable with mean 𝛾𝜆𝐴 [1]. Therefore, as argued before,
only the probability distribution of the inter-cell interference
remains to be characterized, as is done below.

C. Moment Method Approximation for Interference Power

We shall determine the two parameters of the approximating
lognormal RV by matching its first two moments. Let 𝜇𝑅
and 𝜎2𝑅 denote the mean and variance, respectively, of the
total interference at reference cell 0. Then the parameters
of the approximating lognormal, after matching the first two
moments, are given as [7]:

𝜇eq = log

(
𝜇2𝑅√
𝜎2𝑅 + 𝜇2𝑅

)
, (4)

𝜎eq =

√
log

(
𝜎2𝑅
𝜇2𝑅

+ 1

)
. (5)

In our case, the first two moments of the interference power
from all cells (indexed by 𝑘) are

𝜇𝑅 =
∑
𝑘

E

[ ∞∑
𝑁𝑘=0

𝑁𝑘∑
𝑖=1

𝑅(x𝑖, 𝑘)𝑒
−𝜆𝐴 (𝜆𝐴)𝑁𝑘

𝑁𝑘!

]
,

=
∑
𝑘

𝜆𝐴E [𝑅(x𝑖, 𝑘)] , (6)

and

𝜎2𝑅 =
∑
𝑘

𝜆𝐴
(
E
[
𝑅(x𝑖, 𝑘)

2
]−E [𝑅(x𝑖, 𝑘)]

2
)
, (7)

where E [.] denotes expectation. The above two equations
show that the moment-matching method deals with the ran-
domness in the number of users only through its first two
moments. The main task at hand is to evaluate E [𝑅(x𝑖, 𝑘)

𝑚],
𝑚 = 1, 2, where the expectation is first over shadowing and
then over x𝑖.

We first consider uplink interference power with power
control. Thereafter, we also incorporate cell selection into our
analysis. This two step approach will enable us to gauge the
relative impact of power control and cell selection on the
interference model.

III. UPLINK INTER-CELL INTERFERENCE POWER

MOMENTS

A. With Power Control

With only power control, a user that is located within cell
𝑘 is served by BS 𝑘. From (3), the 𝑚th moment (𝑚 = 1, 2) of
interference power from user 𝑖 served by BS 𝑘, when averaged
over both shadowing and user location, x𝑖, equals

E [𝑅(x𝑖, 𝑘)
𝑚] = 𝛾𝑚E

[
𝑒𝑚𝛽(𝑦𝑖(0)−𝑦𝑖(𝑘))

]
E

[(
𝑑𝑘(x𝑖)

𝑑0(x𝑖)

)𝑚𝜂]
.

(8)
Therefore,

E [𝑅(x𝑖, 𝑘)
𝑚] = 𝛾𝑚𝑒𝑚

2𝛽2𝜎2

×
∫ 𝑅

0

∫ 2𝜋

0

𝑟

𝜋𝑅2

(
1 +

𝐷2
𝑘

𝑟2
− 2

𝐷𝑘

𝑟
cos𝜙

)−𝑚𝜂/2

𝑑𝜙 𝑑𝑟,

(9)

where 𝐷𝑘 = 𝐷 or 2𝐷 depending on whether cell 𝑘 is a
first-tier or second-tier cell. Using the variable substitutions
𝑢 = 𝐷𝑘

𝑟 and 𝑤 = cos𝜙, and employing Gauss-Chebyshev
quadrature [15] yields

E [𝑅(x𝑖, 𝑘)
𝑚] = 𝛾𝑚𝑒𝑚

2𝛽2𝜎2 2

𝑊

(
𝐷𝑘

𝑅

)2

×
𝑊∑
𝑛=1

∫ ∞

𝐷𝑘
𝑅

1

𝑢3
(
1 + 𝑢2 − 2𝑢𝑎′𝑛

)−𝑚𝜂/2
𝑑𝑢, (10)

where 𝑊 is the number of quadrature terms and 𝑎′𝑛, 1 ≤ 𝑛 ≤
𝑊 , are the abscissa of Gauss-Chebyshev quadrature. For our
method, 𝑊 = 6 turned out to be sufficiently accurate.
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B. With Power Control and Cell Selection

With cell selection, a user 𝑖 located in cell 𝑘 need not be
served by it. Also, the moments of interference power now
depend on whether the reference cell 0 belongs to the handoff
set of a user located at x𝑖. This is because when 0 ∈ Γx𝑖 , cell
0 can itself become the serving cell, in which case the user
does not cause inter-cell interference to cell 0.

Case 1: Reference Cell in Handoff Set (0 ∈ Γx𝑖):

When 0 ∈ Γx𝑖 , the inter-cell interference power at BS 0
from a user at x𝑖 located in cell 𝑘 is

𝑅(x𝑖, 𝑘) = 𝛾𝑒
𝛽(𝑦0−𝑀0(x𝑖)) min

𝑗∈Γx𝑖

𝑒−𝛽(𝑦𝑗−𝑀𝑗(x𝑖)), (11)

if 𝑦0 − 𝑀0(x𝑖) < 𝑦𝑗 − 𝑀𝑗(x𝑖) for some 𝑗 ∈ Γx𝑖 ∖ {0}.
Otherwise, 𝑅(x𝑖, 𝑘) is 0. Here, 𝑀𝑗(x𝑖) = 𝜂𝜉 log 𝑑𝑗(x𝑖).

Let 𝒜out denote the region of cell 𝑘 in which this is true.
Therefore, conditioned on x𝑖 ∈ 𝒜out, the 𝑚th moment of the
interference power equals

E [𝑅(x𝑖, 𝑘)
𝑚∣x𝑖 ∈ 𝒜out,x𝑖]

=
𝛾𝑚

2𝜋𝜎2

∑
𝑙∈Γx𝑖

∖{0}

∫ ∞

−∞
𝑒

−𝑦2𝑙
2𝜎2 𝑒𝑚𝛽(𝑀𝑙(x𝑖)−𝑦𝑙)

×
∫ 𝑦𝑙−𝑀𝑙(x𝑖)+𝑀0(x𝑖)

−∞
𝑒𝑚𝛽(𝑦0−𝑀0(x𝑖))𝑒

−𝑦20
2𝜎2

×
⎡
⎣ ∏
𝑗∈Γx𝑖

∖{𝑙,0}
𝑄

(
𝑀𝑙(x𝑖)−𝑀𝑗(x𝑖)− 𝑦𝑙

𝜎

)⎤⎦ 𝑑𝑦0 𝑑𝑦𝑙,
(12)

where E [𝑋 ∣𝑌 ] denotes the expectation of 𝑋 given
𝑌 . The above expression is obtained by conditioning
on a cell 𝑙 ∈ Γx𝑖 ∖ {0} being the serving cell;∏

𝑗∈Γx𝑖
∖{𝑙,0}𝑄

(
𝑀𝑙(x𝑖)−𝑀𝑗(x𝑖)−𝑦𝑙

𝜎

)
is the probability that

this happens. Using Gauss-Hermite quadrature [15] for the
integral over 𝑦𝑙, we get

E [𝑅(x𝑖, 𝑘)
𝑚∣x𝑖 ∈ 𝒜out,x𝑖]

≈ 𝛾𝑚

𝜋𝜎
√
2

∑
𝑙∈Γx𝑖

∖{0}

𝑊∑
𝑛=1

𝑤𝑛𝑒
𝑚𝛽(𝑀𝑙(x𝑖)−𝑀0(x𝑖)−

√
2𝜎𝑎𝑛)

×
⎡
⎣ ∏
𝑗∈Γx𝑖

∖{𝑙,0}
𝑄

(
𝑀𝑙(x𝑖)−𝑀𝑗(x𝑖)−

√
2𝜎𝑎𝑛

𝜎

)⎤⎦

×
∫ √

2𝜎𝑎𝑛−𝑀𝑙(x𝑖)+𝑀0(x𝑖)

−∞
𝑒𝑚𝛽𝑦0− 𝑦20

2𝜎2 𝑑𝑦0, (13)

where 𝑎𝑛 and 𝑤𝑛, 1 ≤ 𝑛 ≤𝑊 , are the quadrature abscissa and
weights that are readily tabulated in [15].1 The inner integral

1E [𝑅(x𝑖, 𝑘)𝑚∣x𝑖 ∈ 𝒜out,x𝑖] can, in fact, be shown to exactly equal

𝛾𝑚𝑒𝑚𝛽(𝑀1(x𝑖)−𝑀0(x𝑖))+𝑚2𝛽2𝜎2
𝑄

(
𝑀1(x𝑖)+2𝑚𝛽𝜎2−𝑀0(x𝑖)

𝜎
√
2

)
when

∣Γx𝑖 ∣ = 2. However, we do not use it as it does not generalize for ∣Γx𝑖 ∣ > 2.

evaluates to

E [𝑅(x𝑖, 𝑘)
𝑚∣x𝑖 ∈ 𝒜out,x𝑖]

≈ 𝛾𝑚√
𝜋

∑
𝑙∈Γx𝑖

∖{0}

𝑊∑
𝑛=1

𝑤𝑛𝑒
𝑚𝛽(𝑀𝑙(x𝑖)−𝑀0(x𝑖)−

√
2𝜎𝑎𝑛)+𝑚2𝛽2/2

×
⎡
⎣ ∏
𝑗∈Γx𝑖

∖{𝑙,0}
𝑄

(
𝑀𝑙(x𝑖)−𝑀𝑗(x𝑖)−

√
2𝜎𝑎𝑛

𝜎

)⎤⎦

×𝑄
(
𝑀𝑙(x𝑖)−𝑀0(x𝑖)−

√
2𝜎𝑎𝑛 +𝑚𝛽𝜎2

𝜎

)
. (14)

Case 2: Reference Cell Not in Γx𝑖 (0 ∕∈ Γx𝑖):
When 0 /∈ Γx𝑖 , we have

𝑅(x𝑖, 𝑘) = 𝛾𝑒
𝛽(𝑦0−𝑀0(x𝑖)) min

𝑙∈Γx𝑖

𝑒−𝛽(𝑦𝑙−𝑀𝑙(x𝑖)). (15)

Let 𝒜in denote the region of cell 𝑘 in which this is true. The
𝑚th moments of the inter-cell interference conditioned on x𝑖

are then given by

E [𝑅(x𝑖, 𝑘)
𝑚∣x𝑖 ∈ 𝒜in,x𝑖] = 𝛾

𝑚𝑒−𝑚𝛽𝑀0(x𝑖)E
[
𝑒𝑚𝛽𝑦0

]
×
∣Γx𝑖 ∣∑
𝑙=1

1

𝜎
√
2𝜋

∫ ∞

−∞

⎡
⎣ ∏
𝑗∈Γx𝑖

∖{𝑙}
𝑄

(
𝑀𝑙(x𝑖)−𝑀𝑗(x𝑖)− 𝑦𝑙

𝜎

)⎤⎦
× 𝑒𝑚𝛽(𝑀𝑙(x𝑖)−𝑦𝑙)𝑒−𝑦2

𝑙 /2𝜎
2

𝑑𝑦𝑙. (16)

The above expression is obtained, as before, by conditioning
on a cell 𝑘 ∈ Γx𝑖 ∖ {0} being the serving cell, which happens

with probability
∏

𝑗∈Γx𝑖
∖{𝑙}𝑄

(
𝑀𝑙(x𝑖)−𝑀𝑗(x𝑖)−𝑦𝑙

𝜎

)
.

Using appropriate variable substitutions followed by Gauss-
Hermite quadrature, we get

E [𝑅(x𝑖, 𝑘)
𝑚∣x𝑖 ∈ 𝒜in,x𝑖]

≈ 𝛾𝑚√
𝜋
𝑒−𝑚𝛽𝑀0(x𝑖)𝑒𝑚

2𝛽2𝜎2/2

∣Γx𝑖 ∣∑
𝑙=1

𝑒𝑚𝛽𝑀𝑙(x𝑖)

[
𝑊∑
𝑛=1

𝑤𝑛

×
∏

𝑗∈Γx𝑖
∖{𝑙}
𝑄

(
𝑀𝑙(x𝑖) +

√
2𝜎𝑎𝑛 +𝑚𝛽𝜎2 −𝑀𝑗(x𝑖)

𝜎

)]
.

(17)

Therefore, the spatial user distribution averaged moments of
interference from cell 𝑘 are

E [𝑅(x𝑖, 𝑘)
𝑚]

=
1

𝜋𝑅2

(∫
𝒜out

𝑟E [𝑅(x𝑖, 𝑘)
𝑚∣x𝑖 ∈ 𝒜out,x𝑖] 𝑑𝑟𝑑𝜙

+

∫
𝒜in

𝑟E [𝑅(x𝑖, 𝑘)
𝑚∣x𝑖 ∈ 𝒜in,x𝑖] 𝑑𝑟𝑑𝜙

)
, (18)

where (𝑟, 𝜙) are the polar coordinates of x𝑖 with respect to
BS 𝑘.

The last step in the analysis is specifying 𝒜out and 𝒜in,
and the distances from the serving and reference cell centers
that determine 𝑀𝑘(x𝑖) in (14) and (17). This depends on the
handoff set size and on the relative location of the interfering
cell. The cases are enumerated below. Since the interference
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from the six first-tier cells (or the twelve second-tier cells) is
statistically identical and independent, it suffices to describe
the analysis for a specific first-tier cell (e.g., 1) and a specific
second-tier cell (e.g., 7). With cell selection, note that even
a user located inside the reference cell can cause inter-cell
interference when it happens to choose a neighboring cell as its
serving cell. As before, (𝑟, 𝜙) will denote the polar coordinates
of user location x𝑖 with respect to the center of cell it is located
in.

C. Cell Selection With ∣Γx𝑖 ∣ = 2 Cells

1) Interference from First-Tier Cell 1: As shown in Fig. 1,
we have 𝑑1(x𝑖) = 𝑟 and 𝑑0(x𝑖) =

√
𝐷2 + 𝑟2 − 2𝑟𝐷 cos𝜙.

For −𝜋
6 ≤ 𝜙 < 𝜋

6 , we have Γx𝑖 = {1, 0}. In the remaining
cases below, BS 0 is never in Γx𝑖 .

For 𝜋
6 ≤ 𝜙 < 𝜋

2 , we have Γx𝑖 = {1, 2} and 𝑑2(x𝑖) =√
𝐷2 + 𝑟2 − 2𝑟𝐷 cos

(
𝜙− 𝜋

3

)
. For 𝜋

2 ≤ 𝜙 < 5𝜋
6 , we have

Γx𝑖 = {1, 8} and 𝑑8(x𝑖) =
√
𝐷2 + 𝑟2 − 2𝑟𝐷 cos

(
𝜙− 2𝜋

3

)
.

For 5𝜋
6 ≤ 𝜙 < 7𝜋

6 , we have Γx𝑖 = {1, 7}
and 𝑑7(x𝑖) =

√
𝐷2 + 𝑟2 − 2𝑟𝐷 cos (𝜙− 𝜋). For 7𝜋

6 ≤
𝜙 < 3𝜋

2 , we have Γx𝑖 = {1, 18} and 𝑑18(x𝑖) =√
𝐷2 + 𝑟2 − 2𝑟𝐷 cos

(
𝜙− 4𝜋

3

)
. For 3𝜋

2 ≤ 𝜙 < 11𝜋
6 , we have

Γx𝑖 = {1, 6} and 𝑑6(x𝑖) =
√
𝐷2 + 𝑟2 − 2𝑟𝐷 cos

(
𝜙− 5𝜋

3

)
.

2) Interference from Second-Tier Cell 7: In this case,
0 /∈ Γx𝑖 as cell 0 is never one of the closest two cell
sites for a user in a second-tier cell. Thus, 𝑑0(x𝑖) =√
4𝐷2 + 𝑟2 − 4𝑟𝐷 cos𝜙 and 𝑑7(x𝑖) = 𝑟. For cell 7, the dis-

tance from the second BS in Γx𝑖 can be compactly stated as:

𝑑𝑚(x𝑖) =

√
𝐷2 + 𝑟2 − 2𝑟𝐷 cos

(⌈
3𝜙
𝜋

⌉
𝜋
3 − 𝜋

6 − 𝜙
)
, where

Γx𝑖 = {7,𝑚}, and 𝑚 depends on 𝜙.
3) Interference from Users Located Within Reference Cell:

We now have 𝑑0(x𝑖) = 𝑟. For −𝜋
6 ≤ 𝜙 < 𝜋

6 , Γx𝑖 = {0, 1},
and 𝑑1(x𝑖) =

√
𝐷2 + 𝑟2 − 2𝑟𝐷 cos (𝜙). For 𝜋

6 ≤ 𝜙 < 𝜋
2 ,

Γx𝑖 = {0, 2} and 𝑑2(x𝑖) =
√
𝐷2 + 𝑟2 − 2𝑟𝐷 cos

(
𝜙− 𝜋

3

)
.

For 𝜋
2 ≤ 𝜙 < 5𝜋

6 , we have Γx𝑖 = {0, 3} and 𝑑3(x𝑖) =√
𝐷2 + 𝑟2 − 2𝑟𝐷 cos

(
𝜙− 2𝜋

3

)
. For 5𝜋

6 ≤ 𝜙 < 7𝜋
6 , we have

Γx𝑖 = {0, 4} and 𝑑4(x𝑖) =
√
𝐷2 + 𝑟2 − 2𝑟𝐷 cos (𝜙− 𝜋).

For 7𝜋
6 ≤ 𝜙 < 3𝜋

2 , we have Γx𝑖 = {0, 5} and 𝑑5(x𝑖) =√
𝐷2 + 𝑟2 − 2𝑟𝐷 cos

(
𝜙− 4𝜋

3

)
. For 3𝜋

2 ≤ 𝜙 < 11𝜋
6 , we have

Γx𝑖 = {0, 6} and 𝑑6(x𝑖) =
√
𝐷2 + 𝑟2 − 2𝑟𝐷 cos

(
𝜙− 5𝜋

3

)
.

D. Cell Selection With ∣Γx𝑖 ∣ = 3 Cells

1) Interference from First-Tier Cell 1: As before, Γx𝑖 de-
pends on 𝜙. For 0 ≤ 𝜙 < 𝜋

3 , Γx𝑖 = {0, 1, 2}; for 𝜋
3 ≤ 𝜙 < 2𝜋

3 ,
Γx𝑖 = {1, 2, 8}; for 2𝜋

3 ≤ 𝜙 < 𝜋, Γx𝑖 = {1, 8, 7}; and so on.
The distances to the various cells in Γx𝑖 can be calculated
accordingly. Note that for −𝜋

3 ≤ 𝜙 < 𝜋
3 , the reference cell is

itself in the handoff set.
2) Interference from Second-Tier Cell 7: As before, the

reference cell is never in the handoff set. The handoff sets and
the corresponding distances from the cell centers can again
be enumerated as a function of 𝜙. Clearly, any cell included

in Γx𝑖 when ∣Γx𝑖 ∣ = 2 will also be included in Γx𝑖 when
∣Γx𝑖 ∣ = 3. The details are skipped to conserve space.

Corresponding equations for ∣Γx𝑖 ∣ ≥ 4 can also be written.
However, they get more involved are not shown here.

IV. SIMULATIONS

We now compare the accuracy achieved in modeling the
uplink inter-cell interference. The moment-matched lognormal
approximation, which uses circular cell shapes for analytical
tractability, is compared with Monte Carlo simulations that use
hexagonal cell shapes and generate 3 × 105 sample points.
In each sample point, the user locations and the number
of users per cell are generated as per the spatial Poisson
process described in Sec. II-A for hexagonal cell shapes. The
shadowing from different users to different BSs are generated
as independent lognormal random variables. Each user first
chooses its serving BS and then sets its transmit power to
compensate for shadowing and path loss. Also plotted are the
Gaussian approximation and the Edgeworth approximation,
which uses the third cumulant.

Our comparison is based on the cumulative distribution
function (CDF) and the complementary CDF (CCDF), as is
typically done in the literature [3], [5], [10]. Small values
of the CDF reveal the accuracy in tracking the head portion
(small interference values) of the probability distribution.
Similarly, small values of the CCDF reveal the accuracy in
tracking the tail portion (large interference values) of the
interference probability distribution. The system parameters
used in the simulations are: path loss exponent 𝜂 = 4, power
control threshold 𝛾 = 8 dB, lognormal dB standard deviation
𝜎 = 6, cell radius 𝑅 = 400 m, and 𝐷 = 800 m.

A large number of combinations are possible for the figures
that depend on the choice of handoff set size, whether first- or
second-tier interference or both are being considered, and the
average number of users per cell. Due to space constraints,
we illustrate a subset of these combinations to bring out the
salient points about the approach developed in this paper.

The CDF and CCDF of the inter-cell interference power
from a first-tier cell with power control only are plotted
in Figure 2. It can be seen that the lognormal is a better
approximation for the CDF as well as the CCDF than the
Gaussian and Edgeworth approximations. While not perfect,
the lognormal is two orders of magnitude more accurate in
approximating the CDF than the Gaussian. This is because the
Gaussian CDF, say with mean 𝜇𝐺 and variance 𝜎2𝐺, in fact,
saturates for small interference values at 𝑄(𝜇𝐺/𝜎𝐺). On the
other hand, this saturation does not happen for the lognormal
CDF. As the interference, 𝑅, tends to 0, the lognormal CDF
equals 𝑄

(
∣log𝑒(𝑅)∣

𝜎eq

)
, which also tends to 0. The lognormal

approximation is also much better in tracking the CCDF of
the interference.

The case with power control and cell selection is considered
in Figure 3, which plots the CDF and CCDF of the inter-cell
interference from a first-tier cell for 𝐾 = 𝜆𝐴 = 30. While
the Edgeworth approximation is better than the Gaussian
approximation, the lognormal continues to better model the
simulated CDF and the CCDF. Interestingly, the lognormal’s
accuracy in tracking the CDF improves as 𝐾 increases from
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Fig. 2. CDF and CCDF of interference power from a first-tier cell with
power control and 10 users per cell on average.
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Fig. 3. CDF and CCDF of interference power from a first-tier cell with
power control and cell selection with ∣Γx𝑖 ∣ = 3 and 30 users per cell on
average.

10 to 30, and starts degrading only when 𝐾 exceeds 50 (figure
not shown).

Finally, the statistics of the total interference from all first-
tier and second-tier cells in the presence of only power control
and both power control and cell selection (with two cells in
the handoff set) is plotted in Figures 4 and 5, respectively.
The interference also includes contributions, if any, from
users located within the reference cell. Now, the difference
between the Edgeworth and Gaussian approximations dimin-
ishes. While the lognormal remains a better model than the
Gaussian, the former’s relative inaccuracy increases as the
total number of interferers has increased considerably. Thus,
several observations made in the literature when the number of
lognormal summands (and their parameters) is fixed [3], [5],
[10] carry over to our problem despite the additional sources
of randomness in the uplink.

V. CONCLUSIONS

We developed an alternate characterization of the statistical
distribution of the inter-cell interference power observed in
the uplink of CDMA systems. For this, we extended the
moment-matching approach to determine the parameters of the
approximating lognormal distribution. The approach captured
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Fig. 4. CDF and CCDF of total interference power from all first-tier and
second-tier cells with power control and 10 users per cell on average.
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Fig. 5. CDF and CCDF of the total inter-cell interference power (from first-
tier and second-tier cells and from within reference cell) for ∣Γx𝑖 ∣ = 2 and
10 users per cell on average.

the underlying wireless channel propagation parameters, and
also accounted for the additional randomness introduced in the
shadowed interference power due to randomness in the number
of users and their spatial locations. Both power control and cell
selection were accommodated in the approach. The lognormal,
while not perfect, turned out to be considerably more accurate
than the Gaussian in approximating both the CDF and CCDF
of the interference power. Interestingly, several insights for the
well-studied case where the number of lognormal summands
is fixed (and so are their parameters) carry over to the uplink
scenario as well. The results also show that scope for further
improvement in the accuracy of the lognormal approximation
remains.
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