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Capture-Induced, Fast, Distributed, Splitting Based
Selection with Imperfect Power Control
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Abstract—Opportunistic selection selects the node that im-
proves the overall system performance the most. Selecting the
best node is challenging as the nodes are geographically dis-
tributed and have only local knowledge. Yet, selection must be
fast to allow more time to be spent on data transmission, which
exploits the selected node’s services. We analyze the impact of
imperfect power control on a fast, distributed, splitting based
selection scheme that exploits the capture effect by allowing the
transmitting nodes to have different target receive powers and
uses information about the total received power to speed up
selection. Imperfect power control makes the received power
deviate from the target and, hence, affects performance. Our
analysis quantifies how it changes the selection probability,
reduces the selection speed, and leads to the selection of no node
or a wrong node. We show that the effect of imperfect power
control is primarily driven by the ratio of target receive powers.
Furthermore, we quantify its effect on the net system throughput.

Index Terms—Selection, splitting, imperfect power control,
capture, medium access control protocols, throughput.

I. INTRODUCTION

OPPORTUNISTIC selection finds applications in many
wireless systems. In it, nodes are ordered according to

their ability to improve the system performance, and the best
one among them is selected. Formally, this ability is quantified
in terms of a real-valued local metric that quantifies how useful
the node will be if selected. For example, in the downlink of a
cellular system, the metric of a user is its downlink signal-to-
noise ratio (SNR). Selecting the user with the highest SNR
exploits multiuser diversity and improves system through-
put [1, Chap. 6]. Instead, in the proportional-fair scheduler,
the ratio of the demanded to the average assigned rate is the
metric [1, Chap. 6]. In amplify-and-forward relaying, which
exploits spatial diversity, the metric is the harmonic mean of
the source-to-relay and relay-to-destination channel gains [2].
In sensor networks, where sensor selection reduces energy
consumption and increases network lifetime, a node’s metric
is a function of its residual energy [3].

However, since the nodes are geographically distributed,
each node knows only its metric and not that of the others.
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Hence, distributed selection schemes are required. Broadly,
two types of distributed, multiple access selection schemes
have been considered in literature. The first category is timer
based [2], [4]. In it, a node sets its timer as a monotonically
non-increasing function of its metric, and transmits its packet
to a coordinating node called sink when its timer expires. This
ensures that the best node transmits first. However, the scheme
can fail to select the best node if any other node’s timer expires
within a vulnerability window after the transmission by the
best node or its timer does not expire at all [2].

The second category is splitting based [5], [6]. In it, only
those nodes whose metrics lie between two thresholds transmit
in a slot. At the end of every slot, the sink broadcasts an
idle, success, or collision outcome to all the nodes based on
whether zero, one, or multiple nodes transmitted in that slot.
Accordingly, the thresholds are adjusted for the next slot.
The algorithm continues until the best node is selected. It
is scalable and, unlike the timer scheme, it guarantees that
the best node will get selected. For example, it takes 2.5
slots to select, on average, even when the number of nodes is
asymptotically large.

The splitting scheme was speeded up significantly by ex-
ploiting capture and power control by the Variable Power
Multiple Access Selection Power Based Splitting scheme
(VPMAS-PS) [7]. In VPMAS-PS, a node transmits only if
its metric lies between two thresholds. Further, a node that
transmits also adjusts its transmit power so that its received
power is one of Q possible target receive power levels. The
different target receive powers are such that the node with
a higher target receive power can be selected even in the
presence of multiple simultaneous transmissions by nodes
with lower target receive powers. These would otherwise have
resulted in a collision and a wasted slot.

For example, consider a system with two target receive
powers, PH and PL, where PL = γσ2, PH = γ(ηPL+σ2), γ
is the minimum signal-to-interference-plus-noise power ratio
(SINR) at which the sink can decode, and σ2 is the noise
power. With this, even when as many as η nodes have target
receive power PL, a node with target receive power PH will
get selected. We shall refer to η ∈ R

+ as the adversary order.
Further, VPMAS-PS uses the total received power to estimate
the best node’s target receive power and speed up selection
even more. It requires just 1.98, 1.67, and 1.55 slots, on
average, to select the best node with two, three and four target
receive power levels, respectively. However, in practice, power
control errors at the transmitter make its receive power deviate
from its target. This affects the performance of VPMAS-PS
and, in general, multiple access (MAC) protocols that exploit
power control [8]–[12].
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Contributions and Focus: In this paper, we analyze the
effect of imperfect power control on splitting based selection.
To gain quantitative insights, we focus on VPMAS-PS because
it exploits power control to speed up selection. We show that
imperfect power control affects it in three ways: (i) it changes
the selection probability of the best node in a slot, (ii) it
leads to a wrong node getting selected, and (iii) it leads to
a selection outage, where no node is selected. To this end,
we first characterize the time taken to select the best node.
As this is a random variable (RV), which depends on the
realizations of the metrics and power control errors, we derive
the probability of selecting the best node in each slot. From
this, statistical measures such as mean and standard deviation
of the selection time can be computed. We also develop a tight
lower bound for the probability of selection outage.

Our analysis is novel in two respects. Firstly, it uses an
SINR based reception model [13], [14] to determine whether
a packet is captured or not. It is more realistic than the abstract
MAC layer collision model, in which a collision is assumed to
occur anytime two or more nodes transmit simultaneously, or
the protocol model for capture, in which the distances between
the transmitters and the sink entirely determine when capture
occurs [5], [6], [15]. Secondly, it incorporates power control
error into the capture model. The effect of the peak power
constraint on selection is also evaluated numerically.

While imperfect power control has been studied extensively,
the focus has been on MAC algorithms, the goals of which
are quite different from a selection algorithm [16]–[19]. Our
analysis, while involved, helps quantify the impact of system
parameters such as the number of target receive power levels,
adversary order, and power control error variance. It also
shows that η, which was conceived as a means to speed up
selection, can also be used to improve robustness to power
control errors. To the best of our knowledge, power control
error has not been analyzed for MAC based selection schemes.

Our second contribution is an analysis of the net throughput
of a rate-adaptive downlink, which is relevant to a system
designer. It accounts for the time spent on selection and
the penalties associated with selection outage or selection
of a wrong node. It brings out the trade-off between the
time allocated for selection and the net throughput. Our third
contribution is a new, recursive expression for the average
selection duration of VPMAS-PS under perfect power control.
This serves as a benchmark for imperfect power control, and
was hitherto determined using simulations [7].

The paper is organized as follows. Section II presents the
system model. In Section III, we analyze the performance of
VPMAS-PS with perfect and imperfect power control. Results
in Section IV are followed by our conclusions in Section V.

II. MODEL

Consider a wireless system with N nodes and a sink. Each
node has a real-valued metric that is uniformly distributed in
[0, 1) [4]. This assumption does not incur a loss in generality
because of the following reason. In general, let the metric μ
have a cumulative distribution function (CDF) F . Then the
variable transformation ν = F (μ) yields a new metric ν that
is uniformly distributed between [0, 1) [20]. Further, since F is

Fig. 1. Target receive powers and transmissions by different nodes based on
the location of their metrics in the interval [μmin(k), μmax(k)).

a monotonically non-decreasing function, selecting the node
with highest ν is the same as selecting the node with the
highest μ. Assuming that the CDF F is known is reasonable
because it changes at a time scale that is several orders of
magnitude slower than the instantaneous metrics, and has also
been assumed in [5], [21]. The metrics are independent and
identically distributed (i.i.d.) RVs. Following order statistics
notation, [i] denotes the node with the ith largest metric μ[i].
Selection is successful if and only if node [1] is selected. Each
transmission lasts for one slot duration.

In each slot k ≥ 1, every node maintains two thresh-
olds, namely, μmax(k) and μmin(k). The interval Δ(k) =
[μmin(k), μmax(k)) is referred to as the transmission interval
in slot k, and |Δ(k)| represents its length. A node [i] transmits
in slot k if and only if μ[i] ∈ Δ(k). If it transmits in slot k,
its target receive power P[i](k) is either PH or PL, and is
determined as follows:

P[i](k) =

{
PH , μ[i] ∈ H{Δ(k)}
PL, μ[i] ∈ L{Δ(k)} , (1)

where H{Δ(k)}and L{Δ(k)} represent the upper and lower
halves of Δ(k), respectively.1

Thus, a node whose metric lies in H{Δ(k)} has a higher
target receive power, which improves the chances of it getting
captured. Further, when the best node transmits, its target
receive power is never less than any other transmitting node’s
target receive power. For example, in Fig. 1, nodes [1] and [2]
have target receive powers PH and PL in slot k, as μ[1] and
μ[2] are in H{Δ(k)} and L{Δ(k)}, respectively. Note that
the model can be generalized to cover more than two target
receive power levels. However, its analysis is considerably
more involved and yields limited additional insights. We,
therefore, study it numerically in Section IV.

When M nodes, [1], [2], . . . , [M ], transmit in slot k, the
SINR of a node [i] in slot k, SINR[i](k), is given by

SINR[i](k) =
P[i](k)

M∑
j=1,j �=i

P[j](k) + σ2

. (2)

Node [1] gets selected if SINR[1](k) ≥ γ. The threshold γ
depends on the modulation and coding scheme and is of the
order of 8-10 dB. As in VPMAS-PS, we assume that in slot
k, the sink can measure the total received power P tot(k) and
can sense whether any transmission has occurred or not. This

1In general, Δ(k) can be partitioned into unequal intervals based on η.
However, this yields marginal gains [7], and makes the analysis more involved.
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capability exists in receivers today in the form of the receive
signal strength indicator.

Transmit Power Setting: In slot k, to achieve a target receive
power P at sink, a node i sets its transmit power as P

hi
, where

hi is the channel power gain of node i from itself to the
sink. With this transmit power, the receive power of node
i is hi

P
hi

= P . The knowledge of hi can be acquired by
periodic feedback from the sink or by exploiting reciprocity.
This knowledge can be imperfect, and contributes to the power
control error.

Notation: The number of nodes that have target receive
power PH and PL in slot k are denoted by nH(k) and
nL(k), respectively. The total number of nodes that transmit
in slot k is denoted by nT(k) = nH(k) + nL(k). Further,
X ∼ N (μ, σ2) implies that X is a Gaussian RV with
mean μ and variance σ2. The multinomial

(
N

i1,i2,...,ip

)
denotes

N !
(N−i1−i2−···−ip)!i1!i2!···ip! . The probability of an event A is
denoted by Pr {A}, and the probability of an event A condi-
tioned on event B is denoted by Pr {A|B}. The mean of an
RV X is denoted by E [X ]. The indicator function I{x} equals
1 when x is true, and is 0 otherwise.

A. VPMAS-PS Overview

We now give a brief summary of VPMAS-PS with perfect
power control, which helps set up the notation and conveys
the fundamental concepts. In every slot k, each node maintains
three thresholds μmin(k), μmax(k), and μbase(k). As we shall
see, μ[1] ∈ [μbase(k), μmax(k)) always. The scheme is such
that in any non-idle slot, the best node always transmits, and
is the one that eventually gets selected.

1) Initialization: In slot 1, metrics of all the nodes lie
in [0, 1). Therefore, μbase(1) = 0 and μmax(1) = 1. The
threshold μmin(1) is set so that a fraction z of the N nodes, on
average, transmit in slot 1. Since the metrics are uniform RVs,
this implies that μmin(1) = μmax(1)−(μmax(1)− μbase(1)) z.
Thus, |Δ(1)| = z. Appendix A shows how z is chosen to
maximize the success probability in slot 1 as a function of η
and N . As is typical of splitting algorithms, the probability
that m nodes transmit in slot 1 turns out to be insensitive to
N for N ≥ 10. This is one of the reasons why splitting based
selection schemes such as VPMAS-PS are scalable.

2) Updation of Thresholds: Each node updates its thresh-
olds for slot k + 1 based on the outcome of slot k, which is
broadcasted by the sink, as follows. The broadcast is assumed
to be error-free due to its low payload [5], [6], [8].

Success in slot k, S(k): The algorithm terminates. The
decoded node is the best node.

Collision in slot k, C(k): This implies that at least two
nodes have their metrics in Δ(k). Since μmin(k) ≤ μ[1], all
nodes set μbase(k+ 1) = μmin(k). The sink then uses P tot(k)
to locate where μ[1] lies as follows: if P tot(k) ≤ PH , then
all the transmitting nodes have target receive power PL and
their metrics must lie in L{Δ(k)}, which becomes Δ(k+1). If
P tot(k) > PH , then it is very likely that μ[1] lies in H{Δ(k)},
which then becomes Δ(k+1). We shall refer to this as correct

splitting.2 Note that when a collision occurs, the length of
the transmission interval is halved and the sink broadcasts
an additional 1-bit information about whether or not P tot(k)
exceeds PH .

Idle in slot k, I(k): If no collision has occurred in any of the
previous slots, then the N nodes’ metrics must be uniformly
distributed in [μbase(k), μmin(k)). Hence,3

μmax(k + 1) = μmin(k), μbase(k + 1) = μbase(k), (3)

μmin(k + 1) = μmax(k + 1)− [μmax(k+1)− μbase(k+1)]z.
(4)

The above thresholds ensure that the metrics are i.i.d. and
uniformly distributed in the interval [μbase(k+1), μmax(k+1)).
Hence, VPMAS-PS statistically behaves as it did in slot 1.

B. Imperfect Power Control

Power control errors arise due to a combination of many
factors such as feedback delay, quantization, imperfect esti-
mation, power control algorithm used, rate of adaptation of
power, dynamic range of the transmitter, feedback errors, and
even filtering effects at the receiver. Each of these factors
affects the receive power in dB [18]. Though these factors
are system-dependent and are difficult to quantify separately,
by virtue of the central limit theorem, the power control error
in dB is well modeled as a Gaussian RV. This implies that
the power control error in linear scale is a lognormal RV. This
model has been validated in systems that employ open-loop or
closed-loop power control [22], [23]. It has also been verified
by analysis and extensive field measurements [24]–[26].

Therefore, the power received from transmitting node [i] in
slot k, becomes P[i](k)e

l[i] , where el[i] models its power con-
trol error and l[i] ∼ N (0, σ2

l ). When nodes [1], [2], . . . , [M ]
transmit, (2) changes to

SINR[i](k) =
P[i](k)e

l[i]

M∑
j=1,j �=i

P[j](k)e
l[j] + σ2

. (5)

Now a suboptimal node [i] �= [1] may get selected in slot
k if SINR[i](k) ≥ γ. Also note that even if only one node
transmits in a slot k, it may not get selected due to its power
control error. Henceforth, with a little abuse of terminology,
this case is also referred to as a collision. Further, power
control error can lead to P tot(k) ≤ PH despite some or all
of the nodes transmitting with target receive power PH in slot
k. As a result, Δ(k + 1) = L{Δ(k)}, which is an example
of an incorrect splitting. It can lead to a wrong node getting
selected.4

2A rare event that can lead to P tot(k) > PH is when all the transmitting
nodes have a target receive power PL. However, this requires that more than
PH−σ2

PL
= ηγ+1− 1

γ
≈ ηγ nodes have their metrics in L{Δ(k)}, which is

highly unlikely. For example, for η = 2 and γ = 10, we have ηγ = 20 � 1.
3The following rare event can also lead to an idle in slot k. A collision

occurs in slot k − 1 with P tot(k − 1) > PH but all the transmitting nodes’
metrics lie in L{Δ(k−1)}. Hence, H{Δ(k−1)} becomes Δ(k) and results
in an idle in slot k, I(k). In such a case, L{Δ(k − 1)} is made Δ(k + 1)
and μbase(k + 1) = μbase(k).

4This issue also triggers a change in VPMAS-PS to address the case when
nT(k) = nH(k). In this case, an idle occurs in slot k + 1, which would
otherwise have been impossible with perfect power control. In this case,
Δ(k + 2) = H{Δ(k)}.
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III. ANALYSIS OF VPMAS-PS

A. With Perfect Power Control

We first develop a new, simple expression for the average
number of slots required by VPMAS-PS to select the best node
with perfect power control. This serves as a useful benchmark
for understanding the impact of imperfect power control.

Let the RV X be the number of slots required to select
the best node for a given realization of metrics. Given that
m nodes transmit in a slot, let Y (m) denote the number of
slots required for selection including the slot in which the
transmission occurred. Clearly, Y (1) = 1.

Result 1: The average number of slots E [X ] required to
select the best node is given by

E [X ] =

[
1 +

N−1∑
k=η+1

(
N

1, k

)(z
2

)1+k

(1− z)
N−1−k

+

N∑
i=2

(
N

i

)(z
2

)i (
E [Y (i)]

(
1− z

2

)N−i

+
(
I{i>ηγ} + E [Y (i)]

)
(1− z)N−i

)] 1

1− (1− z)
N
, (6)

where E [Y (m)] =
2m+I{m>ηγ}+mI{m>η+1}+

∑m−1
i=2 (mi )E[Y (i)]

2m−2 ,
for m ≥ 2, and E [Y (1)] = 1.

Proof: The proof is given in Appendix B.
The recursive nature of the above result is typical of splitting
algorithms [5], [6].

B. With Imperfect Power Control (σl > 0)

We now evaluate the probability of success as a function of
the slot number with imperfect power control. We then derive
the selection outage probability.

1) Assumptions: To ensure analytical tractability, we make
the following assumptions. While these are intuitive, in order
to provide quantitative insights for the justifications, we set
γ = 10 dB, N = 100, σl = 3, and η = 5 below. (i) The
effect of noise when two or more nodes transmit is negligible.
This is reasonable because even when two nodes have target
receive power PL, the ratio of noise power to the total received
power with perfect power control is 1

2γ+1 � 1. (ii) The
probability of the event in which nodes [1], [2], and [3] have
the same target receive power and one of them gets selected
is negligible. In slot 1, it is less than 0.005, and is zero with
perfect power control. (iii) The probability of a collision and
incorrect splitting in a slot when at least three nodes have
target receive power PH and one has target receive power PL

is negligible. In slot 1, when three nodes have target receive
power PH and one node has target receive power PL, it is less
than 0.001, and it is zero with perfect power control. (iv) The
probability that at least five nodes transmit simultaneously is
negligible. In slot 1, it is less than 0.015.

2) Probability of Success in Slot k ≥ 1: We first evaluate
Pr {S(k)} for k = 1 and 2 exactly. Then, for k ≥ 3, we
calculate the probabilities of some sequences that contribute
the most to Pr {S(k)}. This tackles the exponential increase
in the number of sequences that lead to S(k) as k increases.

(a) Probability of Success in Slot 1: We know that

Pr {S(1)}=Pr {S(1), nH(1)>0}+Pr {S(1), nH(1)=0} . (7)

The term Pr {S(1), nH(1) ≥ 1} is the probability of success
in slot 1 when at least one node, including the best node, has
target receive power PH . The total number of ways in which
nH(1) and nL(1) nodes can be chosen from the N nodes is(

N
nL(1),nH(1)

)
. The probability that N−nH(1)−nL(1) nodes are

silent in slot 1 is (1− z)N−nT (1). The probability that nH(1)
nodes have target receive power PH and nL(1) nodes have
target receive power PL in slot 1 is

(
z
2

)nH(1) and
(
z
2

)nL(1),
respectively. A success occurs if SINR[1](1) ≥ γ. Hence,

Pr {S(1), nH(1) ≥ 1} =

N−nH(1)∑
nL(1)=0

N∑
nH(1)=1

(
N

nL(1), nH(1)

)

× (1−z)N−nT (1)
(z
2

)nT (1)

Pr
{

SINR[1](1) ≥ γ
}
. (8)

The following two cases lead to the event {S(1), nH(1) ≥ 1}:
(i) nT(1) = nH(1) = 1: In this case, Pr

{
SINR[1](1) ≥γ

}
=

Pr
{

PHe
l[1]

σ2 ≥ γ
}
= Q

(
ln
(

γσ2

PH

)

σl

)
, where Q(.) is the Gaus-

sian Q-function.
(ii) nT(k) ≥ 2 and nH(1) ≥ 1: Neglecting σ2 yields

Pr
{

SINR[1](1) ≥ γ
}

≈ Pr

⎧⎨
⎩ el[1]∑nH(1)

i=2 el[i] + PL

PH

∑nH(1)+nL(1)
j=nH(1)+1 el[j]

≥ γ

⎫⎬
⎭ . (9)

The term
nH(1)∑
i=2

el[i]+
PL

PH

nH(1)+nL(1)∑
j=nH(1)+1

el[j] in (9) can be approx-

imated by a lognormal RV elα , where lα ∼ N (μα, σ
2
α). Here,

μα and σ2
α are given in closed-form by the Fenton-Wilkinson

(F-W) method [27, Chap. 3]. Hence, Pr
{

SINR[1](1) ≥ γ
} ≈

Pr
{

e
l[1]

elα
≥ γ

}
= Q

(
ln(γ)+μα√

σ2
l +σ2

α

)
.

Similarly, the second term in (7) is given by

Pr {S(1), nH(1) = 0} =

N∑
nL(1)=1

(
N

nL(1)

)(z
2

)nL(1)

× (1− z)N−nL(1)Pr
{

SINR[1](1) ≥ γ
}
. (10)

Here, for nL(1) = 1, Pr
{

SINR[1](1) ≥ γ
}
= Q

(
ln( γσ2

PL
)

σl

)
.

For nL(1) ≥ 2, using the F-W method again, we

get Pr
{

SINR[1](1) ≥ γ
} ≈ Q

(
ln(γ)+μβ√

σ2
l +σ2

β

)
, where elβ ≈∑nL(1)

j=2 el[j] and lβ ∼ N (μβ , σ
2
β).

(b) Probability of Success in Slot 2: A success in slot 2 is
preceded by an idle or a collision in slot 1. Hence,

Pr {S(2)}=Pr {I(1)}Pr {S(2)|I(1)} + Pr {C(1),S(2)}.
(11)

Since the metrics are i.i.d. and uniformly distributed,
VPMAS-PS effectively restarts if an idle occurs in slot 1.
Hence, Pr {S(2)|I(1)} = Pr {S(1)}. An idle in slot 1 occurs
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when all the N nodes do not transmit in slot 1. Hence,
Pr {I(1)} = (1− z)N .

The event {C(1),S(2)} above can occur only if all the
following three conditions are satisfied:

E1) In slot 1, no node gets selected, i.e., SINR[i](1)<γ, for
i = 1, . . . , nT(1).

E2) For a success to occur in slot 2, μ[1] must lie in Δ(2).
This happens if P tot(1) > PH when P[1](1) = PH , and
if P tot(1) ≤ PH when P[1](1) = PL.

E3) In slot 2, the best node is selected, i.e., SINR[1](2) ≥ γ.

From the law of total probability, Pr {C(1),S(2)} in (11) is
given by

Pr {C(1),S(2)} = Pr {nH(1) = 0, C(1),S(2)}
+ Pr {nH(1) ≥ 1, C(1),S(2)} . (12)

In (12), the first event {nH(1) = 0, C(1),S(2)} occurs if all
the nT(1) nodes have target receive power PL and collide in
slot 1, which is followed by a success in slot 2. As all the
nT(1) nodes’ metrics are in L{Δ(1)}, E2 requires L{Δ(1)}
to be Δ(2). All of these nT(1) nodes then transmit again in slot
2. Thus, nT(1) = nL(1) = nT(2) = nH(2) + nL(2). Among
these nT(2) nodes, at least the best node should have target
receive power PH in slot 2, as otherwise a collision will occur
again in slot 2. This implies that P[1](2) = PH . As the length
of the transmission interval is halved with each collision, the
probability that a node has target receive power PH in slot
2 is z

4 , which also is the probability that a node has target
receive power PL in slot 2. Therefore,

Pr {nH(1)=0, C(1),S(2)}=
N∑

nL(1)=1

nL(1)∑
nH(2)=1

(
N

nL(2), nH(2)

)

×
(z
4

)nL(1)

(1 − z)N−nL(1)Pr
{

SINR[1](1) < γ, . . . ,

SINR[nL(1)](1) < γ, P tot(1) ≤ PH , SINR[1](2) ≥ γ
}
. (13)

To calculate the probability term in (13), we consider the
following three cases separately:

(i) nL(1) = 1: Here, E1, E2, and E3 require PLe
l[1]

σ2 < γ,

PLe
l[1] + σ2 ≤ PH , and PHe

l[1]

σ2 ≥ γ, respectively. These to-

gether can be satisfied if κ1 ≤ l[1] < κ2, where κ1 = ln
(

σ2γ
PH

)
and κ2 = ln

(
min

{
σ2γ
PL

, PH−σ2

PL

})
. The probability α1 that

l[1] satisfies these constraints is

α1 = Q

(
κ1

σl

)
−Q

(
κ2

σl

)
. (14)

(ii) nL(1) = 2: In this case, E1 requires e
l[1]

e
l[2]

<

γ and e
l[2]

e
l[1]

< γ, E2 requires PL

(
el[1] + el[2]

) ≤ PH ,

and E3 requires PHe
l[1]

PLe
l[2]

≥ γ. Putting these together, we

get, l[2] < ln
(

PH

PL

)
and ϑ1(l[2]) < l[1] < ϑ2(l[2]),

where ϑ1(l[2]) = ln
(

max
{

e
l[2]

γ , γPLe
l[2]

PH

})
and ϑ2(l[2]) =

ln
(

min
{
γel[2] , PH

PL
− el[2]

})
. Therefore, the probability α2

that l[1] and l[2] satisfy these constraints is

α2 =
1√

2πσl
2

∫ ln
(

PH
PL

)

−∞

[
Q

(
ϑ1(l[2])

σl

)
−Q

(
ϑ2(l[2])

σl

)]

× e
−

l2
[2]

2σ2
l dl[2]. (15)

(iii) nL(1) ≥ 3: Here, E1 is assumed to be true (cf.
Section III-B1). E2 requires P tot(1) ≤ PH , where P tot(1) =

PL

∑nL(1)
i=1 el[i] = PL

(
el[1] +

∑nH(2)
i=2 el[i] +

∑nL(2)
j=1 el[1]

)
≈

PL

(
el[1] + elε + elλ

)
, where the lognormal RVs elε and elλ

approximate the sums
∑nH(2)

i=2 el[i] and
∑nL(2)

j=1 el[j] , respec-
tively, with lε ∼ N (με, σ

2
ε ) and lλ ∼ N (μλ, σ

2
λ). E3 requires

SINR[1](2) ≈ PHe
l[1]

PHelε+PLelλ
≥ γ. Altogether, it is required that

elλ < PH

PL
, elε < PH

PL
− elλ and ϑ3(lε, lλ) ≤ l[1] ≤ ϑ4(lε, lλ),

where ϑ3(lε, lλ) = ln
(
γelε + γPL

PH
elλ
)

and ϑ4(lε, lλ) =

ln
(

PH

PL
− elε − elλ

)
. The probability α3 that elλ , elε , and el[1]

satisfy the above constraints is

α3 ≈ 1

2πσεσλ

∫ ln
(

PH
PL

)

−∞

∫ ln
(

PH
PL

−elλ
)

−∞

[
Q

(
ϑ3(lε, lλ)

σl

)

− Q

(
ϑ4(lε, lλ)

σl

)]
e
− (lη−με)2

2σ2
ε e

− (lλ−μλ)2

2σ2
λ dlεdlλ, (16)

where the two integrals above are evaluated numeri-
cally. Summing over the different possible values of
nL(1) in (13) yields Pr {nH(1) = 0, C(1),S(2)}. Similarly
Pr {nH(1) ≥ 1, C(1),S(2)} in (12) is derived. Summing over
the probabilities of both these cases yields the expression for
Pr {C(1),S(2)} in (12).

(c) Probability of Success in Slot k, k ≥ 3: Here,

Pr {S(k)} = Pr {I(1),S(k)} + Pr {C(1),S(k)} . (17)

In (17), Pr {I(1),S(k)} = Pr {I(1)} Pr {S(k − 1)} because
VPMAS-PS effectively starts afresh after an idle event in
slot 1. The term Pr {C(1),S(k)} in (17) is the probability
that a collision occurs in slot 1 and a success occurs in slot
k. To evaluate it, we now analyze the following four likely
sequences, namely, A1,k, A2,k, A3,k, and A4,k, that result in
the event {C(1), S(k)}.

Sequence A1,k: It consists of the following three events:
(i) Only one node transmits in the first k − 1 slots and it

does so with target receive power PL. Its SINR is below γ in
each of these slots.

(ii) VPMAS-PS correctly splits the transmission interval in
each of these k − 1 slots, and

(iii) In slot k, the above node transmits with target receive
power PH and gets selected.

The first, second, and third events require PLe
l[1]

σ2 < γ,

PLe
l[1] + σ2 ≤ PH , and PHe

l[1]

σ2 ≥ γ, respectively. The
probability α1 that l[1] satisfies these conditions is given
in (14). As the transmission interval is halved in length with
each split, |Δ(k)| = |Δ(1)|

2k−1 = z
2k−1 . The probability that a

node’s metric lies in H{Δ(k)} is |Δ(k)|
2 = z

2k
. Hence,

Pr {A1,k} =

(
N

1

)
(1− z)N−1 z

2k
α1.
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Sequence A2,k: It consists of the following three events:
(i) Two nodes have same target receive power and collide

for the first k − 1 slots,
(ii) The transmission interval is split correctly in each of

these k − 1 slots, and
(iii) In slot k, the above two nodes have different target

receive powers and a success occurs.
As shown in Appendix C, the probability of A2,k is

Pr {A2,k} =

(
N

1, 1

)
(1− z)N−2

( z

2k

)2
2k−1α4, (18)

where

α4 =
1√

2πσl
2

∫ ln
(

PH
PL

)

−∞

[
Q

(
ω1(l[2])

σl

)
−Q

(
ω2(l[2])

σl

)]

× e
−

l2
[2]

2σl
2 dl[2], (19)

ω1(l[2]) = ln
(
max

{
e
l[2]

γ , 1− el[2] , PLγe
l[2]

PH

})
, and

ω2(l[2]) = ln
(
min

{
γel[2] , PH

PL
− el[2]

})
. The single integral

in (19) is evaluated numerically.
Sequence A3,k: This consists of the following three events:
(i) Three nodes have the same target receive power and

collide for the first k − 1 slots,
(ii) The transmission interval is split correctly in each of

these k − 1 slots, and
(iii) In slot k, one node has target receive power PH and the

other two nodes have target receive power PL, which results
in a success.

Collision in event (i) is assumed to be true (cf. Sec-
tion III-B1). Also note that P[2](n) = P[3](n), for n =
1, . . . , k. Hence, nodes [2] and [3] can be treated as a single
node with power control error elι ≈ el[2] + el[3] , where
lι ∼ N (μι, σι

2). As done for A2,k, it can be shown that

Pr {A3,k} ≈
(
N

2, 1

)
(1− z)N−3

( z

2k

)3
2k−1α5. (20)

Here,

α5 =
1√

2πσι
2

∫ ln
(

PH
PL

)

−∞

[
Q

(
ω3(lι)

σl

)
−Q

(
ω4(lι)

σl

)]

× e
− (lι−μι)

2

2σι2 dlι, (21)

where ω3(lι) = ln
(
max

{
1− elι , γPLelι

PH

})
, and ω4(lι) =

ln
(

PH

PL
− elι

)
. Here, the integral is evaluated numerically.

Sequence A4,k: It consists of the following four events:
(i) Three nodes transmit and collide in slot 1,
(ii) Best node and at least one other node have the same

target receive power, causing collisions in slots 2, . . . , k − 1.
(iii) VPMAS-PS correctly splits the transmission interval in

first k − 1 slots, and
(iv) In slot k, only two nodes transmit, one with target

receive power PH and another with target receive power PL,
and a success occurs.

As shown in Appendix D, the probability of A4,k is

Pr {A4,k} ≈
(

N

1, 1, 1

)
(1− z)N−3α6z

3

22k

(
2k−1 − 1

2

)
, (22)

where

α6 =
1

2πσl
2

∫ ln
(

PH
PL

)

−∞

∫ ln
(

PH
PL

−e
l[2]

)

−∞

[
Q

(
ω5(l[2], l[3])

σl

)

− Q

(
ω6(l[2], l[3])

σl

)]
e
−

l2
[2]

+l2
[3]

2σl
2 dll[3]dll[2] , (23)

ω5(l[2], l[3]) = ln
(
max

{
e
l[2]

γ , 1− el[2] , γPLe
l[2]

PH

})
, and

ω6(l[2], l[3]) = ln
(
min

{
γel[2] , PH

PL
− el[2] − el[3]

})
.

3) Selection Outage Probability and Incorrect Node Se-
lection Probability: We now derive a lower bound for the
selection outage probability Pr {Outage}, which is zero for
perfect power control.

Result 2: Pr {Outage} is lower bounded by

Pr {Outage} >
1

1− (1 − z)N

(
N∑
i=1
i�=2

(
N

i

)
(1 − z)N−iziβi

0

+

(
N

2

)
(1− z)N−2z2(β1 + β2)

)
, (24)

where β0 = 1−Q

(
ln
(

σ2γ
PH

)

σl

)
,

β1 =
1√
2πσ2

l

∫ ∞

−∞

[
Q

(
fL(l[2])

σl

)
−Q

(
fH(l[2])

σl

)]

× e
− (l[2])

2

2σ2
l dl[2],

β2 =
1√
2πσ2

l

∫ 0

−∞

[
Q

(
gL(l[1])

σl

)
−Q

(
gH(l[1])

σl

)]

× e
− (l[1])

2

2σ2
l dl[1].

Further, fL(l[2]) = ln
(
max

{
e
l[2]

γ , 1− PLe
l[2]

PH

})
, fH(l[2]) =

ln
(
min

{
γPLe

l[2]

PH
, γσ2

PH

})
, gL(l[1]) = ln

(
PHe

l[1]

PLγ

)
, and

gH(l[1]) = ln
(
min

{
γel[1] , PH (1−e

l[1] )
PL

, γσ2

PH

})
,

Proof: The proof is relegated to Appendix E.
The probability that a wrong node is selected is then given

by 1−
∞∑
k=1

Pr {S(k)} − Pr {Outage}.

C. Net Throughput Analysis

We now analyze the net throughput when the metric of a
node i is its downlink channel power gain gi. The base station
(BS) uses VPMAS-PS to select the node with the highest
downlink channel power gain and transmits data to it. This
quantifies the collective impact of delayed or incorrect node
selection and selection outage on the system. We consider
Rayleigh fading. Thus, gi is modeled as an exponential RV
with unit mean. The coherence time of the channel is C slots
and T out of C slots are allocated for the selection process.
The net throughput S is equal to

S =
C − T

C

N∑
i=1

Pr {node [i] is selected within T slots} s̃[i],
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where s̃[i] is the average rate of the system given node [i] has
been selected. It is given in bits/symbol by

s̃[i] =

∫ ∞

0

log2(1 + g[i]SNRdl)f[i](g) dg, (25)

where SNRdl is the fading-averaged downlink SNR and f[i](g)
is the probability density function of g[i]. Using order statistics,
f[i](g) = N !

(i−1)!(N−i)!

∑N−i
m=0

(
N−i
m

)
(−1)

m
e−g(m+i), for g ≥

0 . Substituting this in (25), we get

s̃[i] =
1

log(2)

N !

(i− 1)!(N − i)!

×
N−i∑
m=0

(
N − i

m

)
(−1)m+1 e

(m+i)
SNRdl

(m+ i)
Ei

(
− (m+ i)

SNRdl

)
, (26)

where Ei (x) = − ∫∞
−x

e−t

t dt is the standard exponential
integral function [28].

We now evaluate Pr {node [i] is selected within T slots}.
For i = 1, the results presented in Section III-B2 for Pr {S(n)}
directly yield Pr {node [1] is selected within T slots} because
it is equal to

∑T
n=1 Pr {S(n)}. The analysis of the corre-

sponding probability terms for nodes [2] and [3] is similar
except for the following two differences. Firstly, if node [i]
is to be selected, then, from the design of VPMAS-PS, the
nodes [1], . . . , [i − 1] will transmit with it so long as correct
splitting occurs. Secondly, unlike the analysis for best node
selection, incorrect splitting does contribute to the probability
that other nodes get selected. The detailed derivations of these
terms are not shown here to avoid repetition and to conserve
space. The probability that node [i], for i ≥ 4, gets selected
is negligible, and does not affect the net throughput.

IV. NUMERICAL RESULTS

We now verify the analytical results using Monte Carlo
simulations that use 25, 000 runs. Unless mentioned otherwise,
we use N = 50, γ = 10 dB, and σ2 = −110 dBm.
In each slot, the SINR, given in (5), is compared with the
threshold γ to determine its outcome. All results are presented
in terms of the slot duration. Typically, a slot is much smaller
than the coherence interval. For example, in the IEEE 802.11
standard [29, Tbl. 17-15], it is of the order of 200 μs, after
accounting for physical and MAC layer overheads.

A. Impact on Selection and Outage Probabilities

The probability of selecting the best node in a slot as a
function of the slot number is plotted in Fig. 2 for η = 5
and in Fig. 3 for η = 2. This is done for different values
of the power control error standard deviation σl. We see
that the analytical and simulation results match each other
well. The marginal difference between the two arises due
to the lognormal approximation used in the analysis and
because some unlikely sequences are not accounted for. As σl

increases, the probability of selecting the best node in any slot
decreases. Furthermore, with smaller η, VPMAS-PS is more
susceptible to power control error because PH

PL
decreases.

With power control errors, there is a non-zero probability
of selection outage and, hence, the average number of slots
required to select the best node becomes unbounded unless
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Fig. 2. Probability of selecting the best node in different slots for η = 5.
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Fig. 3. Probability of selecting the best node in different slots for η = 2.

the algorithm is terminated after a maximum duration. We,
therefore, compare the average number of slots required to
select the best node given that the best node is selected. This
is plotted in Fig. 4 for different σl and Q for η = 2. For two
power levels, the average number increases by 11.1% from
1.98 to 2.2 slots when σl increases from 0 to 1. For three and
four target receive power levels, the corresponding increase is
7.2% and 5.1%, respectively. As a benchmark, we also plot the
average number of slots required for success for perfect power
control (cf. (6)). It matches the corresponding simulation
results well. We also see that VPMAS-PS is scalable, i.e., the
average number of slots required for success does not decrease
as N increases. As mentioned, this is because of the manner
in which z depends on N (cf. Appendix A).

The selection outage probability as a function of σl for
different η is shown in Fig. 5. Also plotted is its lower bound,
which is given in (24). As before, the outage probability
decreases as η increases. Consider, for example, Q = 2. For
η = 2 and σl = 2, it is 2.9%, and decreases to 1% for η = 5
for the same σl. Similarly, the probability of selecting the
wrong node is 16% for η = 2 and σl = 1. When η increases
to 5, it decreases to 10%. Furthermore, it can also be seen
that VPMAS-PS with more number of power levels is less
vulnerable to power control errors. For example, for σl = 3
and η = 2, the selection outage probabilities for Q = 2, 3,
and 4 are 0.08, 0.01, and 0.00, respectively.

Note: Even σl = 2 corresponds to a large variation in power
error. This can be understood by evaluating the amount of
fading (AF) [30, Chap. 1]. Intuitively, the larger the AF, the
more the RV fluctuates. The AF of a lognormal RV with σl =
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2 is eσ
2
l − 1 = 53.6, while it is just unity for a Rayleigh RV.

B. Impact on Net System Throughput

Figure 6 plots the net throughput as a function of T for
different σl and SNRdl for C = 10. We see that a trade-off
exists between T and the net throughput. Too small a T often
leads to no node being selected, while too large a T reduces
the fraction of time available for data transmission. We observe
that power control error does reduce the net throughput. The
difference between the analytical and simulation results is less
than 7%. The minor difference arises because of the F-W
approximation and because some low probability events have
been neglected to make the analysis tractable.

C. Impact of Peak Power Constraint

In practice, a node’s transmit power cannot exceed a peak
value of Pmax. The peak power constraint affects VPMAS-
PAS because a node may not be able to achieve its target
receive power if its channel power gain to the sink is very
low. Now, if the target receive power is PH , then the trans-
mit power of the node gets set as min

{
PH

hi
, Pmax

}
. The

receive power with imperfect power control is then given by
min

{
PHeli , Pmaxhi

}
. If a node cannot even meet the lowest

target receive power level of PL, then it does not transmit.
The effect of Pmax is negligible when the metric μi of

a node i is tightly coupled with its channel power gain hi

to the sink. This is because the best node, which has the
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highest metric, will also have the highest channel gain. Thus,
its transmit power is unlikely to be limited by Pmax. The other
extreme, when μi and hi are independent or weakly correlated,
is investigated in Fig. 7 for σl = 1. Here, hi is modeled as a
unit mean exponential RV. Now, the lower the value of Pmax,
the more is its impact on VPMAS-PS. We observe that when
Pmax/PH is 0.5, the probability of selecting the best node in
slot 1 decreases by 17.1% when compared to Pmax = ∞.

V. CONCLUSIONS

The multiple access based distributed selection algorithm
VPMAS-PS facilitates capture by making each node control
its transmit power such that the receive power level takes one
out of Q ≥ 2 values. By doing so, it quickly selects the best
node. However, imperfect power control can cause the receive
power to deviate from the target receive power. This reduces
the selection probability of the best node in a slot and increases
the time required to select the best node. In some cases, a
suboptimal node or even no node gets selected.

We derived the success probability in each slot for the
lognormal power control error model and investigated the
collective impact of this error on the downlink throughput. We
saw that the effect of power control error can be ameliorated
by increasing the adversary order.
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APPENDIX

A. Choosing z

Let Sr denote the probability of success given that r nodes
transmitted. When r = 1, success always occurs. Hence, Sr =
1. When 2 ≤ r ≤ η + 1, a success occurs when one node
has target receive power PH and the remaining r − 1 nodes
have target receive power PL. Given that a node transmits, the
probability that the node has a target receive power PH is 1

2 ,
which is also the probability that the node has a target receive
power PL. Hence, Sr in this case is r

2r . For r ≥ η + 2, a
collision is inevitable; hence, Sr = 0.

If ε is the transmission probability of a node in slot 1,
then the probability that r nodes transmit is

(
N
r

)
εr(1− ε)N−r.

Hence, the probability of success is
∑N

r=1 Sr

(
N
r

)
εr(1−ε)N−r,

and z is the value of ε that maximizes it.

B. Proof of Result 1

The expected number of slots required for selection, E [X ],
depends on the outcome of slot 1 as follows: (i) S(1): The
algorithm terminates. (ii) I(1): Statistically, the algorithm
starts afresh from slot 2. Hence, the expected number of slots
required for selection is 1+E [X ]. (iii) C(1): For this, one of
the following three mutually exclusive events occur in slot 1:

Case (i): Only one node transmits with target receive power
PH and more than η nodes have a target receive power PL in
slot 1, i.e., nH(1) = 1 and nL(1) > η.

Case (ii): More than one node transmits with target receive
power PH in slot 1, i.e., nH(1) ≥ 2.

Case (iii): No node transmits with target receive power PH

but there are at least two nodes have a target receive power
PL in slot 1, i.e., nH(1) = 0 and nL(1) ≥ 2.

In case (i), the algorithm splits Δ(1) correctly and Δ(2) =
H{Δ(1)}. Here, the node with target receive power PH in
slot 1 is the only node that transmits again in slot 2. Hence,
a success occurs in slot 2. Thus, E [X ] = 2. In case (ii),
Δ(1) is split correctly. Thus, Δ(2) = H{Δ(1)}. All the
nH(1) nodes transmit again in slot 2, and the average number
of slots required for selection here is 1 + E [Y (nH(1))].
Case (iii) can occur in two different ways, which are handled
differently by VPMAS-PS: (a) nL(1) ≥ ηγ + 1: In this
case, P tot(1) = nL(1)PL + σ2 ≥ (ηγ + 1)PL + σ2 > PH .
Hence, incorrect splitting occurs and Δ(2) = Δ(1). In
this case, an idle occurs in slot 2. VPMAS-PS then sets
Δ(3) = L{Δ(1)}, and all the nL(1) nodes transmit in slot
3. Hence, E [X ] = 2 + E [Y (nL(1))]. (b) nL(1) ≤ ηγ: In this
case, VPMAS-PS correctly infers that the metric of the best
node lies in the lower half of Δ(1), chooses Δ(2) accordingly,
and all the nL(1) nodes transmit again in slot 2. Hence,
E [X ] = 1 + E [Y (nL(1))]. Therefore,

E [X ] = Pr {S(1)} + 2

N−1∑
k=η+1

Pr {nH(1) = 1, nL(1) = k}

+(1 + E [X ])Pr {I(1)}+
N∑
i=2

[(1 + E [Y (i)])Pr {nH(1) = i}

+
(
1+I{i>ηγ}+E [Y (i)]

)
Pr {nH(1) = 0, nL(1) = i}] . (27)

As Pr {C(1)} =
∑N−1

k=η+1 Pr {nH(1) = 1, nL(1) = k} +∑N
i=2 (Pr {nH(1) = i}+ Pr {nH(1) = 0, nL(1) = i}) and

Pr {S(1)} + Pr {I(1)} + Pr {C(1)} = 1, (27) becomes

E [X ]=1+E [X ]Pr {I(1)}+
N−1∑

k=η+1

Pr {nH(1)=1, nL(1)=k}

+
N∑
i=2

[E [Y (i)] Pr {nH(1) = i}

+
(
I{i>ηγ}+E [Y (i)]

)
Pr {nH(1)=0, nL(1)= i}] . (28)

In (28), substituting Pr {I(1)} = (1 − z)N ,
Pr {nH(1) = 1, nL(1) = k} =

(
N
1,k

) (
z
2

)1+k
(1 − z)N−1−k,

Pr {nH(1) = i} =
(
N
i

) (
z
2

)i (
1− z

2

)N−i
, and

Pr {nH(1) = 0, nL(1) = i} =
(
N
i

) (
z
2

)i
(1 − z)N−i, and

then rearranging its terms yields (6).
Derivation of E [Y (m)]: Given m ≥ 2 nodes transmitted

in slot k, i.e., nT(k) = nH(k) + nL(k) = m, only one of the
following three cases could have occurred:

(a) nH(k) = 0: All the m nodes have target receive power
PL in slot k. If nL(k) ≤ ηγ, VPMAS-PS splits Δ(k) correctly,
and all of them transmit again in slot k+1. Otherwise, an idle
occurs in slot k + 1, and all the m nodes transmit again in
slot k + 2. Hence, the average number of slots required for
selection is 1 + I{m>ηγ} + E [Y (m)].

(b) nH(k) = 1: One node has target receive power PH ,
while the other m − 1 nodes have target receive power PL.
The node with target receive power PH gets decoded in slot
k only if m−1 ≤ η. Otherwise, its SINR is less than γ and it
gets selected only in slot k+1. Hence, in this case, the average
number of slots required for selection is 1 + I{m−1>η}.

(c) nH(k) = i, for i ≥ 2: In this case, i nodes transmit in
slot k + 1. Hence, 1 + E [Y (i)] slots on average are required
to select the best node.

As the probability that i out of m nodes have target receive
power PH is

(
m
i

)
1
2m , we get

E [Y (m)] =
1

2m
[
1 + I{m>ηγ} + E [Y (m)]

+m
(
1 + I{m−1>η}

)
+

m∑
i=2

(
m

i

)
(1 + E [Y (i)])

]
. (29)

Rearranging terms and simplifying yields the desired recursion
for E [Y (m)].

C. Probability of Sequence A2,k

The first event of A2,k requires e
l[1]

e
l[2]

< γ and e
l[2]

e
l[1]

< γ.

The second event requires P tot = PH(el[1] + el[2]) > PH ,
when both the nodes that transmit have target receive power
PH , and PL(e

l[1] + el[2]) ≤ PH when both the nodes have

target receive power PL. The third event requires PHe
l[1]

PLe
l[2]

≥ γ.

Altogether, if l[1] and l[2] are constrained as ω1(l[2]) < l[1] <

ω2(l[2]), l[2] < ln
(

PH

PL

)
, where ω1(l[2]) and ω2(l[2]) are given

just below (19), then the three events that define A2,k will
occur. The probability α4 that l[1] and l[2] satisfy the above
mentioned constraints is given in (19).
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For the nodes to have the same target receive power
in the first k − 1 slots, their metrics must lie in
one of the 2k−1 possible transmission intervals, namely,
R(k)

0 ,R(k)
1 , . . . ,R(k)

2k−1−1
, each of length z

2k−1 , in slot k,

where R(k)
i =

[
μmin(1) + i z

2k−1 , μmin(1) + (i+ 1) z
2k−1

)
.5

Each of these intervals defines a unique sequence of target
receive powers for the two nodes in the first k− 1 slots. This
is illustrated in Fig. 8 for k = 4. For example, if metrics of
both the nodes lie in R(4)

1 , then both will have target receive
powers PL, PL, and PH in slots 1, 2, and 3, respectively.

The third event requires that, in slot k, the metrics of the
two nodes lie in two different halves of Δ(k), each of length
z
2k . This occurs with probability z2

22k . The probability that μ[1]

and μ[2] lie in R(k)
i , 0 ≤ i ≤ 2k−1 − 1, and A2,k occurs is

then
(
N
1,1

)
(1−z)N−2 z2

22k
α4. Hence, adding up the probabilities

over all the transmission intervals yields (18).

D. Probability of Sequence A4,k

In A4,k, the first event C(1) occurs if:
Case (a): All the three nodes that transmit have the same

target receive power, in which case a collision is certain, or
Case (b): Two nodes have target receive power PH

while the third node has target receive power PL,
and PHe

l[1]

PHe
l[2]+PLe

l[3]
< γ, PHe

l[2]

PHe
l[1]+PLe

l[3]
< γ, and

PLe
l[3]

PHe
l[1]+PHe

l[2]
< γ. The last condition is very likely and can,

thus, be ignored (cf. Section III-B1). Combining the first two
conditions, we get e

l[2]

γ − PL

PH
el[3] < el[1] < γ

(
el[2] + PL

PH
el[3]
)

.
The second event involves collisions in slots 2, . . . , k − 1,

in which the best node and at least one other node have the
same target receive power. In case three nodes transmit, then
the conditions given in cases (a) and (b) of the first event of
sequence A4,k ensure that a collision occurs. In case two nodes

transmit, then a collision occurs if e
l[1]

e
l[2]

< γ and e
l[2]

e
l[1]

< γ,

i.e., e
l[2]

γ < el[1] < γel[2] .
The third event requires correct splitting of Δ(m), for 1 ≤

m ≤ k − 1. This happens if P tot(m) > PH when P[1](m) =
PH , and P tot(m) ≤ PH when P[1](m) = PL. If three nodes
have a target receive power PH , correct splitting happens if
PH(el[1] + el[2] + el[3]) > PH , which is equivalent to 1 −
el[2] − el[3] < el[1] . Instead, if the three nodes have a target
receive power PL, then correct splitting happens if el[2] < PH

PL
,

el[3] < PH

PL
−el[2] , and el[1] < PH

PL
−el[2]−el[3] . Similarly, in case

the collision is between two nodes with target receive power
PH and one node with target receive power PL, then correct
splitting requires 1 − el[2] − PL

PH
el[3] < el[1] . Similarly, when

the collision is due to two nodes transmitting at target receive
power PH , then correct splitting requires 1− el[2] < el[1] , and
when it is between two nodes with target receive power PL,
correct splitting requires el[2] < PH

PL
and el[1] < PH

PL
− el[2] .

5If both the nodes have target receive power PL for the first k − 1 slots,
then only PL(e

l[1] +el[2] ) ≤ PH needs to be satisfied for correct splitting in
second event. Similarly, if both nodes have target receive power PH for first
k−1 slots, then only PL(e

l[1] +el[2] ) ≥ PH needs to be satisfied. However,
we include both these conditions in the constraints mentioned above for l[1]
and l[2] to simplify the calculations. As a result, the calculated probability of
sequence A2,k is marginally lower than its actual value.

Fig. 8. Illustration of metric realizations that lead to the sequence A2,4.

The fourth event requires PHe
l[1]

PLe
l[2]

≥ γ.
As in Appendix C, we require that all the conditions on

l[1], l[2], and l[3] that come out of the four events hold
simultaneously. We then get ω5(l[2], l[3]) < l[1] < ω6(l[2], l[3]),

l[2] < ln
(

PH

PL

)
, and l[3] < ln

(
PH

PL
− l[2]

)
, where ω5(l[2], l[3])

and ω6(l[2], l[3]) are given just below (23). The probability
α6 that the above constraints are satisfied is given by (23).
As in Appendix C, the intervals in which the metrics of the
three nodes should lie for all the above events to occur can be
enumerated. Summing the probabilities over all these intervals
yields (22).

E. Proof of Result 2

We arrive at a lower bound for the outage probability by
considering the events when exactly i, for 1 ≤ i ≤ N , out of
N nodes transmit in the first non-idle slot. Let slot k ≥ 1 be
the first non-idle slot. Thus, nT(k) = i. We treat the cases of
nT(k) = 1, 2, and ≥ 3 separately below.

1) nT(k) = 1: Here, an outage occurs only if the
SNR of the transmitting node does not exceed γ even
when it has target receive power PH , i.e., PHe

l[1]

σ2 <
γ. Hence, it can never be decoded. The probability that
slot k is the first non-idle slot and only one node trans-
mits in it is (1 − z)N(k−1)

(
N
1

)
(1 − z)N−1z. Therefore,

Pr {Outage, slot k is first non-idle slot, nT(k) = 1} = (1 −
z)N(k−1)

(
N
1

)
(1− z)N−1zβ0, where β0 is defined in Result 2.

2) nT(k) = 2: If both nodes have the same target receive

power, then e
l[1]

e
l[2]

< γ and e
l[2]

e
l[1]

< γ ensures that a collision
occurs and no node gets selected. As each collision is followed
by a splitting of Δ(k), eventually these two nodes will have
different target receive powers in some slot m > k. For
selection outage, none of the nodes should get selected even
when they have different target receive powers. This happens
when PHe

l[1]

PLe
l[2]

< γ and PLe
l[2]

PHe
l[1]

< γ.6 This is followed by
further splitting, which can cause one of the following two
events that lead to an outage:

Event A: If P tot(m) = PHel[1]+PLe
l[2] > PH , then Δ(m+

1) = H{Δ(m)}. Hence, only node [1] can transmit in the
subsequent slots. Outage will occur only if the power control
error of node [1] is such that even if it transmits with the higher

target receive power PH , its received SNR, PHe
l[1]

σ2 , is less than
γ. All of these conditions can be written as fL(l[2]) < l[1] <

6It may happen that the two nodes have different target receive powers
in the first non-idle slot. In this case, they need not satisfy the conditions
e
l[1]

e
l[2]

< γ and e
l[2]

e
l[1]

< γ together. Including these two conditions together

leads to a tractable lower bound on the outage probability, which is the aim
of this derivation.
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fH(l[2]), where fL(l[2]), fH(l[2]), and the probability β1 that
these conditions are satisfied are given in the result statement.
The probability that slot k is the first non-idle slot and only two
nodes transmit in it is (1−z)N(k−1)

(
N
2

)
(1−z)N−2z2. Hence,

Pr {Slot k is 1st non-idle slot, nT(k) = 2, Event A} = (1 −
z)N(k−1)

(
N
2

)
(1− z)N−2z2β1.

Event B: The differences with respect to A are P tot(m) ≤
PH and L{Δ(m)} becomes Δ(m+ 1). It can be shown that
Pr {Slot k is 1st non-idle slot, nT(k) = 2, Event B} = (1 −
z)N(k−1)

(
N
2

)
(1−z)N−2z2β2, where β2 is defined in Result 2.

3) nT(k) ≥ 3: If the power control error of each trans-
mitting node is such that even if the node transmits alone
with target receive power PH , its SNR does not exceed γ,
then an outage is inevitable. This occurs with probability
(1 − z)N(k−1)

(
N

nT(k)

)
(1 − z)N−nT(k)(zβ0)

nT(k), where β0 is
given in Result 2.

Summing up the probabilities of outage for different nT(k)
and for different k yields (24).
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