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Abstract—Inter-carrier interference (ICI) due to time-
variations of the channel and phase noise is a critical issue
in current orthogonal frequency division multiplexing (OFDM)
systems. For the discrete-time formulation of OFDM and the
general case of partially occupied contiguous subcarriers, we
present exact expressions for the average ICI power at each
subcarrier. These lead to insightful lower and upper bounds
for the bandwidth-averaged ICI power, which bring out the
combined impact of Doppler spread and phase noise statistics.
The bounds are tighter than those in the literature, which employ
a tractable, but less accurate, continuous-time formulation and
assume infinitely many subcarriers.

Index Terms—phase noise, inter-carrier interference, OFDM,
auto-correlation, Doppler spread, bounds.

I. INTRODUCTION

5G new radio (NR) based wireless systems use higher order
modulation schemes and the large bandwidths available in
mmWave frequency bands to meet the ever-increasing data
rate requirements and boost network capacity. However, the
higher carrier frequencies in the mmWave bands cause a
large Doppler spread even in moderate mobility scenarios.
Furthermore, instabilities in the local oscillators used for
generating these carriers at the transmitter and receiver cause
phase noise. Doppler spread and phase noise lead to inter-
carrier interference (ICI) in an orthogonal frequency division
multiplexing (OFDM) receiver, and can cause a severe degra-
dation in its performance [1] [2]. Even in the sub-6 GHz
bands, phase noise degrades the performance of the receiver
for higher order modulation schemes.

To alleviate the effects of Doppler and phase noise, a
numerology with a higher subcarrier spacing can be used
to mitigate ICI at higher carrier frequencies. Additional de-
modulation reference signals can be transmitted to improve
channel estimation in high-mobility scenarios. In addition,
phase tracking reference signals (PTRSs) are transmitted
to estimate and compensate the distortion caused by phase
noise [3]. Therefore, a detailed analysis of the combined
effects of Doppler and phase noise on OFDM in the context
of 5G systems is essential.
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A. Literature Survey
The literature on ICI and phase noise spans several decades.

In [1], ICI in multiple-input-multiple-output (MIMO) OFDM
systems is analyzed and time-domain mitigation techniques
are proposed. In [4], channel estimation and detection meth-
ods are proposed for OFDM receivers impaired by ICI due to
time-varying channels. In [5], insightful bounds are derived
that bring out the quadratic dependence of the ICI power
on Doppler spread. However, infinitely many subcarriers
and a simpler continuous-time model are assumed. In the
continuous-time model, the signal transmitted does not de-
pend on the discrete Fourier transform (DFT) length; only
the OFDM symbol duration matters [5]. In [6], bounds are
derived again using a continuous-time formulation for the ICI
power. While a more realistic discrete-time formulation is also
considered, no bounds are derived from it.

In [7], measurements of error vector magnitude and phase
error, after phase noise compensation, in a pre-5G mmWave
testbed are compared with simulations. In [2], the mean
square error of the transmitted data in mmWave time-varying
channels impaired by phase noise is derived. In [8], a non-
iterative solution using linear minimum mean squared-error
estimation is proposed for the joint estimation problem of
phase noise and channel in mmWave systems. To mitigate
phase noise, a block PTRS structure is proposed for OFDM
systems operating beyond 52.6 GHz in [9]. In [10], an
analytical framework is proposed to specify the required
power spectral density mask for phase noise in mmWave
massive MIMO systems for a target signal-to-interference-
noise ratio. In [11], an iterative, joint phase estimation and
decoding algorithm is proposed for low density parity check
and turbo codes in channels affected by phase noise.

B. Focus and Contributions
In this paper, we present an analysis of the ICI power en-

countered by OFDM systems that accounts for the combined
effect of time-varying channels and phase noise.
• For the discrete-time model of the OFDM signal and

channel, we derive exact expressions for the bandwidth-
averaged ICI power in non-line-of-sight (NLoS) and line-
of-sight (LoS) channels. The expressions account for the
combined effect of time-variations in the channel and
phase noise. They differ from the expressions in [5],
which assume infinitely many subcarriers, use an ana-
lytically simpler – but less accurate – continuous-time
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formulation, and do not consider phase noise. We find
that the lower bound that this simplification leads to can
even exceed the actual ICI. Our results also apply to the
partially occupied case in which only some subcarriers
are occupied and contiguous. This is unlike [5], [6],
which assume that all the subcarriers are occupied.

• We then derive insightful bounds for the ICI power that
bring out its dependence on Doppler spread, and phase
noise bandwidth and variance. We observe that these
bounds are tighter compared to those in [5] and [6]
for the tapped delay line (TDL) LoS and NLoS channel
models specified for 5G in 3GPP.

C. Outline and Notation

In Section II, we present the OFDM system model. In
Section III, we analyze ICI in wideband fading channels
in the presence of phase noise and derive bounds for its
bandwidth-averaged power. Numerical results are presented
in Section IV. Our conclusions follow in Section V.

Notation: The conjugate of a complex number z is denoted
by z∗. The notation X ∼ CN (σ2) means that X is a
zero-mean, circularly symmetric complex Gaussian random
variable (RV) with variance σ2. Expectation is denoted by
E[·].

II. SYSTEM MODEL

Consider an OFDM system in which the transmitted signal
is given by

s [n] =

√
PT
Z

O+Z−1∑
u=O

∞∑
m=−∞

xu,mg [n−mNT ]

× ej 2πu
N [n−NCP−mNT ], (1)

where xu,m is the symbol transmitted over subcarrier u
of OFDM symbol m and NT is the number of samples
in the OFDM symbol duration including cyclic prefix. It
has Z ≤ N contiguous occupied subcarriers with indices
O,O + 1, . . . , O + Z − 1. The transmit power is PT . Also,
E
[
|xu,m|2

]
= 1 and NT = N + NCP, where N is the DFT

length. The OFDM symbol duration Ts equals NTsamp, where
Tsamp is the sampling duration, and the cyclic prefix duration
TCP equals NCPTsamp. The transmit window g [n] is 1 for
0 ≤ n < NT , and is 0 otherwise.1

The received signal y [n] after passing through a wideband
time-varying multipath channel is given by

y [n] = ejφ[n]
L−1∑
l=0

hl [n] s [n− l] + ω [n] , (2)

where {hl [n]}L−1l=0 are the time-varying channel taps, which
are zero-mean, wide sense stationary, and uncorrelated [12,
Ch. 3], φ [n] is the phase noise at the receiver, and ω [n] is

1In the continuous-time model, the continuous-time
equivalent signal s(t) of s[n] is given by s(t) =√
PT
Z

∑O+Z−1
u=O

∑∞
m=−∞ xu,mg (t−mTs) ej

2πu
Ts

(t−TCP−mTs).
Note that this is not a function of N .

additive white Gaussian noise (AWGN) with variance σ2. The
auto-correlation rl [w] of the lth channel tap is

rl [w] , E [hl [n+ w]h∗l [n]] . (3)

For example, for the classical Jakes’ fading model, we have
rl [w] = rl [0] J0(2πfdwTsamp), where J0(·) is the zeroth-
order Bessel function of the first kind and fd is the Doppler
spread. Without loss of generality, let

∑L−1
l=0 rl [0] = 1.

The phase noise is a filtered wide-sense stationary Gaussian
random process with bandwidth fp and has a variance σ2

φ [13].
Its auto-correlation rφ [w] is rφ [w] , E [φ [n]φ [n+ w]].

The demodulated signal ŷk,m at occupied subcarrier k of
OFDM symbol m is given by

ŷk,m =
1√
N

∞∑
n=−∞

y [n] q [n−mNT ]

× e−j 2πk
N [n−NCP−mNT ], (4)

where q [n] is the rectangular receive window; it is 1 for
NCP ≤ n < NT , and is 0 otherwise.

III. ICI ANALYSIS AND BOUNDS

From (4), the instantaneous ICI IICI [k,m] at occupied
subcarrier k, for O ≤ k ≤ O+Z − 1, and OFDM symbol m
can be shown to be

IICI [k,m] =

√
PT
NZ

L−1∑
l=0

O+Z−1∑
u=O,u6=k

(m+1)NT−1∑
n=NCP+mNT

ejφ[n]hl [n]

× xu,mej
2π
N (u−k)[n−NCP−mNT ]e−j

2π
N lu. (5)

The average ICI power at occupied subcarrier k is defined as
PICI [k] , E

[
|IICI [k,m]|2

]
. It is not a function of m because

the channel and phase noise are wide-sense stationary. The
bandwidth-averaged ICI power P ICI is defined as

P ICI ,
1

Z

O+Z−1∑
k=O

PICI [k] . (6)

Note that it averages PICI [k] over the occupied subcarriers.
Result 1: The average ICI power PICI [k] on occupied

subcarrier k is given by

PICI [k] =
PT
NZ

O+Z−1∑
u=O,u6=k

N−1∑
w=−(N−1)

L−1∑
l=0

erφ[w]−σ2
φrl [w]

× (N − |w|)ej 2π
N (u−k)w. (7)

Proof: The proof is given in Appendix A.
We note that the average ICI power depends on the occu-

pied subcarrier index k. This is unlike [6], in which the ICI
power is the same for all subcarriers because the number of
occupied subcarriers is equal to the DFT length. In such a
case, every subcarrier has the same set of spectral distances
to the remaining subcarriers. Substituting unity for the terms
rφ [w] and σ2

φ in (7) and simplifying yields the result in [1] for
the single-input-single-output case and the expression in [4,
(A7)].

This article has been accepted for publication in IEEE Wireless Communications Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LWC.2022.3207322

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on November 12,2022 at 15:32:24 UTC from IEEE Xplore.  Restrictions apply. 



As shown in Appendix B, the bandwidth-averaged ICI
power is given by

P ICI =
PT
NZ2

L−1∑
l=0

N−1∑
w=−(N−1)

erφ[w]−σ2
φrl [w] (N − |w|)

×

( sin
(
πZw
N

)
sin
(
πw
N

) )2

− Z

 . (8)

From (8), we see that P ICI depends on the total power PT ,
the number of occupied subcarriers Z, the auto-correlation
functions of the channel and the phase noise, and the DFT
length N .2 It is not a function of O.

The above result applies to LoS and NLoS fading
channels. In an NLoS channel, hl [n] ∼ CN (rl [0]), for
0 ≤ l ≤ L − 1. In an LoS channel, the first tap
h0 [n] corresponds to a specular path. It can be written
as h0 [n] =

√
r0 [0]

(√
K
K+1e

jθ +
√

1
K+1 h̃0 [n]

)
, where

K is the Rician-factor, θ is a uniform RV over [−π, π),
and h̃0 [n] ∼ CN (1). The auto-correlation for h0 [n] then
becomes r0 [w] = r0 [0]

(
K+r̃0[w]
K+1

)
, where r̃0 [w] is the auto-

correlation of h̃0 [n].
To gain more insights, consider the case without phase

noise. Then, the expression for PICI [k] in (7) simplifies to

PICI [k] =
PT
NZ

O+Z−1∑
u=O,u6=k

N−1∑
w=−(N−1)

[
r̂0 [w] +

L−1∑
l=1

rl [w]

]
× (N − |w|)ej 2π

N (u−k)w, (9)

where r̂0 [w] is r̃0 [w] r0 [0] /(K + 1) and r0 [w] for LoS and
NLoS channels, respectively. For LoS channels, the specular
component of the Rician tap does not contribute to the ICI
power.

A. Bounds

Let rl (τ) , E
[
ej(φ(t+τ)−φ(t))hl (t+ τ)h∗l (t)

]
denote

the composite auto-correlation, which captures the combined
effects of phase noise and Doppler spread. Let α1,l =∫∞
−∞ f2Sl (f) df and α2,l =

∫∞
−∞ f4Sl (f) df denote the sec-

ond and fourth moments, respectively, of the power spectrum
Sl (f) of rl (τ). Using the time-differentiation property of the
Fourier transform, we can show that

α1,l = −r′′l (0) /(4π2) and α2,l = r′′′′l (0) /(16π4), (10)

where r′′l (τ) and r′′′′l (τ) are the second and fourth deriva-
tives, respectively, of rl (τ). In terms of the individual auto-

2For the general case of non-contiguous subcarriers, when the indices of
the occupied subcarriers are k0, k1, . . . , kZ−1, P ICI can be shown to be

P ICI =
PT

NZ2

Z−1∑
i=0

Z−1∑
j=0,j 6=i

N−1∑
w=−(N−1)

L−1∑
l=0

erφ[w]−σ2
φrl [w] (N−|w|)

× ej
2π
N

(kj−ki)w.

correlations for phase noise and channel, we can show that

α1,l = −
(
r′′l (0) + 2r′l(0)r

′
φ(0)

+ rl(0)
[
r′′φ(0) +

(
r′φ(0)

)2])
/(4π2),

(11)

α2,l =
(
r′′′′l (0) + 4r′′′l (0)r′φ(0) + 6r′′l (0)

[
r′′φ(0) +

(
r′φ(0)

)2]
+ 4r′l(0)

[
r′′′φ (0) + 3r′φ(0)r

′′
φ(0) +

(
r′φ(0)

)3]
+ rl(0)

[
r′′′′φ (0) + 3

(
r′′φ(0)

)2
+ 6

(
r′φ(0)

)2
r′′φ(0)

+
(
r′φ(0)

)4
+ 4r′′′φ (0)r′φ(0)

])
/(16π4).

(12)

Result 2: In an NLoS channel, the bandwidth-averaged ICI
power P ICI is lower and upper bounded as follows:

P ICI ≤
PT
NZ2

[
NZ(Z −N) + 2ψ [0, Z]

+
α2

12
ψ [4, Z]

(
2πTs
N

)4

+
α1

12

[
ZN2

(
N2 − 1

)
− 12ψ [2, Z]

](2πTs
N

)2
]
, (13)

P ICI ≥
PT
NZ2

[
NZ(Z −N) + 2ψ [0, Z]

− α2

12
Zψ [4, 1]

(
2πTs
N

)4

+
α1

12

[
ZN2

(
N2 − 1

)
− 12ψ [2, Z]

](2πTs
N

)2
]
, (14)

where α1 =
∑L−1
l=0 α1,l, α2 =

∑L−1
l=0 α2,l, and the function

ψ is defined as

ψ [p, q] ,
N−1∑
w=1

wp(N − w)
(
sin(πwq/N)

sin(πw/N)

)2

. (15)

Proof: The proof is given in Appendix C.
The coefficients α1 and α2 capture the combined effect

of Doppler spread and phase noise. For example, when
the phase noise has a uniform power spectrum (which lies
between −fp and fp) and the channel taps follow the Jakes’
Doppler spectrum, α1 = f2d/2 + f2pσ

2
φ/3 and α2 = 3f4d/8 +

f2df
2
pσ

2
φ/2 + f4p

(
σ2
φ/5 + σ4

φ/3
)

. Thus, the ICI power is
proportional to the sum of the squares of the Doppler spread
and the phase noise variance multiplied by the square of the
phase noise bandwidth. The above bounds show that the ICI
power depends upon the DFT length N and the number of
occupied subcarriers Z. The bounds for the LoS channel case
can be obtained similarly and are not shown to conserve space.

IV. NUMERICAL RESULTS

We now present Monte Carlo simulation results to un-
derstand the behavior of the ICI power and evaluate the
tightness of its bounds for the partially occupied subcarriers
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Fig. 1. Normalized bandwidth-averaged ICI power and bounds in TDL-C
NLoS channel (N = 64, Z = 16, Ts = 66.67 µs, and a delay spread of
100 ns).

case for different values of Z and N . The subcarrier spacing
is 15 kHz, the sampling rate is 7.68 MHz, and the OFDM
symbol duration is 66.67 µs. We use the TDL-C and TDL-D
channel models that are specified in 5G NR for NLoS and LoS
channels, respectively [14, Tables 7.7.2-3, 7.7.2-4]. Each tap
undergoes Jakes’ fading. The TDL-C model has 24 taps. The
TDL-D model has 13 taps and a larger delay spread. Its first
LoS tap has a Rician-factor of 13.3 dB. The phase noise has a
uniform power spectral density between −fp and fp Hz. The
simulation results are averaged over 10000 channel and phase
noise realizations. The ICI powers and bounds are normalized
with respect to the power per subcarrier.

Fig. 1 plots the normalized bandwidth-averaged ICI power
and its lower and upper bounds as a function of the scaled
Doppler spread fdTs for the TDL-C channel model with a
delay spread of 100 ns. We benchmark our results with the
upper and lower bounds from [5], and the universal bound
1 from [6], all of which are based on a continuous-time
formulation and assume that N is large and Z = N . Since
the bounds in [5] and [6] apply without phase noise, we do
not consider phase noise in this plot. We observe that our
upper and lower bounds are both tight. The lower bound is
indistinguishable from the exact curve even at large values
of fdTs. On the other hand, the lower bound in [5, (3.9)]
can even exceed the exact value for smaller N due to the
simplifications made by the continuous-time formulation. The
upper bound is tighter than the upper bound of [5, (3.10)] and
the universal bound 1 of [6, (25)] by 0.6 to 0.8 dB and 0.6
to 1.6 dB, respectively.

Fig. 2 plots the normalized bandwidth-averaged ICI power
as a function of the scaled phase noise bandwidth fpTs for
different Doppler spreads and different numbers of occupied
subcarriers for the TDL-D channel model with a delay spread
of 100 ns. fp ranges from 10 Hz to 3.7 kHz. Also shown
are the normalized bounds and the normalized ICI power at

0 0.05 0.1 0.15 0.2 0.25
-21
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-14

exact
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lower bound

simulation

ICI power at subcarrier 3

Fig. 2. Normalized bandwidth-averaged ICI power in TDL-D LoS channel
(N = 256, delay spread of 100 ns, σφ = 0.5 radians, and Ts = 66.67 µs).

subcarrier 3. We see that both bounds are tight. The ICI power
at subcarrier 3 is not equal to the bandwidth-averaged ICI
power because not all subcarriers are occupied. This is in
contrast to the Z = N case considered in [6], where every
subcarrier has the same ICI power. As Z/N increases, the
normalized ICI power increases.

V. CONCLUSIONS

We derived expressions for the average ICI power in LoS
and NLoS channels, which captured the combined effect of
the Doppler spread and phase noise. Our approach employed
the more realistic discrete-time model. It applied to the case
in which only fraction of subcarriers were occupied and were
contiguous. This led to the ICI power being different for
different subcarriers. We also derived insightful lower and
upper bounds for the bandwidth-averaged ICI power. They
brought out its dependence on the Doppler spread, phase
noise variance, number of occupied subcarriers, and phase
noise bandwidth. Both bounds were tight over a wide range
of Doppler spreads and phase noise bandwidths. They were
much tighter than the ones in the literature, which employed
a simpler, but less accurate, continuous-time formulation and
assumed an infinite number of subcarriers.

APPENDIX

A. Proof of Result 1

Let hl [n] = ejφ[n]hl [n]; we shall refer to it as the compos-
ite channel’s lth tap. Since {hl [n]}L−1l=0 are uncorrelated and
are independent of φ [n],

{
hl [n]

}L−1
l=0

are also uncorrelated.
The auto-correlation rl [w] of the composite channel taps is
given by

rl [w] = E
[
hl [n+ w]h

∗
l [n]

]
. (16)

The transmit symbols {xu,m}O+Z−1
u=O are independent and

identically distributed with zero-mean and unit variance.
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Therefore, substituting n′ = n − NCP − mNT in (5) and
simplifying, we get

PICI [k] =
PT
NZ

O+Z−1∑
u=O,u6=k

L−1∑
l=0

E

[∣∣∣∣∣
N−1∑
n′=0

hl [n
′ +NCP +mNT ]

× ej 2π
N (u−k)n′

∣∣∣∣∣
2]
. (17)

Expanding the expectation terms using (16), and applying the
transformation s− t = w, we get

PICI [k] =
PT
NZ

O+Z−1∑
u=O,u6=k

L−1∑
l=0

N−1∑
w=−(N−1)

rl [w] (N − |w|)

× ej 2π
N (u−k)w. (18)

As the phase noise is independent of the channel tap gains,
we get

rl [w] = E
[
ej(φ[n+w]−φ[n])

]
rl [w] . (19)

Since φ [n] is a wide-sense stationary Gaussian random
process, (φ [n+ w]− φ [n]) is a zero-mean Gaussian RV
with variance 2σ2

φ − 2rφ [w]. Its moment generating function
E
[
et(φ[n+w]−φ[n])] evaluated at t = j is erφ[w]−σ2

φ . Substi-
tuting this in (19), we get

rl [w] = erφ[w]−σ2
φrl [w] . (20)

Substituting (20) in (18) yields (7).

B. Derivation of (8)

Substituting (7) in (6), k′ = k − O, u′ = u − O, and
changing the order of summation, we get

P ICI =
PT
NZ2

L−1∑
l=0

N−1∑
w=−(N−1)

erφ[w]−σ2
φrl [w] (N − |w|)

Z−1∑
k′=0

e−j
2π
N k′w

Z−1∑
u′=0,u′ 6=k′

ej
2π
N u′w. (21)

Now,
∑Z−1
u′=0,u′ 6=k′ e

j 2π
N u′w =

sin(πZwN )
sin(πwN )

ej
π
N (Z−1)w − ej 2π

N k′w

and
∑Z−1
k′=0 e

−j 2π
N k′w

∑Z−1
u′=0,u′ 6=k′ e

j 2π
N u′w =

sin2(πZwN )
sin2(πwN )

−Z.
Substituting these in (21) yields (8).

C. Proof of Result 2

We start directly from the upper and lower bounds that
are derived in [5, Sec. III-B] for the auto-correlation rl [w]
of the lth composite channel tap. These use the inequality(
θ2/2

)
−
(
θ4/24

)
≤ 1 − cos θ ≤

(
θ2/2

)
. We obtain the

following two inequalities for rl [w]:

rl [w] ≥ rl [0]−
α1,l

2

(
2πfdwTs

N

)2

, (22)

rl [w] ≤ rl [0]−
α1,l

2

(
2πfdwTs

N

)2

+
α2,l

24

(
2πfdwTs

N

)4

.

(23)

Substituting the upper bound (23) for rl [w] and lower
bound (22) for −rl [w] in (8), we get

P ICI ≤
PT
NZ2

L−1∑
l=0

[
rl [0]NZ (Z − 1)

+ 2Z

N−1∑
w=1

(
α1,l

2

(
2πwTs
N

)2

− rl [0]

)
(N − w)

+ 2

N−1∑
w=1

(
rl [0]−

α1,l

2

(
2πwTs
N

)2

+
α2,l

24

(
2πwTs
N

)4
)

× (N − w)

(
sin
(
πZw
N

)
sin
(
πw
N

) )2]
. (24)

Substituting
∑N−1
w=1 w

2 (N − w) = N2
(
N2 − 1

)
/12 and∑L−1

l=0 rl [0] = 1, using the definition of the function ψ
in (15), and rearranging terms, we get (13). Substituting the
lower bound in (22) for rl [w] and upper bound in (23)
for −rl [w] in (8), and simplifying along the above lines
yields (14).
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