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Abstract—In several wireless sensor networks, it is of interest to
determine the maximum of the sensor readings and identify the
sensor responsible for it. We propose a novel, decentralized, scal-
able, energy-efficient, timer-based, one-shot max function compu-
tation (TMC) algorithm. In it, the sensor nodes do not transmit
their readings in a centrally pre-defined sequence. Instead, the
nodes are grouped into clusters, and computation occurs over two
contention stages. First, the nodes in each cluster contend with
each other using the timer scheme to transmit their reading to
their cluster-heads. Thereafter, the cluster-heads use the timer
scheme to transmit the highest sensor reading in their cluster to
the fusion node. One new challenge is that the use of the timer
scheme leads to collisions, which can make the algorithm fail. We
optimize the algorithm to minimize the average time required to
determine the maximum subject to a constraint on the probability
that it fails to find the maximum. TMC significantly lowers average
function computation time, average number of transmissions, and
average energy consumption compared to approaches proposed in
the literature.

Index Terms—Max function computation (TMC), wireless sen-
sor networks (WSN), selection, timer, one-shot.

I. INTRODUCTION

W IRELESS sensor networks (WSN) are increasingly be-
ing deployed in industrial, aerospace, environmental

monitoring, and smart home applications [1]. Unlike a data
network that is evaluated by how much data gets transported
between nodes, a WSN is evaluated by the efficacy with which
it carries out the specific sensing task that it is deployed for.
Constraints on the amount of energy consumed by each node
for sensing, computation, and communication, on bandwidth,
and on the software and hardware complexities of the nodes
make the design of WSNs challenging.

In some applications, it is of interest to determine the
maximum of the sensor readings in the network and identify
the sensor responsible for it. For example, this helps in early
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detection of an impending event such as a fire and identifying
its source, and helps monitor and identify an egregious source
of pollution. The following framework formalizes the max
function computation problem in a WSN that consists of n
nodes. Each node i has a real-valued local measurement or
metric µi that is known only to it. The best node is defined as
the node with the highest metric. A sink or a fusion node needs
to identify the best node, argmax{µ1, . . . ,µn}, and its metric,
max{µ1, . . . ,µn}.

Max function computation is a special case of in-network
function computation, which has attracted significant interest in
the literature. Specifically, it comes under the general class of
data aggregation problems that are studied in [2]. It is a special
class of type-threshold symmetric functions [3], symmetric
functions [4], and fully-multiplexable functions [5].

A. Literature Survey

The literature on in-network function computation can be
classified on the basis of the type of network, computational
paradigm, and channel access control scheme as follows.

Network Types and Channel Models: Broadcast or co-
located networks are considered in [3], [6]–[8] and multi-hop
networks in [2]–[5], [7]–[12]. The papers also differ in the
channel models assumed. Noiseless links are assumed in [2]–
[4], [6], [12], noisy or binary symmetric channels in [4], [7],
[8], [10], [11], and capacity-constrained links in [5].

Channel Access Scheme: Oblivious and non-oblivious
schemes have been considered. In oblivious schemes, the
transmission schedule of the nodes is pre-defined before the
computation is performed [2], [4], [7], [12]. Whereas, in non-
oblivious schemes, the transmission schedule depends on pre-
vious transmissions [3]. A randomized channel access scheme
for a structure-free network is instead used in [10].

Paradigms: Three paradigms, namely, one-shot, pipelined,
and block computation, have been studied. In one-shot com-
putation, the function is computed once within the coherence
interval of measurements [2], [4], [10], [12]. In pipelined com-
putation, the computations of function values at several time
instants are pipelined over the network [5], [10], [12]. In block
computation, the sensor nodes take measurements for several
time instants, buffer them, and then compute the function for
each of these time instants in one go [3], [7], [9].

In [3], block computation strategies over a noiseless, ran-
dom planar multi-hop and co-located networks for symmetric
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type-threshold functions are characterized. The nodes’ trans-
missions occur according to a pre-communicated schedule and
depend on the contents of the previous transmissions, which are
decoded by the nodes within transmission range. A one-shot
computation with message passing between nodes for type-
threshold functions is studied in [12]. Scaling laws for the
optimal computation time, transmit energy consumption, and
achievable rate of communication are derived for tree, multi-
hop, and ripple algorithms. Pipelining is also treated in the pa-
per as an extension of the one-shot paradigm. In [4], the optimal
rate of computation of symmetric functions with binary sensor
measurements over noise-free channels and over binary sym-
metric channels is studied. In [7], a two-stage oblivious scheme
for max function computation over a random planer network
with binary symmetric channels, which is order-optimal in the
number of time slots and number of transmissions required, is
studied. In [10], a randomized slotted Aloha protocol over a
noisy network with binary symmetric channels is studied; it
is order-optimal in the number of time slots required for max
function computation.

B. Contributions

We propose a novel timer-based max function computation
(TMC) algorithm for one-shot computation. It incorporates
new ideas that are inspired by opportunistic multiple access
(MAC) selection algorithms [13]–[17]. We focus on one-shot
computation because it is practically appealing. While block
computation reduces the number of transmissions significantly
and can exploit correlations between readings of different
nodes, it has two limitations that can make it impractical in
WSNs constrained by delay or complexity [9]. Firstly, the block
size needs to be large. Secondly, the block size grows with n,
which causes a large delay because every node has to collect
the entire block of measurements.

TMC is based on the distributed timer-based selection
scheme, in which each node sets a timer as a function of its
metric, and starts counting its timer down. A node transmits
a small timer packet when its timer expires. The key idea is
that the metric-to-timer mapping is a monotonic non-increasing
function, which ensures that the node with the maximum metric
transmits first. Consequently, the other nodes need not transmit
once they have sensed a transmission in the channel. While the
timer scheme has been employed for opportunistic selection
in [13]–[15], the focus was on selecting the node for data
transmission in a one-hop star network. To the best of our
knowledge, this is the first time that it has been effectively
employed for max function computation.

Another novelty in our approach is the introduction of a
reliability parameter η, which requires that the best node and
its metric are identified by the sink with a probability that is
at least 1−η. It permits a new trade-off between the time or
energy required for computation and its reliability.

1) Design of TMC and Challenges: In TMC, the n sensor
nodes are grouped into clusters, with each cluster having a
cluster-head. The nodes in a cluster can sense transmissions
by other nodes within the cluster. The cluster-heads have a
longer transmission range and their transmissions can be sensed

by other cluster-heads. Computation takes place in two stages:
(i) Intra-cluster stage, in which nodes within each cluster con-
tend with each other using the timer scheme, which enables
each cluster-head to determine the maximum in its cluster, and
(ii) Inter-cluster stage, in which the cluster-heads contend with
each other using the timer scheme, which enables the sink to
determine the maximum in the network. Unlike the algorithms
in the literature, in which every node transmits at least once, we
shall see that far fewer nodes transmit in TMC, which translates
into significant time and energy savings.

The use of the timer scheme gives rise to collisions. In the
intra-cluster stage, the timer packet transmitted by the best
node in a cluster will not be decoded by the cluster-head if
the timer of the second best node in the cluster expires within
a vulnerability window Δ of its transmission [13]. Collisions
can occur in the inter-cluster stage as well. Here, Δ depends
on the capabilities of the physical layer [13]. It includes the
maximum propagation delay, maximum delay spread in the
channels seen by the nodes, receive-to-transmit switching time,
and time synchronization errors among the nodes.

2) Optimization: We determine the optimal parameters of
the timer schemes used by the two stages that jointly mini-
mize the average selection time subject to the aforementioned
reliability constraint. To this end, we develop a novel bound-
ing approach that decomposes the constrained, optimization
problem at hand into two separable and solvable sub-problems
pertaining to the intra-cluster and inter-cluster stages. We also
study the asymptotic n → ∞ regime to glean further insights.

3) Benchmarking and Robustness: We benchmark the ex-
pected selection time and bandwidth savings of our scheme
with adaptations of the tree and the ripple algorithms [12],
which are amenable to our model. We observe that TMC
reduces the average number of transmissions by up to two
orders of magnitude, the average energy consumption and the
average max function computation time by up to one order of
magnitude, except when η is very small. Furthermore, TMC
incorporates reuse constraints and is simpler to implement than
the oblivious algorithms, which assume a centralized scheduler
that determines when each node senses and transmits. Making
the nodes aware of the centralized schedule can incur consider-
able overhead [9].

We also evaluate the performance of TMC when some as-
sumptions behind its design no longer hold, such as when the
number of sensor nodes in a cluster is random and unknown.
Such a scenario arises, for example, when the sensor nodes
autonomously sleep to conserve energy [18].

4) Comparisons With Other Approaches: We note that there
are several differences between our model and approach and
those in the literature. The approaches in [3]–[7], [9], [11], [12],
study collision-free or graph-theoretic models in which the
transmission by a node is scheduled in such a manner as to not
be corrupted by interference from other transmissions, if any.
On the other hand, our approach explicitly provisions for col-
lisions between simultaneous transmissions by different nodes.
The collision model is widely assumed in the literature on mul-
tiple access protocols [18], [19] and selection schemes [13]–
[17]. Secondly, [3], [6], [10] assume that a node can decode
all transmissions in the network that precede its transmission,
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Fig. 1. A two-tier tree model for the system in which the sink is the root, k1
cluster-heads constitute the first level, and n = k1k2 sensor nodes constitute the
leaves.

while we only require nodes within a cluster in the intra-cluster
stage and the cluster-heads in the inter-cluster stage to be able
to sense the presence of a previous transmission. Our algorithm
is not oblivious. Thirdly, while several of the aforementioned
papers focus on scaling laws for η → 0, we allow for a pre-
specified, non-zero selection failure probability and optimize
TMC for any given number of nodes. We also strive to identify
the sensor node responsible for the max reading.

The paper is organized as follows. Section II sets up the sys-
tem model. Section III presents and optimizes TMC. Section IV
presents the asymptotic scaling of the average selection time.
Simulation results are presented in Section V followed by our
conclusions in Section VI.

II. SYSTEM MODEL

Consider a system with n sensor nodes and a sink. For ease
of exposition, the nodes are distributed in a square region, as
shown in Fig. 1. The entire region is divided into k1 clusters.
Each cluster has k2 nodes located within it. Thus, n = k1k2.
Every cluster has a cluster-head, which can transmit directly
to the sink node. It can be located anywhere within the cluster.
(The choice of the cluster-head itself can be optimized using
algorithms such as LEACH [20]. We do not delve into this
aspect in this paper.) Its transmissions can be sensed by other
cluster-heads. On the other hand, the nodes in a cluster need
only sense transmissions by other nodes in the same cluster,
and not in other clusters. We note that the broadcast network is
a special case that corresponds to k2 = 1.

The metrics of the nodes are assumed to be independent and
identically distributed (i.i.d.). The independence assumption is
justified when the sensor readings decorrelate over distance
[15], [21]. The identicalness assumption helps make the anal-
ysis tractable, and is widely used in the selection literature [13],
[15]. [22]. While correlated sensor readings is beyond the scope
of this paper, we note that TMC also works with correlation,
except that the optimization that follows below does not apply.

Let C denote the cumulative distribution function (CDF) of
µi. Then, the random variable (RV) νi =C(µi) can be shown to
be uniformly distributed in [0,1]. Since the CDF is a mono-
tonically non-decreasing function, the node with the largest
µi is also the one with the largest νi. Therefore, without loss
of generality, the metric is henceforth assumed be uniformly
distributed over [0,1]. Knowing C is practically feasible since it
changes at a rate that is several orders of magnitude slower than
the metrics. We note that prior knowledge of C is not assumed
in [3], [7], [8], [10], [12], while it is assumed in [23].

Timer Scheme: Before we specify TMC, we first describe
the timer scheme that will be used by its two stages. The timer
scheme uses a discrete metric-to-timer mapping in which the
timers expire only at 0,Δ, . . . ,NΔ, where N is called the number
of timer levels. This mapping is used because it maximizes
the probability of selecting the best node and also minimizes
the average selection time [15]. It is completely character-
ized by N + 1 positive real numbers, called interval lengths,
αN [0], . . . ,αN [N] as follows. If a node’s metric lies in the
interval (1,1−αN [0]], then its timer expires immediately at 0.
In general, if its metric lies in (1−∑i

l=0 αN [l],1−∑i−1
l=0 αN [l]],

then its timer expires at time iΔ. When its timer expires, a node
transmits a timer packet of duration Tp. If the metric lies in[
0,1−∑N

l=0 αN [l]
)
, then its timer does not expire. We shall refer

to [αN [0], . . . ,αN [N]] as an interval length vector.
Intra-cluster Stage: Each cluster uses a timer scheme with

N2 timer levels and interval length vector

βββN2
= [βN2 [0],βN2 [1], . . . ,βN2 [N2]] . (1)

A node whose timer expires transmits a packet containing its
metric and identity to its cluster-head. The total time required
for a cluster is N2Δ+Tp because, in the worst case, a node may
transmit a timer packet of duration Tp at time N2Δ.

Reuse Constraints: Transmissions in all the clusters cannot
occur simultaneously because of interference constraints. Let r
denote the number of clusters in which transmissions can occur
simultaneously. Therefore, with k1 clusters, the intra-cluster
stage takes place in �k1/r� sub-stages, with the intra-cluster
stage in r clusters occurring simultaneously. Here, �·� denotes
the ceiling function. Since the cluster-heads are not required
to communicate with each other, each sub-stage in the intra-
cluster stage takes N2Δ+Tp time. Hence, the duration Γ2(βββN2

)
of the intra-cluster stage is

Γ2(βββN2
) = �k1/r�(N2Δ+Tp). (2)

Inter-Cluster Stage: At the start of this stage, each cluster
head knows the maximum metric within its cluster, which we
shall refer to as its priority. Now, the cluster-heads use a timer
scheme with N1 timer levels and interval length vector

αααN1 = [αN1 [0],αN1 [1], . . . ,αN1 [N1]] . (3)

When its timer expires, the cluster-head transmits its priority
and the identity of the node it had selected in the intra-
cluster stage. Since the cluster-heads can sense each other’s
transmissions, the inter-cluster stage ends as soon as the first
transmission occurs or the maximum time available for it,
which is N1Δ+Tp, runs out.

Special attention must be paid to the following two events
in which the TMC cannot select the best node, which we shall
refer to as selection failures.

Selection Failure in Intra-Cluster Stage: The cluster-head in
the cluster with the best node fails to select the best node in
the intra-cluster stage. This happens when: (i) no node’s timer
expires within the duration N2Δ, or (ii) a timer of at least one
other node expires at the same time as the best node, as a result
of which a collision occurs. In case the timer scheme does not
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yield a success in a cluster, the respective cluster-head sets its
metric as the least value possible for the metric, which is zero.
This ensures that the chances of the best node being selected in
the inter-cell stage are not affected in case it belongs to another
cluster.

Selection Failure in Inter-Cluster Stage: The sink node fails
to select the best cluster-head in the inter-cluster stage. Akin
to the intra-cluster stage, this happens when either none of the
cluster-heads transmit within duration N1Δ or the transmission
by the cluster-head with the highest priority suffers a collision
at the sink node.

Note that the reuse constraints do not affect the selection
failure probability.

The priority M j, which drives the inter-cluster stage, is not
uniformly distributed over [0,1] because it is the maximum
of k1 metrics in the jth cluster and Pr(M j = 0) > 0, where
Pr(·) denotes probability. Its CDF FM j , which is derived in
Appendix A, is given in closed-form as:

FM j(x) = p, if 0 ≤ x ≤ 1−
N2

∑
l=0

βN2 [l],

and, for 0 ≤ i ≤ N2,

FM j(x) = p+
N2

∑
l=i+1

slβN2 [l]+ si

(
x−1+

i

∑
l=0

βN2 [l]

)
,

if 1−
i

∑
l=0

βN2 [l]< x ≤ 1−
i−1

∑
l=0

βN2 [l], (4)

where p = 1 − k2 ∑N2
l=0 βN2 [l]

(
1−∑l

q=0 βN2 [q]
)k2−1

and si =

k2
(
1−∑i

l=0 βN2 [l]
)k2−1

.
The jth cluster-head then applies the following transforma-

tion to its priority M j to get an RV ϒ j, which is uniformly
distributed in [0,1]:

ϒ j =

{
FM j(M j), M j �= 0,
Uj, M j = 0,

(5)

where Uj is a uniformly distributed RV in the interval [0, p]. It
uses ϒ j as its metric in the inter-cluster stage. It is easy to see
that ϒ1, . . . ,ϒk1 are i.i.d.

Comments: The operation of TMC requires only loose
network-wide synchronization. Firstly, the design of the timer
scheme is based on Δ. As mentioned, various time synchroniza-
tion errors can all be incorporated into Δ. Secondly, the timer
schemes in the two stages can be launched by broadcasting
a beacon from the cluster-head (in the intra-cluster stage) or
sink (in the inter-cluster stage) to the respective contending
nodes to indicate the start time. Thirdly, since the �k1/r� intra-
cluster sub-stages run in a time orthogonal manner, a limited
number of guard intervals can cope with any synchronization
error between the sub-stages.

III. OPTIMAL DESIGN OF TMC

Our objective is to determine the optimal αααN1 ∈ (R+)N1+1,
βββN2

∈ (R+)N2+1, and N1,N2 ∈ Z
+ that minimize the expected

function computation time Γ(αααN1 ,βββN2
) over the network sub-

ject to (s.t.) the probability of selection failure F(αααN1 ,βββN2
)

not exceeding η. The optimization problem can be stated as
follows:

OP 1 : min
αααN1 , βββN2

,N1,N2

Γ(αααN1 ,βββN2
), (6)

s.t. F(αααN1 ,βββN2
)≤ η, (7)

0 ≤ αN1 [i]≤ 1, i = 0, . . . ,N1, (8)

0 ≤ βN2 [ j]≤ 1, j = 0, . . . ,N2, (9)

N1

∑
i=0

αN1 [i]≤ 1 and
N2

∑
j=0

βN2 [ j]≤ 1, (10)

N1,N2 ∈ Z
+. (11)

The constraints (8), (9), and (10) ensure that the timer interval
lengths are positive and together lie in [0,1].

OP 1 is an intractable combinatorial, stochastic optimization
problem. However, we shall see that imposing a tighter reli-
ability constraint that is based on the union bound, begets a
tractable and insightful solution. For this, let F1(αααN1) denote the
probability that inter-cluster stage fails in selecting the cluster-
head with the highest priority. And, let F2(βββN2

) denote the
probability that in the intra-cluster stage, the cluster containing
the best node fails to select it. Recall that it does not matter if
the intra-cluster timer scheme fails to select a node in a cluster
that does not contain the best node.

Applying the union bound, we get

F(αααN1 ,βββN2
)≤ F1(αααN1)+F2(βββN2

). (12)

Replacing (7) with (12) yields the following tighter constrained
optimization problem:

OP 2 : min
αααN1 , βββN2

,N1,N2

Γ(αααN1 ,βββN2
), (13)

s.t. F1(αααN1)+F2(βββN2
)≤ η, (14)

along with the constraints in (8), (9), (10), and (11). Any
solution that satisfies (14) satisfies (7) as well.

We note that failure events due to noise or fading are not
modeled. These can be incorporated into our framework by
including the probability of their occurrence in the two stages
in the upper bound on selection failure probability in (12).

To solve OP 2, we first derive F1(αααN1) and F2(βββN2
).

Result 1: The intra-cluster selection failure probability
F2(βββN2

) is

F2(βββN2
) =1− k1k2

k1k2 − k2 +1

N2

∑
l=0

(
1−

l

∑
i=0

βN2 [i]

)k2−1

×

⎛
⎝[

1−
l−1

∑
i=0

βN2 [i]

]k1k2−k2+1

−
[

1−
l

∑
i=0

βN2 [i]

]k1k2−k2+1
⎞
⎠ . (15)
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The selection failure probability F1(αααN1) in the inter-cluster
stage is

F1(αααN1) = 1− k1

N1

∑
l=0

αN1 [l]

(
1−

l

∑
j=0

αN1 [ j]

)k1−1

. (16)

Proof: The proof is given in Appendix B. �
Next, we evaluate the expected selection time Γ(αααN1 ,βββN2

). It
is the sum of the expected duration Γ2(βββN2

) = �k1/r�(N2Δ+
Tp) of the intra-cluster stage (cf. (2)) and the expected duration
Γ1(αααN1) of the inter-cluster stage, which is derived below. Let
the timer of the cluster-head with the highest priority expire at
time iΔ, in which case the duration of the inter-cluster stage is
Tp + iΔ. Therefore, we have

Γ1(αααN1) = Tp +ΔE[i] = Tp +Δ
N1−1

∑
l=0

Pr(i > l), (17)

where E[·] denotes expectation. Since the metrics are uniform

and i.i.d., we have Pr(i> l)=
(

1−∑l
j=0 αN1 [ j]

)k1
. Substituting

this in (17) yields

Γ1(αααN1) = Tp +Δ
N1−1

∑
l=0

(
1−

l

∑
j=0

αN1 [ j]

)k1

. (18)

The following key result that helps solve OP 2 then follows.
Result 2: Solving OP 2 is equivalent to separately solving the

following two sub-problems:

SP 1 : min
αααN1 ,N1

Γ1(αααN1)+λF1(αααN1), (19)

s.t. 0 ≤ αN1 [i]≤ 1, i = 0,1, . . . ,N1, (20)

N1

∑
i=0

αN1 [i]≤ 1, N1 ∈ Z
+, (21)

and

SP 2 : min
βββN2

,N2

k1

r
(N2Δ+Tp)+λF2(βββN2

), (22)

s.t. 0 ≤ βN2 [i]≤ 1, i = 0,1, . . . ,N2, (23)

N2

∑
i=0

βN2 [i]≤ 1, N2 ∈ Z
+. (24)

There exists λ ≥ 0 such that the optimum solutions to SP 1 and
SP 2, which are ααα∗

N1
and βββ∗

N2
, respectively, always meet (14)

with equality.
Proof: The proof is given in Appendix C. �

Notice that SP 1 and SP 2 deal with the inter-cluster and
intra-cluster stages, respectively. They are coupled through the
constant λ, which is determined numerically but only once.

A. Solving SP 1

The optimal interval lengths α∗
N1
[ j], j = 0, . . . ,N1, for a given

N1 are as follows.

Lemma 1: Given N1, the optimal interval lengths α∗
N1
[ j],

j = 0, . . . ,N1, are given by the following recursion:

α∗
N1
[ j] =

⎧⎪⎨
⎪⎩

Δ+λ+Q∗
N1−1(λ)

Δ+λk1+Q∗
N1−1(λ)

, j = 0,(
1−α∗

N1
[0]

)
α∗

N1−1[ j−1], 1 ≤ j ≤ N1,
(25)

where α∗
0[0] = 1/k1 and

Q∗
N1
(λ) = Δ

N1−1

∑
l=0

(
1−

l

∑
q=0

α∗
N1
[q]

)k1

−λk1

N1

∑
l=0

α∗
N1
[l]

(
1−

l

∑
q=0

α∗[q]

)k1−1

. (26)

Proof: As shown in [15], SP 1 is equivalent to optimizing
the timer interval lengths such that the expected time to select
the best node is minimized subject to a constraint on the
probability of selecting the best node. The solution follows
from [15, Theorem 3]. �

Thus, only N1 remains to be optimized in SP 1. It is easy
to see that Γ1(αααN1) in (18) is a monotone non-increasing
function of N1 because increasing N1 gives more variables for
solving SP 1. Therefore, given η, N1 should be made as large
as possible. When N1 → ∞, the expressions in (25) and (26)
simplify considerably, as we show below.

1) Asymptotic Simplifications: Let lim
N1→∞

α∗
N1
[ j] = α∗

∞[ j].

Applying the limit N1 → ∞ to (25), we get α∗
∞[ j] = (1 −

α∗
∞[0])α∗

∞[ j−1]. Substituting these in (16) and (18), we get

Γ1 (ααα∗
∞) =Tp +

Δ(1−α∗
∞[0])

k1

1− (1−α∗
∞[0])

k1
, (27)

F1 (ααα∗
∞) =1− k1α∗

∞[0] (1−α∗
∞[0])

k1−1

1− (1−α∗
∞[0])

k1
. (28)

Note that (27) and (28) are a function of only α∗
∞[0]. There-

fore, when N1 →∞, the inter-cluster stage is completely charac-
terized by a single parameter α∗

∞[0]. As derived in Appendix D,
α∗

∞[0] is the unique fixed point of the following function fλ(x)
in the interval [0,1]:

fλ(x) = 1− (1− x)k1 + k1 −1
(Δ/λ)+ k1

. (29)

It is efficiently computed using bisection search.

B. Solving SP 2

We now determine the optimal interval length vector βββN2
that

solves SP 2.
Result 3: Given any N2, the optimal interval lengths β∗

N2
[ j],

j = 0, . . . ,N2, are recursively given by

β∗
N2
[ j] =

⎧⎪⎪⎨
⎪⎪⎩

1−
(

κ(k2−1)

k1k2

[
κ−1+F2

(
β∗N2−1

)]
)κ/(k1k2)

, j = 0,(
1−β∗

N2
[0]

)
β∗

N2−1[ j−1], 1 ≤ j ≤ N2,

(30)

where κ = k1k2
k1k2−k2+1 and β∗

0[0] = 1−
(

k2−1
k1k2

)κ/(k1k2)

.
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Fig. 2. Expected total selection time Γ(ααα∗
N1
,βββ∗

N2
), inter-cluster time Γ1(ααα∗

N1
),

and intra-cluster selection time Γ2(βββ∗
N2
) as a function of N2 (η= 0.05, k1 = 200,

k2 = 10, r = �k1/4�= 50, and Tp = 10Δ).

Proof: The proof is given in Appendix E. �
A key difference between SP 1 and SP 2 is that, unlike N1, a

larger value of N2 need not reduce Γ(ααα∗
N1
,βββ∗

N2
). This is shown

in Fig. 2, which plots Γ(ααα∗
N1
,βββ∗

N2
), Γ1(ααα∗

N1
), and Γ2(βββ∗

N2
) as a

function of N2 for η = 0.05. We see that the optimal value for
N2 is one in this example. The reason for this is as follows. As
N2 increases, F2(βββ∗

N2
) decreases and Γ2(βββ∗

N2
) increases linearly

(cf. (2)). Given η, decreasing F2(βββ∗
N2
) increases F1(ααα∗

N1
) since

they must sum to η. However, increasing the selection failure
probability F1(ααα∗

N1
) in the inter-cluster stage reduces the time

for selection Γ1(ααα∗
N1
). Thus, a trade-off exists between increas-

ing Γ2(βββ∗
N2
) and decreasing Γ1(ααα∗

N1
). The optimum value of N2

is determined using a simple one-dimensional bisection search.
In general, as η decreases, the optimal value of N2 will increase.

Comments: The recursions in Section III-A1 and Result 3
can be implemented locally at the cluster-heads and sensor
nodes, respectively. In principle, k1, k2, and η need to be broad-
cast to the cluster-heads and nodes to enable this. In addition,
N1 and N2 may also be broadcast to simplify computation. As
we shall observe later in Section V-D, TMC is also robust to
uncertainty in the number of nodes per cluster. Thus, it can
handle a dynamic clustering environment.

IV. ASYMPTOTIC INSIGHTS

To gain more insights about the optimal design of TMC,
we study the asymptotic regime n → ∞. We shall show that
Γ(ααα∗

N1
,βββ∗

N2
) tends to a positive constant, which depends on the

reliability parameter η. Thus, TMC is scalable.
The value of n = k1k2 is increased by increasing the number

of clusters k1, while keeping the number of nodes per cluster k2

and the area covered by the network constant. This increases the
number of nodes per unit area. First, we derive the asymptotic
scaling of the expected selection time in the intra-cluster stage.

Lemma 2: For N2 = 0, F2(βββ∗
N2
)→ 0 as k1 → ∞ and k2 is kept

constant.
Proof: The proof is given in Appendix F. �

The above result shows that the best node is selected with
probability one in the intra-cluster stage for N2 = 0 in the
asymptotic regime. For N2 = 0, the selection time in the intra-
cluster stage is the lowest and equals Tp. Therefore, N2 = 0 is
the optimal solution for the intra-cluster stage in the asymptotic

regime. Since r is proportional to k1, the intra-cluster stage
takes a constant time of �k1/r�Tp slots. This proportionality be-
tween r and k1 is justifiable when a constant number of adjacent
cells are disabled due to interference from a given cell [7].

For the inter-cluster stage, we saw in Section III-A that the
optimum solution is obtained when N1 → ∞. Applying the limit
k1 → ∞ to (27), (28), and (29), yields the following.

Result 4: When k1 → ∞, we have

Γ1 (ααα∗
∞) = Tp +

Δexp(−dλ)

1− exp(−dλ)
, (31)

where dλ is a positive constant that depends on λ. It is the
unique solution of x = 1+(Δ/λ)− exp(−x).

Proof: The proof is given in Appendix G. �
Thus, Γ1(ααα∗

N1
) depends only dλ. This depends on λ, which,

in turn, depends on η (cf. Result 2). Hence, Γ1(ααα∗
N1
) tends to a

constant and so does the total selection time.

V. NUMERICAL RESULTS AND

PERFORMANCE EVALUATION

We now compare the average number of transmissions, aver-
age energy consumed, and average selection time of TMC with
other algorithms proposed in the literature that can be adapted
and simulated for one-shot max function computation. For the
simulations, a square field of unit area is considered, as shown
in the Fig. 1. The reuse constraints require that four neighboring
clusters cannot transmit simultaneously. Hence, r = �k1/4�.
Further, Tp = 10Δ.

A. Energy Model

To compare energy consumption, we use the following prop-
agation and transmission model. If l and b are the length and
breadth, respectively, of a cluster area, then the transmit power
Ptx for the intra-cluster stage is set such that any two nodes in
the cluster – including the worst case in which nodes that are
diagonally opposite to each other – can hear each other. It is
calculated as follows. The receive signal-to-noise-ratio (SNR)
at the worst case distance of

√
l2 +b2 is Ptx

σ2 (
d0
d )ζ, where σ2

is the noise power, d0 is a reference distance, and ζ is the
pathloss exponent. In order that the SNR equals the decoding
threshold of γ, the transmit energy E intra = PtxTp is equal to
E intra = γσ2Tp(

√
l2 +b2/d0)

ζ.
Similarly, in the intra-cluster stage, all cluster-heads must

hear each other. Therefore, the transmission energy E inter for
a cluster-head that transmits directly to the sink is E inter =
γσ2Tp(

√
L2 +B2/d0)

ζ, where L and B are the length and
breadth, respectively, of the measurement field. We focus on
transmit energy consumption, as has been done in [7], [8].

B. Benchmark Algorithms

We benchmark TMC with the following algorithms proposed
in [12], as they can be adapted for one-shot computation.

1) Tree Algorithm With Direct Transmission: It uses two
stages. In the intra-cluster stage, the k2 nodes in a cluster trans-
mit to their cluster-head in a round-robin manner. This requires
a total time of 4k2Tp after accounting for reuse constraints.
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The energy consumed is E intra per transmission. Next, in the
inter-cluster stage, the k1 cluster-heads transmit their priorities
directly to the sink in a round-robin manner. This requires an
additional time of k1Tp. The energy consumed is E inter per
transmission.

2) Tree Algorithm With Multi-Hop Transmission: The
cluster-heads route their priorities column-wise and then row-
wise to the sink. First, the cluster-heads of the left-most and
right-most columns transmit to the cluster-heads in the same
row of the neighboring columns. Each cluster-head transmits
the maximum of its priority and the priority that it has received
thus far from its neighbors to its inner neighbor, and so on. Due
to the interference constraints, a column is divided into two sets
of alternate clusters, and only one set transmits at a time for a
duration of Tp. Hence, 2Tp time is required by all the cluster-
heads in one column to transmit to the corresponding ones in
the neighboring column. This process repeats until the priorities
are routed to the central column. Thereafter, they are routed
row-wise to the central sink node. Since the cluster-heads have
to transmit to their neighboring cluster-heads, which could
be located anywhere in the neighboring cluster, the energy
required turns out to be 2E intra.

3) Ripple Algorithm: The computation is divided into
rounds. In a round, each node broadcasts a packet with its
metric and identity exactly once. Due to reuse constraints, only
the nodes in �k1/4� non-adjacent clusters can transmit at a time.
In each of these non-interfering clusters, the nodes take turns to
broadcast their metrics. Hence, each round takes 4k2Tp time.
As before, each transmission consumes E intra energy. Upon
decoding a packet, a node updates its metric as the maximum of
its metric and the metric in the received packet. The metric of
the best node, thus, propagates by one hop in each round. The
algorithm stops when the metric from the farthest node reaches
the sink. The number of rounds is the maximum hop distance
from the sink to the edge of the square field.

We note that it is difficult to directly compare with the algo-
rithms studied in [3], [5], [7], [9] because they use an altogether
different block computation model. It is also difficult to com-
pare with the algorithms studied in [2], [4], since their focus is
on proving order-optimal bounds on the rate at which the func-
tion computation or energy consumption occur. The message
propagation for the tree algorithms above is similar to that con-
sidered in [2, Alg. 2], [4, Thm. III.4] once the tree is specified.

C. Numerical Results

Fig. 3 plots the expected selection time as a function of
the target selection failure probability η for k1 = 10 and k2 =
20. The selection times of the tree and ripple algorithms are
independent of η because all nodes transmit at least once as per
a pre-defined schedule. However, the expected selection time
for TMC decreases as η increases. A larger value of η means a
weaker constraint, which enables TMC to allocate less time to
select the best node. For η= 0.04, TMC is 8.1x, 8.5x, and 37.9x
faster than the tree algorithm with multi-hop transmission,
tree algorithm with direct transmission, and ripple algorithm,
respectively. Note that these significant reductions are not a
straight-forward outcome of the fact that TMC is designed for

Fig. 3. Expected selection time Γ(ααα∗
N1
,βββ∗

N2
) as a function of the target

selection failure probability η (k1 = 10 and k2 = 20).

Fig. 4. Zoomed-in view of asymptotic behavior of Γ(ααα∗
N1
,βββ∗

N2
) as a function

of k1(k2 = 20).

a non-zero selection failure probability while the benchmark
algorithms are not. Instead, they arise because the timer scheme
incentivizes nodes with higher metrics to transmit earlier, which
prevents unnecessary transmissions from nodes with smaller
metrics. We see that the upper bound in (12) that was used in
the formulation of OP 2 is quite close to the simulation results.
For η < 0.005, TMC no longer outperforms the benchmark
algorithms. As n increases, this cross-over point decreases.

Asymptotics and Scalability: Fig. 4 plots Γ(ααα∗
N1
,βββ∗

N2
) as a

function of k1 for k2 = 20 for two values of η. We see that as k1

increases, Γ(ααα∗
N1
,βββ∗

N2
) decreases and approaches the asymptotic

value, which is derived in Section IV. The trends for η= 0.1 are
similar to those for η = 0.07, except that the selection time is
lesser. As k1 increases, the sudden dips in the expected selection
time correspond to a change in the optimal value of N2. Further,
if n is kept fixed and the number of clusters k1 is increased,
Γ(ααα∗

N1
,βββ∗

N2
) decreases; the corresponding figure is not shown

due to space constraints. Thus, if every node is capable of
serving as a cluster-head and communicating directly with
the sink, then the optimal system configuration is to have all
the nodes act as cluster-heads. However, such a configuration
may not achievable in practice because the nodes might not
be capable of transmitting directly to the sink. The two-tier
configuration also enables the use of sensor nodes and cluster-
heads with different capabilities, as is the case in Zigbee [24].

Fig. 5 plots the average number of transmissions, which
is a measure of the time-frequency resources required by the
network to compute the maximum, as a function of η. Both
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Fig. 5. Average number of transmissions as a function of the target selection
failure probability η (k1 = 10 and k2 = 20).

Fig. 6. Average energy consumed as a function of η (k1 = 10, k2 = 20, E0 = 1,
l = 0.5, b = 0.2, L = 1, and B = 1).

variants of the tree algorithm require the same number of
transmissions since all nodes transmit exactly once in a round
of computation. The number of transmissions in TMC is up to
two orders of magnitude lower than the benchmark algorithms
because, in TMC, at most one transmission occurs per cluster in
the intra-cluster stage and one transmission typically occurs in
the inter-cluster stage. For example, for η= 0.04, TMC requires
33.3x and 158.6x fewer transmissions than the tree and ripple
algorithms, respectively.

Fig. 6 plots the average energy consumed as a function of η
for ζ = 3 and d0 =

√
l2 +b2. The cluster size is such that the

energy at the cluster edge is E0, which is the minimum energy
required to decode a packet. TMC consumes 9.2x, 16.1x, and
42.1x less average energy than the tree algorithm with multi-
hop transmission, the tree algorithm with direct transmission,
and the ripple algorithm, respectively, for k1 = 10 and k2 = 20.
The reason behind the significant reduction in energy consumed
is the same as that in Fig. 5.

D. Robustness Evaluation

We now study the performance of TMC when the number of
nodes in each cluster is an RV that is not known a priori. TMC
is now designed assuming that the nodes per cluster is equal
to its mean k2. Note that due to its distributed, non-oblivious
nature, it can easily adapt to such variations.

We present simulation results for two distributions on k2:
(i) Binomial: the probability that the number of nodes in a clus-

Fig. 7. Expected selection time Γ(ααα∗
N1
,βββ∗

N2
) as a function of η when k2 is a

binomial or Poisson distributed RV (k1 = 10 and k2 = 20).

ter is k2 is
(kmax

2
k2

)
Pk2

A (1−PA)
kmax

2 −k2 , where PA is the probability
that a sensor node takes part in the algorithm and kmax

2 is the
maximum number of nodes possible in a cluster. We shall refer
to PA as active probability. Thus, k2 = kmax

2 PA. (ii) Poisson:
the probability that the number of nodes in a cluster is k2 is

k
k2
2 exp(−k2)/(k2!). The number of clusters is k1 and is assumed

to be known a priori since the cluster-heads can easily register
with the sink. Fig. 7 plots Γ(ααα∗

N1
,βββ∗

N2
) as a function of η when

k2 is drawn from the above distributions. In both cases, we see
that Γ(ααα∗

N1
,βββ∗

N2
) is within 2% of the case when TMC is designed

for k2.

VI. CONCLUSION

We proposed a new, two stage algorithm called TMC for one-
shot max function computation in a WSN. Its use of the timer-
based selection scheme enabled nodes with higher metrics to
transmit earlier and prevented unnecessary transmissions by
nodes with smaller metrics. We jointly optimized the intra-
cluster and inter-cluster stages to minimize the expected se-
lection time subject to a cap on the probability of selection
failure. We saw that TMC was scalable and robust. It delivered
significant reductions in the average selection time, number of
transmissions, and energy consumed compared to approaches
pursued in the literature except for very small values of η.

We note that TMC can be generalized to a multi-hop network
as follows. First, the nodes form a tree. In each layer/hop of the
tree network, the timer scheme is run. The leaf nodes with a
common parent first contend using the timer scheme. There-
after, these parents with common grandparents then contend
using the timer scheme, and so on. The optimization of the
scheme is also amenable to such a model as the upper bound
in (12) would now sum over the selection failure probabilities
of the different levels of the tree.

APPENDIX

A. CDF of M j in (4)

We treat the cases M j = 0 and M j > 0 separately.
M j = 0: This happens in case running the timer scheme

in the jth cluster does not result in a success. Therefore,
FM j(0) is equal to one minus the probability of success in
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the jth cluster. Success occurs if the metric of one node

in the cluster lies in
(

1−∑l
q=0 βN2 [q],1−∑l−1

q=0 βN2 [q]
]

and

the metrics of all the other k2 − 1 nodes are less than 1 −
∑l

q=0 βN2 [q], for any l = 0, . . . ,N2. This happens with probabil-

ity k2βN2 [l]
(

1−∑l
q=0 βN2 [q]

)k2−1
. Summing up the probabili-

ties over l = 0,1, . . . ,N2, we get

FM j(0) = 1− k2

N2

∑
l=0

βN2 [l]

(
1−

l

∑
q=0

βN2 [q]

)k2−1

. (32)

M j > 0: In the intra-cluster stage, when the best metric in the
jth cluster is less than 1−∑N2

l=0 βN2 [l], no transmission occurs,
which leads to the cluster-head setting M j as 0. Therefore,

M j �∈
(

0,1−∑N2
l=0 βN2 [l]

]
. Hence, for 0 ≤ x ≤ 1−∑N2

l=0 βN2 [l],

we have FM j(x) = FM j(0).
Now, consider the case in which 1−∑i

l=0 βN2 [l] < x ≤ 1−
∑i−1

l=0 βN2 [l]. In this case,

FM j(x) = Pr

(
1−

i

∑
l=0

βN2 [l]< M j ≤ x

)
+FM j(0)

+ Pr

(
0 < M j ≤ 1−

i

∑
l=0

βN2 [l]

)
. (33)

For M j to lie in
(
1−∑i

l=0 βN2 [l],x
]
, one node must lie in

this interval and the metrics of the remaining k2 − 1 nodes
must lie in

[
0,1−∑i

l=0 βN2 [l]
]
. Since the metrics are uniformly

distributed in [0,1], we get

Pr

(
1−

i

∑
l=0

βN2 [l]< M j ≤ x

)
=

(
1−

i

∑
l=0

βN2 [l]

)k2−1

×k2

(
x−1+

i

∑
l=0

βN2 [l]

)
. (34)

Similarly, we can show that

Pr

(
0 < M j ≤ 1−

i

∑
l=0

βN2 [l]

)

=
N2

∑
l=i+1

k2

(
1−

l

∑
j=0

βN2 [ j]

)k2−1

βN2 [l]. (35)

Substituting (32), (34), and (35) in (33) yields (4).

B. Proof of Result 1

1) Expression for F2(βββN2
): Let the nodes be labeled such

that the first k2 nodes form the first cluster, the next set of
k2 nodes form the second cluster, and so on. Without loss of
generality, let node 1 be the best node. Let S1 denote the event
that node 1 is selected by its cluster in the intra-cluster stage.
Therefore,

F2(βββN2
) = 1−Pr(S1|µ1 = max{µ1, . . . ,µk1k2}) . (36)

As the metrics are i.i.d., Pr(µ1 =max{µ1, . . . ,µk1k2}= 1/(k1k2).
Therefore, from Bayes’ rule, we get

F2(βββN2
) = 1− k1k2 Pr(S1,µ1 ≥ µ2, . . . ,µ1 ≥ µk1k2). (37)

To evaluate (37), we condition with respect to µ1. Selection
of node 1 in the intra-cluster stage depends only on the metrics
of the k2−1 other nodes in its cluster, and is independent of the
metrics of the remaining k1k2 − k2 nodes. Since the metrics are
i.i.d. and are uniformly distributed in [0,1], we get

F2(βββN2
) = 1− k1k2Eµ1

[
µk1k2−k2

1

× Pr(S1,µ1 ≥ µ2, . . . ,µ1 ≥ µk2 |µ1)
]
. (38)

Next, we evaluate Pr(S1,µ1 ≥ µ2, . . . ,µ1 ≥ µk2 |µ1). If

µ1 ∈
(

1−∑l
i=0 βN2 [i],1−∑l−1

i=0 βN2 [i]
]
, then node 1 is se-

lected only if µq ≤ 1 − ∑l
j=0 βN2 [ j], for q = 2, . . . ,k2. Oth-

erwise, there would be a collision. Therefore, if µ1 ∈(
1−∑l

i=0 βN2 [i],1−∑l−1
i=0 βN2 [i]

]
, we have

Pr(S1,µ1 ≥ µ2, . . . ,µ1 ≥ µk2 |µ1) =

(
1−

l

∑
i=0

βN2 [i]

)k2−1

. (39)

Substituting (39) in (38) for the different timer intervals that µ1

can lie in, and computing the expectation using the fact that µ1

is uniformly distributed in [0,1], we get (15).
2) Evaluation of F1(αααN1): If the priority of the

cluster-head whose cluster contains the best node lies in(
1−∑i

l=0 αN1 [l],1−∑i−1
l=0 αN1 [l]

]
, then the priorities of all

the other cluster-heads must be less than 1 − ∑i
l=0 αN1 [l]

to avoid a collision. This happens with probability

k1αN1 [i]
(
1−∑i

l=0 αN1 [l]
)k1−1

. Summing over i = 0, . . . ,N1

yields (16).

C. Proof of Result 2

In the proof that follows, given N1 and N2, we shall say that
a pair of interval length vectors for the intra-cluster and inter-
cluster stages is a feasible solution of OP 2 if it satisfies the
constraints in (14), (8), (9), and (10).

For a constant λ ≥ 0, define

Lλ(αααN1 ,βββN2
) = Γ(αααN1 ,βββN2

)+λ
(
F1(αααN1)+F2(βββN2

)
)
. (40)

Let ααα∗
N1

and βββ∗
N2

minimize (40) for a given λ and let Lλ
∗ denote

the corresponding minimum value. Suppose there exists a λ
such that F1(ααα∗

N1
) + F2(βββ∗

N2
) = η. Clearly, ααα∗

N1
and βββ∗

N2
are

feasible. Furthermore, by definition, Lλ
∗ ≤ Lλ(αααN1 ,βββN2

) for any
αααN1 and βββN2

. Therefore,

Γ(αααN1 ,βββN2
)−Γ

(
ααα∗

N1
,βββ∗

N2

)
≥λ

(
η−F1(αααN1)−F2(βββN2

)
)
. (41)

If αααN1 and βββN2
are feasible, then F1(αααN1)+F2(βββN2

)≤ η. There-
fore, Γ(ααα∗

N1
,βββ∗

N2
)≤ Γ(αααN1 ,βββN2

). Hence, if there exists ααα∗
N1

and
βββ∗

N2
such that F1(ααα∗

N1
) + F2(βββ∗

N2
) = η, then it is the optimal

solution.
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Next, we show that there exists a λ ≥ 0 such that F1(ααα∗
N1
)+

F2(βββ∗
N2
) = η.

1) When λ = 0, minimizing Lλ(αααN1 ,βββN2
) in (40) reduces to

minimizing Γ(αααN1 ,βββN2
) without a constraint on F(αααN1 ,βββN2

). In
this case, the optimal solution is to have all the nodes transmit
immediately. This also implies that a collision is inevitable in
both stages. Thus, F1(ααα∗

N1
) = 1 and F2(βββ∗

N2
) = 1. Therefore,

F1(ααα∗
N1
)+F2(βββ∗

N2
) = 2.

2) When λ → ∞, minimizing Lλ(αααN1 ,βββN2
) reduces to min-

imizing F1(αααN1) + F2(βββN2
). It can be seen that when N1 →

∞ and N2 → ∞, F1(ααα∗
N1
) → 0 and F2(βββ∗

N2
) → 0. Therefore,

F1(ααα∗
N1
)+F2(βββ∗

N2
)→ 0.

Furthermore, from (16) and (25), F1(ααα∗
N1
) is a continuous

function of λ. From (15) and (30), we see that F2(βββ∗
N2
) is

independent of λ. Thus, F1(ααα∗
N1
) + F2(βββ∗

N2
) is a continuous

function of λ. Therefore, the existence result follows from the
intermediate value theorem.

The decomposition into the two sub-problems SP 1 and SP 2

then follows because the objective function Lλ(αααN1 ,βββN2
) can be

written as the sum of � k1
r �(N2Δ+Tp)+λF2(βββN2

) and Γ1(αααN1)+
λF1(αααN1), which share no optimization variable in common.

D. Solution for α∗
∞[0] in (29)

Upon substituting the expressions for Γ1(ααα∗
N1
) and F1(ααα∗

N1
)

in (27) and (28), respectively, in (19), SP 1 becomes

SP 1 : min
α∗

∞[0]
Tp +

Δ(1−α∗
∞[0])

k1

1− (1−α∗
∞[0])

k1

−λ

(
1− k1α∗

∞[0](1−α∗
∞[0])

(k1−1)

1− (1−α∗
∞[0])k1

)
, (42)

s.t. 0 ≤ α∗
∞[0]≤ 1. (43)

Applying the first order condition, we get

α∗
∞[0] = 1− (1−α∗

∞[0])
k1 + k1 −1

(Δ/λ)+ k1
. (44)

When α∗
∞[0] increases from 0 to 1, the right hand side of (44)

monotonically increases from 1− k1
(Δ/λ)+k1

> 0 to 1− k1−1
(Δ/λ)+k1

<

1. Therefore, the solution of (44) is unique, and lies in (0,1).

E. Proof of Result 3

We now prove that the solution in (30) achieves a lower
bound on F2(βββN2

), which proves that it is optimal. Taking out
the common factor (1−βN2 [0])

k1k2 from the terms indexed by
l = 1, . . . ,N2 in (15), we get

F2(βββN2
) =1−κ(1−βN2 [0])

k2−1

×
[
1− (1−βN2 [0])

k1k2−k2+1
]

− (1−βN2 [0])
k1k2

×
[

1−F2

(
βN2 [1]

1−βN2 [0]
, . . . ,

βN2 [N2]

1−βN2 [0]

)]
,

where κ = k1k2
k1k2−k2+1 . If βββ∗

N2−1 is the optimum solution for N2 −
1 timer levels, then we must have F2

( βN2 [1]
1−βN2 [0]

, . . . ,
βN2 [N2]

1−βN2 [0]

)
≤

F2(βββ∗
N2−1). Therefore,

F2(βββN2
)≥1−κ(1−βN2 [0])

k2−1

×
[
1− (1−βN2 [0])

k1k2−k2+1
]

− (1−βN2 [0])
k1k2

[
1−F2

(
βββ∗

N2−1

)]
. (45)

Furthermore, the lower bound in (45) is achiev-

able, and is obtained by setting
βN2 [1]

1−βN2 [0]
=

β∗
N2−1[0],

βN2 [2]
1−βN2 [0]

=β∗
N2−1[1], . . . ,

βN2 [N2]

1−βN2 [0]
= β∗

N2−1[N2 − 1].

Therefore,

F2(βββ∗
N2
)

= min
0≤βN2 [0]≤1

{
1− (1−βN2 [0])

k1k2
[
1−F2

(
βββ∗

N2−1

)]
.

−κ(1−βN2 [0])
k2−1

[
1− (1−βN2 [0])

k1k2−k2+1
]}

. (46)

Using the first-order condition to minimize (46), we get

β∗
N2
[0] = 1−

(
κ(k2−1)[

κ−1+F2

(
βββ∗N2−1

)]
k1k2

)κ/(k1k2)

.

Base Case of N2 = 0: Substituting N2 = 0 in (15), we get

F2(βββ0) = 1− (1−β0[0])
k2−1

[
1− (1−β0[0])

k1k2−k2+1
]
. (47)

Using the first-order condition to minimize (47), we get β∗
0[0] =

1− ((k2 −1)/(k1k2))
κ/(k1k2). It can be verified that 0 < β∗

0[0]<
1. Using induction, it can be shown that βββ∗

N2
is feasible.

F. Proof of Lemma 2

From Result 3, β∗
0[0] = 1− ((k2 −1)/(k1k2))

κ/(k1k2). Substi-
tuting this expression and N2 = 0 in (15), we can show that
limk1→∞ F2(βββ∗

N2
) = 0.

G. Proof of Result 4

From (44), it can be shown that limk1→∞ k1α∗
∞[0] exists. Let it

be equal to dλ > 0, where dλ depends on λ. Substituting this in
(27) and (28), and taking limits on both sides, yields Γ1(ααα∗

∞) =

Tp +
Δexp(−dλ)

1−exp(−dλ)
and F1(ααα∗

∞) = 1− dλ exp(−dλ)
1−exp(−dλ)

.
Next we solve for dλ. Upon rearranging the terms in the

expression for α∗
∞[0] in (44), we get

(1−α∗
∞[0]) ((Δ/λ)+ k1) = (1−α∗

∞[0])
k1 + k1 −1. (48)

Taking the limit k1 → ∞ on both sides, we get

dλ = 1+(Δ/λ)− exp(−dλ). (49)

The right hand side of (49) is a monotonic increasing function
of dλ. It increases from Δ/λ to (Δ/λ) + 1 when dλ increases
from 0 to ∞. The left hand side of (49) instead starts lower at
0 but increases to ∞ when dλ increases from 0 to ∞. Therefore,
there exists a unique solution for dλ.
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