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Abstract—Accurately characterizing the time-varying interfer-
ence caused to the primary users is essential in ensuring a
successful deployment of cognitive radios (CR). We show that
the aggregate interference at the primary receiver (PU-Rx) from
multiple, randomly located cognitive users (CUs) is well modeled
as a shifted lognormal random process, which is more accurate
than the lognormal and the Gaussian process models considered
in the literature, even for a relatively dense deployment of CUs. It
also compares favorably with the asymptotically exact stable and
symmetric truncated stable distribution models, except at high
CU densities. Our model accounts for the effect of imperfect
spectrum sensing, which depends on path-loss, shadowing, and
small-scale fading of the link from the primary transmitter to the
CU; the interweave and underlay modes of CR operation, which
determine the transmit powers of the CUs; and time-correlated
shadowing and fading of the links from the CUs to the PU-Rx. It
leads to expressions for the probability distribution function, level
crossing rate, and average exceedance duration. The impact of
cooperative spectrum sensing is also characterized. We validate
the model by applying it to redesign the primary exclusive zone
to account for the time-varying nature of interference.

Index Terms—Cognitive radio, interference, spectrum sensing,
underlay, interweave, shadowing, fading, time-variations, ran-
dom process, lognormal, primary exclusive zone.

I. INTRODUCTION

COGNITIVE radio (CR) offers a promising solution to
the problem of under utilization of the spectrum. A

common paradigm of CR classifies users into two categories,
namely, primary users (PUs), which have unfettered access
to the spectrum, and cognitive users (CUs), which can use
the spectrum but under tight constraints on the aggregate
interference their transmissions cause to the PUs [1]–[6]. A
successful design and deployment of CR, therefore, requires
as a first step an accurate model for the aggregate interference
caused to the PUs by transmissions from one or many CUs.
This characterization feeds into the design and evaluation
of transmission policies for the CUs and techniques to help
mitigate their interference.

Several factors together affect the aggregate interference,
and must be accounted for in order to arrive at an accurate
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model for it. It is affected by propagation characteristics of
the channels between the CUs and PUs, such as path-loss,
shadowing, and fading. Furthermore, the number of CUs that
transmit and their locations affect the interference. Imperfect
spectrum sensing also directly affects it as it determines the
CUs’ transmit powers and whether or not they transmit. The
use of cooperation, in which the CUs cooperate with each
other and fuse their decisions, affects the accuracy of spectrum
sensing and, thus, the aggregate interference.

Given the importance of interference modeling in CR,
one of the approaches pursued in the literature is based on
measurements from test deployments [7]–[9]. However, these
deployments are typically small because of the difficulty in
setting up an experiment with many interferers that captures
the many sources of randomness. Furthermore, the models
deduced are location-specific. Therefore, a second approach
has focused on developing statistical models for the aggregate
interference [1]–[5]. However, no closed form exists for its
probability distribution function (PDF). Therefore, several
approximate analytical models have been investigated.

Interference in Underlay CR Mode: In the underlay mode,
a CU can transmit even when it senses that the PU transmitter
(PU-Tx) is transmitting [10]. However, it does so with a much
lower power in order to avoid excessive interference to the
PU receiver (PU-Rx). In [5], the aggregate interference at the
PU-Rx from a fixed number of CUs, which are distributed
uniformly over a region, is modeled as a lognormal random
variable (RV). However, only large-scale shadow fading is
taken into account. A spatial Poisson point process (SPPP)
model is instead assumed to model the randomness in the CU
number and locations in [4], and the aggregate interference
is modeled as a lognormal RV. Power control as well as
contention control, in which CUs too close to each other do
not transmit simultaneously, are accounted for. Furthermore,
lognormal shadowing and Nakagami-m fading are modeled.
However, imperfect spectrum sensing and the time-varying
nature of aggregate interference are not studied in [4], [5].

Interference in Interweave CR Mode: In the interweave
mode, a CU transmits only when it senses the PU-Tx to be
off [10]. The transmission can be in the same band as the
PU-Tx or in a different band. In [2], the amplitude of the
aggregate interference is modeled as a symmetric truncated-
stable (STS) RV. Unlike the stable distribution model [1],
the STS model ensures finite second and higher moments.
An SPPP model determines the CU locations and an energy
detector (ED) is used for spectrum sensing. A detect-and-
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avoid strategy in which the transmit power level of the CU
is adapted based on the received signal strength is considered.
Cooperative spectrum sensing is accounted for in [3], which
models the aggregate interference as a shifted lognormal
(SLN) RV assuming an SPPP model for the CUs. However,
time variations are not modeled in [1]–[3].

A. Contributions

We develop a comprehensive model for the aggregate inter-
ference that captures its snapshot statistics, i.e., PDF, as well as
its time-variation statistics, which is measured in terms of the
auto-correlation function, average level crossing rate (LCR),
and average exceedance duration (AED) [11]. We show that
the aggregate interference is well modeled as a wide sense
stationary (WSS) SLN random process (RP), except when it
is small. Our model allows the CUs to operate in both the
interweave and underlay modes, in which they transmit in the
same band as the PU-Tx with a high power when they sense
the PU-Tx to be off and with a low power when they sense the
PU-Tx to be on. It accounts for imperfect spectrum sensing,
which depends on the location of the CU relative to the PU-Tx.
Also, it accounts for the combined effect of time-correlated
shadowing and Rayleigh fading on the various links. We also
extensively benchmark the proposed model with several other
models proposed in the literature. The randomness in the CU
locations and number is also captured using the SPPP model.

We then develop a corresponding model for the aggregate
interference for cooperative spectrum sensing, in which CUs
that are close to each other cooperate and arrive at a common
decision. We show that the SLN RP again models the aggre-
gate interference well, except when it is small, and brings out
the reduction in the aggregate interference due to cooperation.

We then demonstrate the usefulness and tractability of the
proposed model by refining the design of the primary exclusive
zone (PEZ) [4], [12], [13]. The PEZ is defined as the region
around the PU-Rx within which no CU is allowed to transmit,
and helps protect the PU-Rx from excessive interference. Its
area affects the aggregate interference experienced by the PU-
Rx. We propose a novel criterion for determining the PEZ
radius that incorporates the impact of the time-varying nature
of the aggregate interference.

B. Comparisons with Literature

The SLN model has been considered before in the litera-
ture [3], [14]. Further, our channel model and the SPPP model
for CUs is similar to that in [3]. However, the generalization
from an SLN RV to an SLN RP, and the demonstration of its
accuracy in modeling the time-varying nature of the aggregate
interference when all the aforementioned physical layer effects
are accounted for is novel and is a contribution of this paper.
The following is a list of our specific contributions and the
many ways in which our approach and results differ from those
in [3] and other related works [1], [2], [12]–[17]:

• Overall goal: While [3] focuses on characterizing the
snapshot statistics and models the aggregate interference
as an SLN RV, we characterize the time-varying behavior
of the aggregate interference as it also affects the PU-Rx.
For example, in [15], it has been argued that long dips

in the signal-to-noise-plus-interference-ratio (SINR) are
detrimental to the PU-Rx. Our model is also more general
than the LCR analysis in [16], which considers a system
with one CU and one PU, only models shadowing, and
assumes perfect spectrum sensing.
While the stable model is provably accurate in the asymp-
totic regime of a large number of CUs [1], generalizing
it or the STS model to incorporate time-variations is an
open problem. These two models also require accurate,
numerically stable techniques to compute the cumula-
tive distribution function (CDF) from the characteristic
function (CF) that they characterize. Furthermore, as we
shall see, the asymptotic exactness manifests itself only
at higher CU densities. In [17], the aggregate interference
is instead modeled as a gamma RP. However, shadowing
and imperfect spectrum sensing are not modeled and the
number of CUs is assumed to be fixed. In [14], the SLN
RV has instead been used for approximating the decision
statistics of a multichannel energy detector. Thus, its
model and results are very different from ours.

• Analytical results: While moments of the aggregate in-
terference are derived in [3], we derive new expressions
for the moments and the autocorrelation of the aggregate
interference. These then help determine all the parameters
that are required to specify the SLN RP, and beget new
analytical results for the LCR and AED of the aggregate
interference. Our moment expressions also turn out to be
different due to differences in our CU transmission and
spectrum sensing models, which are summarized below.

• CU transmission model: While [3] focuses on the inter-
weave mode, we analyze a hybrid mode of operation that
combines the interweave and underlay modes.

• Spectrum sensing model: In [3], an out-of-band spectrum
sensing model is assumed in which each CU senses the
signal it receives from the full-duplex PU-Rx on a sep-
arate control channel. In our model, however, spectrum
sensing is based on the signal received from the PU-Tx
and is in-band [2], [18]. This also avoids the need for
the CUs to simultaneously sense an out-of-band beacon.
Another difference, which also affects spectrum sensing,
is that we incorporate the PEZ in our model.

• Extensive benchmarking and application: Our paper also
demonstrates the utility of the proposed RP model by
applying it to the design of the PEZ, and showing that it is
reasonably accurate over a wide range of parameters. This
is unlike [3]. Further, the benchmarking of the proposed
model is more extensive in our paper.

• New PEZ design criteria: The incorporation of the time-
varying nature of the interference in the PEZ design is
a contribution of the paper, and has not been considered
in [12], [13]. Further [12], did not consider imperfect
spectrum sensing, shadowing, and small-scale fading,
while imperfect spectrum sensing was not modeled
in [13]. Our quantification of how cooperative spectrum
sensing shrinks the PEZ is also novel.

The paper is organized as follows. Sec. II describes the
system model. The aggregate interference process model is
developed in Sec. III. Cooperative spectrum sensing is con-
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Fig. 1. System model showing the spectrum sensing by the CUs that are
scattered over a region of area A.

sidered in Sec. IV. Simulation results and PEZ redesign are
presented in Sec. V. Our conclusions follow in Sec. VI.

II. SYSTEM MODEL

We shall use the following notation. Expectation is denoted
by E [.], and EX [.] denotes expectation conditioned over the
RV X . The notation X(t) ∼ N (μX , σ2

X , CX(τ)) shall mean
that X(t) is a WSS Gaussian RP with mean μX , variance σ2

X ,
and covariance function CX(τ). Similarly, X ∼ N (μX , σ2

X)
denotes a Gaussian RV, and X ∼ exp(μ) denotes an expo-
nential RV with mean μ.

A. System Layout

Figure 1 shows the system layout. The number and locations
of the CUs is modeled using a homogeneous SPPP, which is
characterized by a density parameter Υ. Therefore, the number
of CUs NCR that occur in a region of area A is a Poisson
RV with mean ΥA. The PU-Rx is located at the center of
the region and the PU-Tx is located at a distance p from the
PU-Rx on the x-axis. The region of radius RPEZ around the
PU-Rx is the PEZ, within which no CU transmits [4], [12],
[13]. The PEZ can be constructed using an in-band beacon
signal from the PU-Rx or using geo-location [4].1 Note that
this beacon aided model is different from that in [3], in which
the CU transmissions are governed by an out-of-band beacon
sent by the full-duplex PU-Rx anytime the PU-Tx transmits.

B. Channel Model

The power PRi(t) received at the PU-Rx from the ith CU,
which is located at a distance ri(t) from it, is given by

PRi(t) = PK

(
d0
ri(t)

)η

eβXi(t)hi(t), (1)

where P is the transmit power of the CU. The path-loss

component is K
(

d0

ri(t)

)η
, where K =

(
λ

4πd0

)2
, λ is the

carrier wavelength, d0 is the break-point distance, and η is
the path-loss exponent [11]. The Rayleigh fading component is
hi(t) ∼ exp (1). Note that our model can also handle any other

1The CUs within the PEZ are all assumed to know that they are within it.
This is justified because several measurements of the PU-Rx beacon collected
over a sufficiently long duration of time can be used to ensure this.

mean for hi(t). The normalized covariance function Chi(τ)
is given as per the Jakes’ fading model [11]:

Chi(τ) = J2
0 (2πfmτ) , (2)

where fm is the maximum Doppler spread and J0 is the
Bessel function of first kind of order zero [19]. The shad-
owing component is eβXi(t), where β = log 10

10 and Xi(t) ∼
N (

0, σ2
sh, CXi(τ)

)
. The covariance function CXi(τ) is given

by the modified Gudmundson’s model as [15]

CXi(τ) = σ2
sh exp

(
−v2τ2

2D2

)
, (3)

where v is the speed of the CU and D is the decorrelation
distance. The shadowing and fading seen by different CUs on
their links from the PU-Tx and to the PU-Rx are independent
and identically distributed (IID).

C. PU-Tx Based Spectrum Sensing (SS)

The accuracy of SS by the CU depends on the strength of
the signal it receives from the PU-Tx and the SS algorithm
used. We consider the popular ED-based SS algorithm [20]
assuming that all the CUs periodically spectrum sense together
for a short duration.2 In [20], the SS algorithm declares the
PU-Tx to be on if the energy received by the CU from it over
a time T and bandwidth B exceeds a threshold ξ.

For this detector, the false alarm probability PFA at the ith

CU is Q
(

ξ−N0TB
N2

0TB

)
, where N0 is the noise power and Q

is the Gaussian Q function. The correct detection probability
depends on the signal-to-noise-ratio (SNR) γ (Δi, Yi, gi) of
the PU-Tx signal at the CU, which in turn depends on the
distance Δi of the CU from the PU-Tx, shadowing eβYi , and
Rayleigh fading gi during the time of sensing. Here, Yi ∼
N (

0, σ2
sh

)
and gi ∼ exp (1). The expression for the correct

detection probability, denoted by PD(Δi, Yi, gi), in terms of
PFA is [20]

PD(Δi, Yi, gi) = Q

(
Q−1(PFA)− γ (Δi, Yi, gi)

√
TB√

1 + 2γ (Δi, Yi, gi)

)
.

(4)
Note that our model can include other SS algorithms as

well, e.g., [22]; the expressions for PFA and PD will differ.

D. CU Transmission and Interference Model

If a CU detects the PU-Tx to be on, which we refer to
as hypothesis H1, then it operates in the underlay mode and
transmits with a lower power Pu. Else, if the CU detects the
PU-Tx to be off, which we refer to as hypothesis H0, then it
operates in the interweave mode and transmits with a higher
power Po. In both cases, it transmits in the same band as the
PU-Tx. Therefore, from (1), the interference power Ii(t) at
the PU-Rx from the ith CU, which is ri(t) distance away, is

Ii(t)=

⎧⎨
⎩
PuK

(
d0

ri(t)

)η
eβXi(t)hi(t), if H1 is detected,

PoK
(

d0

ri(t)

)η
eβXi(t)hi(t), if H0 is detected.

(5)

2If the CUs sense the spectrum asynchronously then the aggregate inter-
ference from the concurrent transmissions by other CUs has to be taken into
account along the lines of [21].
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Note that this two-level transmit power model may not be
the most suitable one in the presence of interference from
other systems. One possible way to improve it is to use the
more advanced detect-and-avoid strategy [2]. Further, energy
detection might no longer be the right SS method to use since
it cannot differentiate between the sources of interference.

III. INTERFERENCE MODELING: NON-COOPERATIVE SS

The aggregate interference IΣ(t) at the PU-Rx from the
CUs is

IΣ(t) =

NCR∑
i=1

Ii(t). (6)

Our goal is to accurately model the time evolution of IΣ(t)
in between the SS durations when the PU-Tx is on. We now
develop the moment-matching-based WSS SLN RP model, as
per which IΣ(t) is modeled as

IΣ(t) ≈ eZ(t) + s, (7)

where Z (t) ∼ N (
μZ , σ

2
Z , CZ(τ)

)
and s is called the shift

parameter. Our goal is to determine the constants μZ , σZ , and
s, and CZ(τ) by matching them with the corresponding terms
of IΣ(t). To do so, we first express these parameters in terms
of the cumulants of IΣ(t). The cumulants are then written in
terms of E [Ii(t)

m], for m = 1, 2, 3, and E [Ii(t)Ii(t+ τ )],
which are derived in Results 1 and 2. It is here that the main
contribution of this section lies.

In terms of the cumulants of IΣ(t), the parameters μZ , σZ ,
and s are given by [14]

σ2
Z = log

(
1

4
Ψ

2
3 + 4Ψ− 2

3 − 1

)
, (8)

μZ =
1

2
log

(
κIΣ(2)

eσ
2
Z − 1

)
− 1

2
σ2
Z , (9)

s = κIΣ(1)− exp

(
μZ +

1

2
σ2
Z

)
, (10)

where Ψ = 4κIΣ(3) + 4
√
4 + (κIΣ(3))

2 and κIΣ(m) is the
mth cumulant of IΣ(t), which is defined as [19, (26.1.12)]

κIΣ(m) =
1

jm
dm log

(
E
[
ejωIΣ(t)

])
dωm

∣∣∣∣∣
ω=0

,

=
1

jm

dm log
(
ENCR

[(
E
[
ejωIi(t)

])NCR
])

dωm

∣∣∣∣∣∣
ω=0

,

(11)

where j =
√−1. The second equality is obtained by using (6),

conditioning on NCR, and using the fact that all Ii(t), for
1 ≤ i ≤ NCR, are IID for the SPPP that governs the locations
of the CUs. Upon taking the expectation over NCR and then
evaluating the derivative, we get

κIΣ(m) = π
(
R2 −R2

PEZ

)
ΥE [Ii(t)

m] . (12)

The SLN RP model also requires CZ(τ). As shown in
Appendix A, it is equal to

CZ(τ) = log
(
π
(
R2 −R2

PEZ

)
ΥE [Ii(t)Ii(t+ τ)]

+ e2μZ+σ2
Z

)
− (

2μZ + σ2
Z

)
. (13)

A. With Path-loss and Shadowing

We first analyze the case when small-scale fading is aver-
aged out. This is of interest when the PU-Rx can average over
the fast variations of the small-scale fading [11, Chap. 3].

The distance q (ri(t), p, cos θi) between the PU-Tx and the
ith CU is equal to

q (ri(t), p, cos θi) =
√
ri(t)2 + p2 − 2ri(t)p cos θi, (14)

where θi is the azimuth angle of the CU. The PDF pθi of θi
and the PDF pri of ri(t), conditioned on the CU not lying in
the PEZ, are given by

pθi(x) =
1

2π
, 0 ≤ x < 2π,

pri(x) =
2x

R2 −R2
PEZ

, RPEZ ≤ x < R. (15)

Result 1: The mth moment of the interference from an
arbitrary CU i is then given by

E [Ii(t)
m] ≈

2Pm
o Kmdmη

0

(
R2−mη

PEZ −R2−mη
)

(mη − 2) (R2 −R2
PEZ)

e
1
2m

2β2σ2
sh

− 2 (Pm
o − Pm

u )Km

√
πWc (R2 −R2

PEZ)
e

1
2m

2β2σ2
sh

×
Wh∑
n1=1

wh (n1)

Wl∑
n2=1

wl (n2)

Wc∑
n3=1

∫ R

RPEZ

dmη
0

rmη−1
i

× PD

(
q (ri, p, ac (n3)) ,

√
2σshah (n1) , al (n2)

)
dri. (16)

Proof: The proof is given in Appendix B.
Here, wh (n) and ah (n), for n = 1, . . . ,Wh , de-

note the weights and the abscissas, respectively, of Gauss-
Hermite quadrature, ac (n), for n = 1, . . . ,Wc , denote the
abscissas of Gauss-Chebyshev quadrature, and wl (n) and
al (n), for n = 1, . . . ,Wl , denote the weights and the
abscissas, respectively, of Gauss-Laguerre quadrature [19,
(25.4.38),(25.4.45),(25.4.46)].

Result 2: The auto-correlation of the interference from a
CU is given as follows:

E [Ii(t)Ii(t+ τ )] ≈
P 2
oK

2d2η0

(
R2−2η

PEZ −R2−2η
)

(η − 1) (R2 −R2
PEZ)

× e
β2σ2

sh

(
1+exp

(
− v2τ2

2D2

))
− 2

(
P 2
o − P 2

u

)
K2

√
πWc (R2 −R2

PEZ)

× e
β2σ2

sh

(
1+exp

(
− v2τ2

2D2

)) Wh∑
n1=1

wh (n1)

Wl∑
n2=1

wl (n2)

Wc∑
n3=1∫ R

RPEZ

d2η0
r2η−1
i

PD

(
q (ri, p, ac (n3)) ,

√
2σshah (n1) , al (n2)

)
dri.

(17)

Proof: The proof is given in Appendix C.
The final expressions in (16) and (17) are in the form of

single integrals. These cannot be simplified further because
of the presence of the PD term inside the integrand, which
depends on the SS algorithm. It is typically quite involved,
as can be seen from (4). The integrals are easily evaluated
numerically. In general, as the number of the Gauss-quadrature
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terms increases, the error between the integral and the approx-
imating sum decreases [19, (25.4.38),(25.4.45),(25.4.46)]. We
have found that for our problem Wh = Wc = Wl = 6 is
sufficient to ensure accurate complementary CDF (CCDF) and
LCR curves for σsh ≤ 12.

Note that the analysis can be extended to the case where
PU-Rx is not at the center of the region. In this case, the
distance between the ith CU and the PU-Rx, which arises
in (5), changes. However, the expressions of the moments and
the auto-correlation of Ii(t) can still be obtained in a single
integral form. The case where the distance p between the PU-
Rx and PU-Tx is an RV can also be incorporated. In this case,
an additional expectation over p will appear in (16) and (17).

B. With Path-loss, Shadowing, and Fading

If the PU-Rx cannot average over the small-scale fading,
then this should be taken into account in the aggregate in-
terference model. When small-scale fading is also considered
along with path-loss and shadowing, the expression for the
mth moment E [Ii(t)

m] in (32) will get multiplied by a factor
E [hi(t)

m]. Using E [hi(t)
m] = m!, and simplifying further

yields the expressions for moments that contain an additional
factor of m! compared to (16). Similarly, the auto-correlation
E [Ii(t)Ii(t+ τ)] in (35) will get multiplied by a factor
E [hi(t)hi(t+ τ )]. Consequently, from (2), the autocorrelation
in (17) gets scaled by a factor

(
J2
0 (2πfmτ) + 1

)
.

C. CCDF, LCR, and AED of IΣ(t) Based on SLN RP Model

For a threshold Ith, the CCDF of IΣ(t) is given by [3, (23)]:

Pr (IΣ(t) ≥ Ith) = Q
(

log (Ith−s)−μZ

σZ

)
. The LCR LIΣ(t)(Ith)

of IΣ(t) can be obtained from the level crossing theory of
Gaussian processes [23], the key steps for which are shown
below. From [23, Lemma 10.2], the LCR can be written in
terms of Z(t) as

LIΣ(t)(Ith) =

limn→∞

[
n∑

i=1

Pr

(
Z

(
i− 1

n

)
< log (Ith − s) < Z

(
i

n

))]
.

(18)

Using [23, Theorem 10.1], we then get

LIΣ(t)(Ith) =

√
ΩZ

2πσZ
exp

(
− (log (Ith − s)− μZ)

2

2σ2
Z

)
, Ith > s,

(19)
where ΩZ = − d2

dτ2CZ(τ)
∣∣∣
τ=0

is computed from (13) and (17).

Finally, the AED ΨIΣ(t)(Ith) of IΣ(t) is the ratio of the CCDF
and the LCR:

ΨIΣ(t)(Ith) =
Pr (IΣ(t) ≥ Ith)

LIΣ(t)(Ith)
. (20)

IV. INTERFERENCE MODELING: COOPERATIVE SS

We now incorporate cooperative SS into our model, and
characterize how it affects the aggregate interference RP. For
this purpose, we use the OR fusion rule because it is more
preferable than the AND and majority rules from the point of
view of protecting the PU-Rx from excessive interference [3].

In it, a CU that has detected the PU-Tx to be on will broadcast
its decision to the CUs that lie within a cooperation region of
radius RC around it. All these CUs will take a logical OR with
their decision, which means that they will also then assume
that the PU-Tx is on. This is a one shot process – the CUs
do not broadcast their decisions yet again. We assume that
the interference caused by the short transmissions of the CUs
for enabling cooperative SS is negligible. Furthermore, the
communication is assumed to be error-free. This is justifiable
since only one bit of information needs to be communicated,
and can be sent with sufficient protection.

Note that the interference from the CUs will be correlated
because their decisions are correlated due to cooperation. To
make the analysis tractable, we use a decoupling approxima-
tion, in which the interferences from the CUs are assumed to
be uncorrelated, but the effect of correlation in their decisions
is captured in the probability of correct decision. Such a
decoupling approximation has been used to good effect in
analyzing wireless local area networks [24]. With this, the
expressions for the parameters of the SLN RP model of the
aggregate interference with cooperative SS are given by (8),
(9), (10), and (13).

As before, to characterize the aggregate interference with
cooperative SS, we need the expressions for E [Ii(t)

m] and
E [Ii(t)Ii(t+ τ )]. These are given below when path-loss and
shadowing are considered. The distance between the PU-Tx
and the j th CU that is located within the cooperation range
of the ith CU is q (rij(t), q (ri(t), p, cos θi) , cos θij), which is
given by (14), where rij(t) is the distance between the ith and
j th CUs, and θij is the angle subtended by the lines from the
j th CU and the PU-Tx to the ith CU.

Result 3: The mth moment of interference E [Ii(t)
m] from

the ith CU with cooperative SS is then given by

E [Ii(t)
m] ≈

2Pm
o Kmdmη

0

(
R2−mη

PEZ −R2−mη
)

(mη − 2) (R2 −R2
PEZ)

e
1
2m

2β2σ2
sh

− 2 (Pm
o − Pm

u )Km

Wc (R2 −R2
PEZ)

e
1
2m

2β2σ2
sh

Wc∑
n4=1

∫ R

RPEZ

dmη
0

rmη−1
i

×
(
1− 1− f1 (ri, ac (n4))

1− f2 (ri, ac (n4))
e−ΥπR2

Cf2(ri,ac(n4))

)
dri, (21)

where

f1 (ri, ac (n4)) =

Wh∑
n1=1

wh (n1)√
π

Wl∑
n2=1

wl (n2)

× PD

(
q (ri, p, ac (n4)) ,

√
2σshah (n1) , al (n2)

)
, (22)

f2 (ri, ac (n4)) =
2√

πWcR2
C

Wh∑
n1=1

wh (n1)

Wl∑
n2=1

wl (n2)

×
Wc∑

n3=1

∫ RC

0

PD

(
q (rij, q (ri, p, ac (n4)) , ac (n3)) ,

√
2σshah (n1) , al (n2)

)
rijdrij. (23)
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TABLE I
SIMULATION PARAMETERS

Parameter Variable Value
Transmit power of PU-Tx PTx 10 dBm
Transmit power of CU in interweave mode Po 2 dBm
Transmit power of CU in underlay mode Pu -6 dBm
Noise power N0 -100 dBm
Density of CUs Υ 100 CUs/km2

System bandwidth B 1 MHz
Carrier frequency fc 900 MHz
Radius of region considered R 1000 m
Radius of PEZ RPEZ 200 m
Distance between PU-Tx and PU-Rx p 500 m
Path-loss exponent η 4
Standard deviation of shadow fading σsh 6
Break-point distance d0 10 m
Speed of CUs v 5 ms−1

False alarm probability PFA 10%
Spectrum sensing duration T 50 μsec

The auto-correlation E [Ii(t)Ii(t+ τ )] is given by

E [Ii(t)Ii(t+τ)] ≈
P 2
oK

2d2η0

(
R2−2η

PEZ −R2−2η
)

(η − 1) (R2 −R2
PEZ)

× e
β2σ2

sh

(
1+exp

(
− v2τ2

2D2

))
− 2

(
P 2
o −P 2

u

)
K2

Wc (R2 −R2
PEZ)

× e
β2σ2

sh

(
1+exp

(
− v2τ2

2D2

)) Wc∑
n4=1

∫ R

RPEZ

d2η0
r2η−1
i

×
(
1− 1− f1 (ri, ac (n4))

1− f2 (ri, ac (n4))
e−ΥπR2

Cf2(ri,ac(n4))

)
dri. (24)

Proof: The proof is given in Appendix D.
Compared to the expressions for the mth moment and auto-
correlation in Sec. III-A, the PD term is different and the
moments now depend on the cooperation range RC .

As before, when Rayleigh fading is also accounted for, the
expression for E [Ii(t)

m] in (21) will get scaled by a factor m!.
The expression for E [Ii(t)Ii(t+ τ)] in (24) will get scaled by
a factor

(
J2
0 (2πfmτ) + 1

)
.

V. NUMERICAL RESULTS

We now verify our analysis using Monte Carlo simulations.
The parameters used are listed in Table I. The simulations
make measurements over up to 105 drops. In each drop, a
random number of CUs and their locations are generated as per
the SPPP. Each CU moves with a fixed speed v in a randomly
chosen direction. Every CU performs SS as per Sec. II-C, in
case of non-cooperative SS, and as per Sec. IV, in case of
cooperative SS. The aggregate interference IΣ(t) from all the
CUs at the PU-Rx is then measured.

We first present results for non-cooperative SS and then
for cooperative SS. In each case, we show results for the
snapshot statistics and then for the time-varying behavior. For
snapshot statistics, we compare the CDF and the CCDF of
the various models, as has been done in [2]–[5], [25], [26].
The CDF evaluates the accuracy in matching smaller aggregate
interference values, while the CCDF evaluates the accuracy in
matching larger aggregate interference values, where the CDF
saturates to unity. To compare the accuracy in modeling the
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Fig. 2. Non-cooperative SS: Comparison of CDF and CCDF of IΣ(t) from
various models with path-loss and shadowing.

time-variation of the aggregate interference, we study the LCR
of the various models, as has been done in [16], [17], [27].

A. Benchmarking

We compare the SLN model with the following:

• Gaussian model: This model is motivated by the central
limit theorem. In it, IΣ(t) is modeled as a Gaussian RP.

• Lognormal model: In this model, log (IΣ(t)) is modeled
as a Gaussian RP, along lines similar to [27].

• STS model: In this model, the amplitude of IΣ(t) is mod-
eled as an STS RV [2]. The parameters that determine its
CF are obtained by matching the first, second, and fourth
cumulants of the STS RV with the corresponding cumu-
lants of the amplitude of IΣ(t). The CF is numerically
integrated to get the CDF, as closed-form expressions for
the latter are not known. Finally, the CDF of IΣ(t) is
determined using a variable transformation.

• Stable distribution model: In this model, IΣ(t) is modeled
as stable RV [1]. The parameters that determine the CF
are obtained from simulations using the method presented
in [28]. The CDF of IΣ(t) is then obtained by numerically
integrating the CF, as a closed-form expression for it is
not known.

B. Non-cooperative SS: With Path-loss and Shadowing

1) Snapshot Statistics Comparisons: Figure 2 compares the
CDF and the CCDF of the various models when small-scale
fading is averaged out. For lower values of aggregate interfer-
ence (IΣ(t) < −90 dBm), the SLN model underestimates the
CDF. However, none of the models proposed in the literature
are accurate in this regime.3 One reason behind this inaccuracy
is the use of the moment-matching method, which penalizes
less the approximation errors for lower values of interference
than for higher values of the interference [26]. Another reason
is that the probability that IΣ(t) is less than s is zero in the
SLN model. For moderate to high values of the aggregate
interference (IΣ(t) > −90 dBm), the SLN model matches the

3Since the lognormal model overestimates the CDF while the SLN model
underestimates it, better accuracy can be achieved by a mixture model whose
CDF is the arithmetic mean of the CDFs of these two models [29].
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Fig. 3. Non-cooperative SS: Comparison of LCR of IΣ(t) from various
models with path-loss and shadowing.

CCDF well and is more accurate than all the other models.
It captures the skewness of the interference distribution better
than the other models [3]. Note that the −90 dBm value above
arises due to the particular choice of simulation parameters. In
general, it increases as the mean of the aggregate interference
increases.

We see that the Gaussian and lognormal models fail to
provide a good fit. For small values of the interference, the
CDF of the Gaussian model saturates at Q

(
μG

σG

)
, where μG

is the mean and σ2
G is the variance. Intuitively, this failure

is because the rate of convergence of the sum of lognormal
RVs is very slow, which is due to the skewed nature of the
lognormal PDF [30]. The stable distribution model is better in
matching the CDF. However, it gives a poor CCDF match for
higher values of the aggregate interference. The STS model
matches the CCDF better but its CDF saturates for small
values, as was the case with the Gaussian model.

2) Time-varying Behavior Comparisons: The LCR of the
SLN RP model and the benchmark models is shown in Fig. 3.
We see that the LCR curve is not symmetric about the mean
of the aggregate interference, which is because the PDF of the
aggregate interference is asymmetric about its mean [3]. For
low threshold values, the LCR is small because the aggregate
interference mostly stays above it and seldom crosses the
threshold. As the threshold increases, the LCR increases and
reaches a maximum value, which depends on the speed of the
CUs. However, as the threshold increases further, the LCR
again starts decreasing because the interference is less likely
to be high enough to cross it. We again see that the Gaussian
RP model is quite inaccurate for both small and large values
of interference. For Ith < −90 dBm, the lognormal RP model
overestimates the LCR while the SLN RP model underesti-
mates it, which is in line with Fig. 2. For Ith > −90 dBm, the
SLN RP model matches the LCR accurately, and is the most
accurate model. As mentioned earlier, corresponding results
for the STS model and the stable distribution model are not
shown because a time-varying model for them is not known.
In both figures, for a CU density of Υ = 100 CUs/km2, the
average number of CUs in the entire annular region is 302.
As the CU density increases and exceeds 500 CUs/km2, the
proposed model does become more inaccurate.
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Fig. 4. Non-cooperative SS: Comparison of CDF and CCDF of IΣ(t) from
various models with path-loss, shadowing, and Rayleigh fading.
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Fig. 5. Non-cooperative SS: Comparison of LCR of IΣ(t) from various
models with path-loss, shadowing, and Rayleigh fading.

C. Non-cooperative SS: Path-loss, Shadowing, and Fading

1) Snapshot Statistics: Figure 4 compares the CDF and the
CCDF obtained using the various models. To avoid clutter,
we do not show the Gaussian model curves as they are quite
inaccurate. The observations for the stable and the STS models
are qualitatively similar to those in Fig. 2. However, compared
to Fig. 2, the CCDF curve shifts to the right due to the
additional fluctuations induced by fading. Again, the SLN
model matches the CCDF well and is more accurate than the
other models.

2) Time-varying Behavior: The LCR with both shadowing
and Rayleigh fading is shown in Fig. 5. The trends are similar
to Fig. 3. However, one important difference is that the max-
imum value of LCR is 100 times higher than in Fig. 3. This
is because of the faster fluctuations due to small-scale fading.
For Ith < −90 dBm, the lognormal RP model overestimates
the LCR whereas the SLN RP model underestimates it, which
is in line with Fig. 4. For Ith > −90 dBm, the SLN RP model
matches the LCR accurately, and is the most accurate model.
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(Υ = 200 CUs/km2 and RC = 100 m).
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Fig. 7. Cooperative SS: Comparison of LCR of IΣ(t) from various models
with shadowing and Rayleigh fading (Υ = 200 CUs/km2 and RC = 100 m).

D. Cooperative SS: With path-loss, Shadowing, and Fading

1) Snapshot Statistics: Figure 6 compares the CCDF of
IΣ(t) using the stable and SLN models with cooperative
and non-cooperative SS. A CU density of 200 CUs/km2

and a cooperation range of RC = 100 m are considered.
The Gaussian, lognormal, and STS models are not shown
to avoid clutter. The stable model’s CCDF deviates from the
simulations for higher values of the interference. We again see
that the SLN model provides an accurate match.

We also see in Fig. 6 that the CCDF of the aggregate
interference with cooperation is 2 dB to the left of the CCDF
without cooperation. This is because the aggregate interference
has decreased. In general, as RC increases, more CUs will
cooperate, detect the PU-Tx to be on, and transmit with low
power. This reduces the aggregate interference.

2) Time-varying Behavior: The LCR of the aggregate in-
terference with cooperative SS is shown in Fig. 7 for the
Gaussian, lognormal, and SLN RP models. The SLN model
matches the LCR for higher values of the interference better
than the other models. The Gaussian model is again the
least accurate. For Ith < −90 dBm, the lognormal model
overestimates the LCR, and for higher values of interference,
it underestimates the LCR.
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Fig. 8. Zoomed-in view of PEZ radius as a function of ρ using the SLN model
with path-loss and shadowing. Results for non-cooperative and cooperative SS
are compared (Υ = 100 CUs/km2, RC = 100 m, and Ith = −95 dBm).
The transition point shows the value of ρ below which the AED constraint is
active.

E. Application to PEZ Design

We now apply the analytical model for aggregate inter-
ference to redesign the PEZ based on two constraints. The
first constraint is the classical outage probability constraint,
which mandates that the probability that the aggregate inter-
ference IΣ(t) is greater than a threshold Ith should not exceed
(1 − ρ) [3]. The second constraint is the outage duration
constraint, which is new. It is motivated by the minimum
outage duration concept [15]. It mandates that the average
time duration for which IΣ(t) remains above Ith should not
exceed δ. An alternate approach is to cast the above constraints
in terms of the SINR of the PU, as has been done in [5].
However, the analysis is more involved.

Figure 8 plots RPEZ as a function of ρ for different values
of δ with only path-loss and shadowing. Figure 9 plots the
corresponding results with path-loss, shadowing, and fading.
Results obtained by using the formulae developed for the SLN
model are compared with those obtained from an extensive
Monte Carlo simulation-based search. In both figures, results
are shown for both non-cooperative and cooperative SS. The
δ = ∞ case corresponds to only the outage constraint being
active. Observe the good agreement between the simulation
results and the results obtained using the SLN model. As ρ
increases, the outage constraint becomes tighter and RPEZ in-
creases. Furthermore, cooperation shrinks RPEZ, which means
that more CUs can transmit closer to the PU-Rx without
excessively interfering with it. For δ = 2 sec in Fig. 8 and
δ = 30 msec in Fig. 9, the AED constraint is active for
ρ < 0.95 and ρ < 0.86, respectively. Thus, the AED constraint
is active for a large range of values of ρ with and without
cooperative SS.

VI. CONCLUSIONS

We characterized the aggregate interference caused by CUs,
which transmit with different powers depending on whether
they sense the PU-Tx to be on or off. Our model accounted for
the dependence of the aggregate interference on the random
locations and number of the CUs, their imperfect spectrum
sensing, and the time-varying nature of large-scale shadowing
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Fig. 9. Zoomed-in view of PEZ radius as a function of ρ using the SLN model
with path-loss, shadowing, and Rayleigh fading for non-cooperative and
cooperative SS (Υ = 200 CUs/km2, RC = 100 m, and Ith = −95 dBm).
The transition point shows the value of ρ below which the AED constraint is
active.

and small-scale fading of the various links between the PU-
Tx, PU-Rx, and CUs. We saw that the aggregate interference
process is well characterized by SLN RP for moderate to high
values of the interference, and we developed expressions for
its moments and autocorrelation. These led to expressions for
its CCDF, LCR, and AED. We also saw how cooperative
SS helps reduce the aggregate interference. Upon applying
the model to PEZ design, we saw that a new constraint on
the AED is often active, and should be accounted for. One
interesting problem for future work is to characterize the
aggregate interference in a more general scenario in which
multiple PU-Txs communicate with multiple PU-Rxs.

APPENDIX

A. Derivation of Covariance Functions CZ(τ) and CIΣ(τ)

To obtain CZ(τ), we match the covariance functions of
IΣ(t) and eZ(t) + s. It can be easily shown that

CeZ(t)+s(τ) = E

[
eZ(t)+Z(t+τ)

]
−
(
E

[
eZ(t)

])2
. (25)

From the expression for the moment generating function
(MGF) of the jointly Gaussian RVs Z(t) and Z(t + τ), we
get

CeZ(t)+s(τ) = e2μZ+σ2
Z+CZ(τ) − e2μZ+σ2

Z . (26)

The covariance function CIΣ(τ) of IΣ(t) is given by

CIΣ(τ) = E

[
NCR∑
i=1

Ii(t)

NCR∑
k=1

Ik(t+ τ)

]
−
(
E

[
NCR∑
i=1

Ii(t)

])2

.

(27)
Conditioning over NCR and evaluating the expectation over
Ii(t) and Ii(t+ τ), which are independent of NCR, we get

CIΣ(τ) = ENCR

⎡
⎣NCR∑

i=1

NCR∑
k=1,k �=i

E [Ii(t)]E [Ik(t+ τ)]

+

NCR∑
i=1

E [Ii(t)Ii(t+ τ)]

]
−
(
ENCR

[
NCR∑
i=1

E [Ii(t)]

])2

.

(28)

Averaging over NCR, we get

CIΣ(τ) = E [NCR (NCR − 1)]E [Ii(t)]E [Ik(t+ τ)]

+ E [NCR]E [Ii(t)Ii(t+ τ )]− (E [NCR]E [Ii(t+ τ )])2 .
(29)

Substituting E [NCR] = ΥA and E
[
N2

CR

]
= ΥA + (ΥA)2,

where A = π
(
R2 −R2

PEZ

)
, we get

CIΣ(τ) = π
(
R2 −R2

PEZ

)
ΥE [Ii(t)Ii(t+ τ )] . (30)

Upon equating (26) and (30), we get (13).

B. Non-cooperative SS: Derivation of E [Ii(t)
m] with Path-

loss and Shadowing

Recall that the ith CU transmits with power Pu if it
detects the PU-Tx to be on, which happens with probability
PD(q (ri(t), p, cos θi) , Yi, gi). Else, it transmits with power
Po. From the law of total probability and (5), we get

E [Ii(t)
m] = E

[(
PoK

(
d0
ri(t)

)η

eβXi(t)

)m

× (1− PD(q (ri(t), p, cos θi) , Yi, gi))

+

(
PuK

(
d0
ri(t)

)η

eβXi(t)

)m

PD(q (ri(t), p, cos θi) , Yi, gi)

]
.

(31)

Since Xi(t) is independent of the RVs ri(t), θi, gi, and Yi,
rearranging terms results in

E [Ii(t)
m] = Pm

o Km
E

[(
d0
ri(t)

)mη]
E

[
emβXi(t)

]
− (Pm

o − Pm
u )Km

E

[
emβXi(t)

]
× E

[(
d0
ri(t)

)mη

PD(q (ri(t), p, cos θi) , Yi, gi)

]
. (32)

Substituting the MGF of Xi(t) and the PDFs of Yi, gi, and
θi (from (15)) in (32), we get

E [Ii(t)
m] = Pm

o Kme
1
2m

2β2σ2
shE

[(
d0
ri(t)

)mη]

−(Pm
o − Pm

u )Kme
1
2m

2β2σ2
sh

∫ ∞

−∞

e
− y2i

2σ2
sh

σsh
√
2π

∫ ∞

0

e−gi

∫ 2π

0

1

2π

×E

[(
d0
ri(t)

)mη

PD(q (ri(t), p, cos θi) , yi, gi)

]
dyidgidθi.

(33)

Using Gauss-Hermite, Gauss-Laguerre, and Gauss-
Chebyshev quadratures [19] to evaluate the integrals over yi,
gi, and θi, respectively, yields

E [Ii(t)
m] ≈ Pm

o Kme
1
2m

2β2σ2
shE

[(
d0
ri(t)

)mη]

− 1√
πWc

(Pm
o − Pm

u )Kme
1
2m

2β2σ2
sh

×
Wh∑
n1=1

wh (n1)

Wl∑
n2

wl (n2)

Wc∑
n3=1

E

[(
d0
ri(t)

)mη

× PD

(
q (ri(t), p, ac (n3)) ,

√
2σshah (n1) , al (n2)

)]
. (34)
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Given the total number of CUs, the location of the ith CU is
uniformly distributed over the region. Substituting the PDF of
ri(t) (from (15)) and simplifying yields (16).

C. Non-cooperative SS: Derivation of E [Ii(t)Ii(t+ τ)] with
Path-loss and Shadowing

Along lines similar to Appendix B, the autocorrelation of
Ii(t) can be written as

E [Ii(t)Ii(t+ τ )] = P 2
oK

2
E

[
eβ(Xi(t)+Xi(t+τ))

]
× E

[(
d20

ri(t)ri(t+ τ )

)η]

− (
P 2
o − P 2

u

)
K2

E

[
eβ(Xi(t)+Xi(t+τ))

]
× E

[(
d20

ri(t)ri(t+ τ)

)η

PD(q (ri(t), p, cos θi) , Yi, gi)

]
.

(35)

To simplify further, we assume that the distance ri(t) between
the CU and the PU-Rx is larger than the distance traveled by
the CU in a time duration τ : ri(t+ τ ) ≈ ri(t). Else, the joint
PDF of ri(t) and ri(t+ τ ) needs to be taken into account.
However, the time-variation of shadowing is accounted for.
Rearranging terms and substituting the joint MGF of Xi(t)
and Xi(t+ τ ) (by using (3)), we get

E [Ii(t)Ii(t+ τ )] ≈ P 2
oK

2e
β2σ2

sh

(
1+exp

(
−v2τ2

2D2

))

× E

[
d2η0

ri(t)2η

]
− (

P 2
o − P 2

u

)
K2e

β2σ2
sh

(
1+exp

(
− v2τ2

2D2

))

× E

[(
d0
ri(t)

)2η

PD(q (ri(t), p, cos θi) , Yi, gi)

]
. (36)

Averaging over the RVs Yi, gi, and θi, as in Appendix B,
we get

E [Ii(t)Ii(t+ τ )] ≈ P 2
oK

2e
β2σ2

sh

(
1+exp

(
− v2τ2

2D2

))

× E

[
d2η0

ri(t)2η

]
−
(
P 2
o − P 2

u

)
K2

√
πWc

e
β2σ2

sh

(
1+exp

(
− v2τ2

2D2

))

×
Wh∑
n1=1

wh (n1)

Wl∑
n2=1

wl (n2)

Wc∑
n3=1

E

[(
d0
ri(t)

)2η

× PD

(
q (ri(t), p, ac (n3)) ,

√
2σshah (n1) , al (n2)

)]
. (37)

Substituting the PDF of ri(t), which is given in (15), and
simplifying yields (17).

D. Cooperative SS: With Path-loss and Shadowing

1) Derivation of E [Ii(t)
m]: The probability of detection

by a CU with cooperative SS depends on the SNRs of all
its cooperating CUs, which are within a radius RC from
it. Let M be the number of cooperating CUs and let Γ =
[γ1, γ2, . . . , γM ] denote their SNRs. Then, the probability of

detection P
(i)
D,OR(Γ) of the ith CU using the OR fusion rule is

given by [18]

P
(i)
D,OR(Γ) = 1− (1− PDi)

M∏
k=1,k �=i

(1− PDj) , (38)

where

PDi = PD(q (ri(t), p, cos θi) , Yi, gi) , (39)

PDj = PD(q (rij(t), q (ri(t), p, cos θi) , cos θij) , Yj , gj) , k �= i,
(40)

And, neglecting boundary effects, M is a Poisson RV with
mean ΥπR2

C .
Proceeding along lines similar to Appendix B, the mth

moment of Ii(t) is given by

E [Ii(t)
m] ≈ Pm

o Kme
1
2m

2β2σ2
shE

[(
d0
ri(t)

)mη]
− (Pm

o − Pm
u )Kme

1
2m

2β2σ2
sh

× E

⎡
⎣( d0

ri(t)

)mη
⎛
⎝1− (1− PDi)

M∏
k=1,k �=i

(1− PDj)

⎞
⎠
⎤
⎦ .

(41)

Conditioning on the position of the ith CU and M , the second
expectation term above becomes

E

⎡
⎣( d0

ri(t)

)mη
⎛
⎝1− (1− PDi)

M∏
k=1,k �=i

(1− PDj)

⎞
⎠
⎤
⎦

= Eri(t),θi

[(
d0
ri(t)

)mη

×
(
1− (1− E [PDi])EM

[
(1− E [PDj])

M−1
])]

, (42)

where

E [PDi] � f1 (ri(t), cos θi) =

∫ ∞

−∞

e
− y2i

2σ2
sh

σsh
√
2π

×
∫ ∞

0

e−giPD(q (ri, p, θi) , yi, gi) dgidyi, (43)

E [PDj] � f2 (ri(t), cos θi) =

∫ ∞

−∞

e
− y2i

2σ2
sh

σsh
√
2π

∫ ∞

0

e−gi

×
∫ 2π

0

∫ RC

0

rij

πR2
C

PD(q (rij, q (ri(t), p, cos θi) , cos θij) , yi, gj)

× drijdθijdgjdyi. (44)

As in Appendix B, after using Gauss quadrature to evaluate
the above integrals, the expressions for f1 and f2 simplify
to (22) and (23), respectively. Substituting (42) in (41) and
averaging over θi, ri(t), and M yields (21).

2) Derivation of E [Ii(t)Ii(t+ τ )]: Along lines similar to
Appendices B and C, the autocorrelation of Ii(t) can be
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written as

E [Ii(t)Ii(t+ τ )] = P 2
oK

2e
β2σ2

sh

(
1+exp

(
−v2τ2

2D2

))

× E

[(
d0
ri(t)

)2η
]
− (

P 2
o − P 2

u

)
K2e

β2σ2
sh

(
1+exp

(
−v2τ2

2D2

))

× E

[(
d0
ri(t)

)2η

P
(i)
D,OR(Γ)

]
. (45)

Simplifying further, we get (24).
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