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Abstract—The Effective Exponential SNR Mapping (EESM)
is an indispensable tool for analyzing and simulating next
generation orthogonal frequency division multiplexing (OFDM)
based wireless systems. It converts the different gains of multiple
subchannels, over which a codeword is transmitted, into a single
effective flat-fading gain with the same codeword error rate.
It facilitates link adaptation by helping each user to compute
an accurate channel quality indicator (CQI), which is fed back
to the base station to enable downlink rate adaptation and
scheduling. However, the highly non-linear nature of EESM
makes a performance analysis of adaptation and scheduling
difficult; even the probability distribution of EESM is not known
in closed-form. This paper shows that EESM can be accurately
modeled as a lognormal random variable when the subchannel
gains are Rayleigh distributed. The model is also valid when
the subchannel gains are correlated in frequency or space. With
some simplifying assumptions, the paper then develops a novel
analysis of the performance of LTE’s two CQI feedback schemes
that use EESM to generate CQI. The comprehensive model and
analysis quantify the joint effect of several critical components
such as scheduler, multiple antenna mode, CQI feedback scheme,
and EESM-based feedback averaging on the overall system
throughput.

Index Terms—Effective exponential SNR mapping (EESM),
long term evolution (LTE), orthogonal frequency division mul-
tiplexing (OFDM), channel quality feedback, multiple antenna
diversity, frequency-domain scheduling, adaptive modulation and
coding, lognormal random variable.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) is the downlink access technique of choice

in wideband wireless cellular standards such as Long Term
Evolution (LTE) [1] and IEEE 802.16e WiMAX. In an
OFDM downlink, the base station (BS) simultaneously serves
multiple users on orthogonal subcarriers. The scheduler at the
BS exploits the frequency-selective nature of the wideband
channel and multi-user diversity. By adapting the data rate,
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it also takes advantage of the time-varying nature of the
channel.

A key step in rate adaptation involves determining the
modulation and coding scheme (MCS). It is chosen in order
to maximize the data rate to the scheduled user subject to
a constraint on the probability of codeword error [2]. Since
a codeword is encoded across multiple, say 𝑁 , subcarriers,
this determination would first require a characterization of the
codeword error rate as a function of the 𝑁 different subcarrier
gains. Thus, rate adaptation requires an 𝑁 -dimensional look
up table, which is cumbersome to generate, store, and use.

This difficulty has motivated the widespread use of the
Effective Exponential Signal-to-noise-ratio (SNR) Mapping
(EESM). EESM maps the SNRs of the 𝑁 subcarriers,
𝑋1, 𝑋2, . . . , 𝑋𝑁 , to a single effective SNR 𝑋eff as follows [3],
[4]:1

𝑋eff = −𝜆 ln
(

1

𝑁

𝑁∑
𝑙=1

𝑒−
𝑋𝑙
𝜆

)
, (1)

where 𝜆 is a parameter that is empirically calibrated as a
function of the MCS and packet length. The effective SNR
is interpreted as the SNR seen by the codeword as if it were
transmitted over a flat-fading channel. While the reduction of
𝑁 variables to a single variable is empirical and not infor-
mation lossless, several studies have shown that EESM is an
accurate indicator of the codeword error rate [4]. Thus, only a
single variable, 𝑋eff, needs to be dealt with for rate adaptation
and scheduling. EESM is also a critical component in OFDM
system-level simulators, which simulate the performance of
a cellular system that consists of multiple cells and BSs that
serve multiple users, and makes large system-level simulations
computationally feasible. Consequently, it was extensively
used during the LTE standardization deliberations [6].

Another important and different use of EESM, which mo-
tivates this paper, arises in the generation of channel quality
information by the user equipments (UEs). It is fed back by the
UEs via the uplink and is then used by the BS for frequency-
domain scheduling and for rate adaptation on the downlink.
Such feedback is needed because the uplink and downlink
channels are not reciprocal.2 As a result, the BS does not

1Note that other functional forms for EESM have also been proposed,
e.g., [5]. We use (1) given its widespread use.

2The uplink and downlink channels are clearly not reciprocal in the
frequency division duplex (FDD) mode. Even in the time division duplex
(TDD) mode, they are not reciprocal due to asymmetry in interference and
transmit and receive radio circuitries.

1536-1276/11$25.00 c⃝ 2011 IEEE



DONTHI and MEHTA: AN ACCURATE MODEL FOR EESM AND ITS APPLICATION TO ANALYSIS OF CQI FEEDBACK SCHEMES AND SCHEDULING . . . 3437

know a priori the channel gains of the subcarriers for any UE.
Since subcarrier-level feedback consumes considerable up-

link bandwidth, several feedback reduction techniques are
used in practice [7]–[9]. For example, in the subband-level
channel quality indicator (CQI) feedback scheme specified
in LTE, each UE feeds back only one 4-bit CQI for every
subband. A subband is defined to be a collection of 𝑞 ≥ 2
physical resource blocks (PRBs), and each PRB consists of
12 contiguous subcarriers. While the frequency response of
the channel is typically flat across a 180 kHz wide PRB, it
is not flat across a subband, which can have a bandwidth as
large as 1 MHz. Therefore, the UE uses EESM to compute
the effective SNR for each subband and then determines the
appropriate MCS. When the channel is frequency-flat across
a PRB, the effective subband SNR is a function of 𝑞 SNR
values. The computed MCS is fed back to the frequency-
domain scheduler at the BS, which then assigns appropriate
UEs to different PRBs. In the UE selected subband feedback
scheme of LTE, which is described in detail below, the EESM
gets computed over an even larger number of PRB SNRs.

The performance of the CQI feedback schemes, therefore,
depends on the statistics of the effective SNR generated by
EESM. However, the non-linear nature of (1) makes an exact
analysis intractable. In fact, even the probability distribution
function (PDF) of EESM is not known in closed-form. While
expressions for its moment generating function (MGF) and
moments are available [10], they are quite involved. The
EESM was approximated by a Gaussian or a logarithm of
a Gaussian (log-Gaussian) random variable (RV) in [11];
however, its accuracy, as we shall see, is poor.3

One can, therefore, see that it is quite a challenge to
analyze the performance of next generation OFDM systems,
such as LTE, that use a spectrally efficient combination of
rate adaptation, multiple antenna techniques, and frequency-
domain scheduling, and employ EESM to generate CQI feed-
back. Consequently, most papers that deal with scheduling,
adaptation, or CQI feedback for the LTE downlink resort
to simulations [9], [12]–[14]. For example, in [13], contigu-
ous and distributed subcarrier allocations are compared by
simulations, and their effects on the throughput of greedy
and proportional fair (PF) schedulers is evaluated. In [9], the
performance of a PF scheduler was studied assuming that it
has access to PRB-level CQI feedback.

In [15], a scheme in which each user feeds back the indices
of a pre-specified number of subcarriers with the highest
gains and the BS uses BPSK modulation and a round-robin
scheduler to transmit, was analyzed. However, rate adaptation,
multiple antenna diversity, and channel-aware scheduling were
not modeled. The analysis in [16] quantified the performance
gains from MIMO and rate adaptation in a cellular system,
but did not consider OFDM. For a MIMO-OFDM system that
uses orthogonal space-frequency block codes, [17] analyzed
the performance of a greedy scheduler and used simulations to
study a PF scheduler. However, one-bit feedback without rate
adaptation was assumed. Neither the coarse frequency granu-

3In [11], the sum 1
𝑁

∑𝑁
𝑙=1 𝑒

−𝑋𝑙
𝜆 was approximated by lognormal and

Gaussian RVs. Since the effective SNR is the logarithm of this sum, we
shall instead refer to these as Gaussian and log-Gaussian approximations,
respectively.

larity of feedback nor EESM-based CQI feedback generation
are considered by the above analysis papers.

A modified PF scheduler was proposed for a scheme similar
to the UE selected feedback scheme in [18]. However, EESM
was not considered and the analysis was limited to determin-
ing the fading-averaged probability that channel information
about a given number of clusters of subcarriers is fed back.
While [19]–[21] did model the coarseness, the arithmetic mean
(AM) of the subcarrier SNRs was used. The AM is less
accurate than the EESM [3], but entails a simpler and easier
analysis. While [11] did consider EESM, aspects such as
dynamic rate adaptation, scheduling, feedback, and multiple
antenna diversity were not analyzed. Altogether, the simple
cell planning model of [11] is quite different from ours.

A. Contributions of the Paper

Motivated by the goal of analyzing the CQI feedback
techniques of LTE, we propose the use of an analytically
tractable lognormal distribution to characterize the PDF of
the effective SNR. This is shown to be accurate when the
frequency-flat channel response across a PRB is a Rayleigh
RV and the channel responses of different PRBs are mutually
independent [8], [15], [22], [23]. It is also accurate when mul-
tiple antenna diversity techniques, which affect the statistics of
the SNR of each PRB, are employed. Furthermore, the model
is valid even in the presence of frequency-domain correlation
or spatial correlation. Note that the lognormal model has been
used earlier in the literature, for example, to approximate the
distribution of sums of lognormal or Suzuki RVs [24], [25].
However, to the best of our knowledge, this is the first time
that it has been successfully applied to model EESM.

The second major contribution of the paper is a novel and
comprehensive analysis of the throughput of LTE feedback
schemes that use EESM to generate CQI to enable scheduling
and rate adaptation at the BS. While we focus on the PF sched-
uler due to space constraints, the analysis can be generalized
to handle the greedy and round-robin schedulers, which trade-
off fairness and throughput differently. The paper analyzes
both the subband-level and the UE selected CQI feedback
schemes of LTE and accounts for its different multi-antenna
diversity modes. Another important aspect of this analysis
is its handling of the coarse frequency granularity of the
EESM-based CQI feedback, which can occasionally lead to an
incorrect choice of the MCS. This aspect is novel compared
to conventional rate adaptation and scheduling problems [2],
[17].

Altogether, the analysis quantifies, for the first time, the
joint effect of several critical components such as scheduler,
multiple antenna mode, CQI feedback scheme, and EESM-
based feedback averaging on the throughput of an OFDM
system that is as technologically rich and as practically rele-
vant as LTE. These components have hitherto been analyzed
in isolation in the literature. The analysis also enables an opti-
mization of the parameters associated with the CQI feedback
scheme. The proposed lognormal model for EESM plays a
crucial role in this analysis. Therefore, the lognormal model
is accurate, analytically tractable, and useful.

The paper is organized as follows. We first discuss the CQI
model of LTE in Sec. II. In Sec. III, the lognormal model
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for EESM is proposed and used to analyze the LTE CQI
feedback schemes. Numerical results and our conclusions fol-
low in Sec. IV and Sec. V, respectively. Several mathematical
derivations are relegated to the Appendix.

II. MODEL FOR EESM-BASED CQI FEEDBACK IN LTE

We now briefly describe relevant details of the LTE down-
link, such as its frame structure and its CQI feedback mecha-
nisms, and set up the system model and notation. We use the
following notation henceforth. The probability of an event 𝐴
is denoted by Pr(𝐴). For an RV 𝑋 , 𝑓𝑋(.) denotes its PDF and
𝔼 [𝑋 ] its mean. The conditional expectation of 𝑋 given event
𝐴 is denoted by 𝔼 [𝑋 ∣𝐴], and Pr(𝐵∣𝐴) denotes the conditional
probability of event 𝐵 given 𝐴. For a set ℐ, ∣ℐ∣ shall denote
its cardinality. The set {𝑥1, 𝑥2, . . . , 𝑥𝑖} is denoted by {𝑥𝑙}𝑖𝑙=1.

In LTE, each downlink frame is 10 ms long and consists
of ten subframes. Each subframe has a duration of 1 ms, and
consists of two 0.5 ms slots. Each slot contains seven OFDM
symbols. In the frequency domain, the system bandwidth, 𝐵,
is divided into several orthogonal subcarriers. Each subcarrier
has a bandwidth of 15 kHz. A set of twelve consecutive
subcarriers over the duration of one slot is called a Physical
Resource Block (PRB). Let 𝑁PRB denote the total number of
PRBs available over the system bandwidth. Let 𝐾 denote the
number of UEs in a cell.

The BS is equipped with 𝑁t transmit antennas and each
UE has 𝑁r receive antennas. In LTE, both single-stream and
multiple-stream transmissions are possible. In a single-stream
transmission, diversity based multiple antenna techniques are
used to transmit one codeword of data. Multiple-stream trans-
mission refers to the use of spatial multiplexing techniques to
transmit two codewords of data simultaneously. In this paper,
we focus on single-stream transmission in order to avoid di-
gressing into design issues related to codebook-based transmit
precoding of LTE. We cover the following modes of operation:
single input single output (SISO) (𝑁t = 𝑁r = 1), single input
multiple output (SIMO) (𝑁t = 1 and 𝑁r ≥ 2), closed-loop
and open-loop multiple input single output (MISO) (𝑁t ≥ 2
and 𝑁r = 1), and single-stream multiple input multiple output
(MIMO) (𝑁t ≥ 2 and 𝑁r ≥ 2).

Since the PRB bandwidth is only 180 kHz, it is justifiable
to assume that the channel response is frequency-flat across
all the 12 subcarriers of the PRB.4 Let ℎ𝑛,𝑘(𝑙, 𝑗) denote the
channel gain from the 𝑗 th transmit antenna of the BS to the 𝑙th

receive antenna of the 𝑘th UE for the 𝑛th PRB. It is modeled
as a zero-mean circular symmetric complex Gaussian RV with
variance 𝜎2

𝑘 , which implies that its amplitude is Rayleigh
distributed. The variance depends upon shadowing and the
distance between the 𝑘th UE and the BS. The SNR of the
𝑛th PRB of the 𝑘th UE is denoted by 𝛾𝑛,𝑘, and depends on
ℎ𝑛,𝑘(𝑙, 𝑗), 1 ≤ 𝑙 ≤ 𝑁𝑟, 1 ≤ 𝑗 ≤ 𝑁𝑡, and the multiple antenna
mode used.

A. Channel Quality Indicator (CQI) Feedback

The CQI is a 4-bit value that indicates an estimate of the
MCS that the UE can receive reliably from the BS. It is

4This assumption will not hold for highly dispersive channels with a delay
spread greater than 5 𝜇s, which is close to the normal cyclic prefix duration
of an OFDM symbol in the LTE downlink.

typically based on the measured received signal quality, which
can be estimated, for example, using the reference signals
transmitted by the BS. The number of MCSs is denoted by 𝐿
and equals 24 = 16. These are tabulated in [26, Tbl. 7.2.3-1].
The BS controls how often and when the UE feeds back CQI.
The finest possible frequency resolution for CQI reporting
is a subband, which consists of 𝑞 contiguous PRBs, where
2 ≤ 𝑞 ≤ 8. The total number of subbands is 𝑆 = ⌈𝑁PRB/𝑞⌉,
where ⌈.⌉ denotes the ceil function.

Let 𝑟𝑖 denote the rate in bits/symbol achieved by the MCS
corresponding to the 𝑖th CQI value. To simplify notation, the
subband that contains the 𝑛th PRB is denoted by 𝑠(𝑛). PRBs
1, . . . , 𝑞 shall belong to subband 1, PRBs 𝑞 + 1, . . . , 2𝑞 shall
belong to subband 2, and so on.

B. CQI Feedback Generation

LTE specifies two different feedback schemes to facilitate
frequency-domain scheduling:5

∙ UE selected subband CQI feedback, in which the UE
reports the positions of 𝑀 < 𝑆 subbands that have the
highest CQIs and only a single CQI value that indicates
the channel quality that is averaged over all these 𝑀
subbands.

∙ Subband-level CQI feedback, in which the UE reports
the CQI for each of the 𝑆 subbands.

Thus, the subband-level feedback scheme generates more
feedback. Both the schemes use EESM to generate the CQI
value(s) from the SNRs of the PRBs that constitute the sub-
bands. They are illustrated in Figure 1, and are described
mathematically below.

1) UE Selected Subband Feedback: The subband SNR,
𝛾sub
𝑠,𝑘, of the 𝑘th UE for subband 𝑠 is the effective SNR over

its constituent PRBs. It is computed using EESM as

𝛾sub
𝑠,𝑘 = −𝜆 ln

⎛
⎝1

𝑞

∑
𝑛∈𝒫ℛℬ(𝑠)

𝑒−
𝛾𝑛,𝑘

𝜆

⎞
⎠ , (2)

where 𝒫ℛℬ(𝑠) denotes the set of PRBs in subband 𝑠.
Remark 1: The parameter 𝜆 needs to be empirically fine-

tuned as a function of MCS and packet length [4]. However,
in order to ensure analytical tractability, the parameter 𝜆 is
taken to be the same for all rates. This has also been assumed
in [11] to handle different codeword sizes for QPSK for which
𝜆 is different.

The 𝑘th UE then orders the subband SNRs of its 𝑆 subbands
as 𝛾sub

(1),𝑘 ≥ ⋅ ⋅ ⋅ ≥ 𝛾sub
(𝑀),𝑘 ≥ ⋅ ⋅ ⋅ ≥ 𝛾sub

(𝑆),𝑘, where (𝑙),
following standard order statistics notation, is the index of
the subband with the 𝑙th largest SNR. It reports the set
ℐ𝑘 = {(1), . . . , (𝑀)}, which consists of the 𝑀 subbands with
the highest CQIs. It also reports a single CQI, 𝐶bestM

𝑘 , which
can take one of 16 possible values. It is a function of the

5The standard also defines a third wideband feedback scheme, in which just
one CQI value is sent for the entire system bandwidth. We do not discuss
it as it not meant for frequency-domain scheduling. For both UE selected
feedback and subband-level feedback, LTE reduces the CQI overhead further,
while incurring a negligible performance loss, by using a 2-bit differential
CQI value for each subband. It also communicates one wideband CQI value
that is averaged over the whole system bandwidth.



DONTHI and MEHTA: AN ACCURATE MODEL FOR EESM AND ITS APPLICATION TO ANALYSIS OF CQI FEEDBACK SCHEMES AND SCHEDULING . . . 3439

16151413121110987654321

Subband 3 Subband 4

180 kHz

Subband 1 Subband 2

1 ms

Generate 4 CQIs for 
subband−level feedback

Generate 1 CQI for UE selected feedback

System bandwidth

✓

𝛾1,𝑘 𝛾2,𝑘 𝛾3,𝑘 𝛾4,𝑘

𝛾sub
1,𝑘 𝛾sub

2,𝑘 𝛾sub
3,𝑘 𝛾sub

4,𝑘

𝛾
rep
𝑘

✓

Fig. 1. An illustration of the UE selected subband feedback and subband-level CQI feedback schemes of LTE for the 𝑘th UE (𝑆 = 4, 𝑀 = 2, and
𝑞 = 4). The checkmarks (✓) illustrate subbands with the 𝑀 highest effective SNRs whose CQI is reported in the UE selected subband feedback scheme.
The subband-level feedback scheme generates CQI for all the four subband SNRs. Each subband SNR itself is computed using EESM from the SNRs of the
𝑞 = 4 PRBs that constitute the subband. Also shown is 𝛾

rep
𝑘 , which is computed from 𝛾sub

1,𝑘 and 𝛾sub
3,𝑘 using EESM and is used by the UE selected subband

scheme to generate one CQI.

effective SNR 𝛾rep
𝑘 that is calculated using EESM over its 𝑀

selected subbands as follows:

𝛾rep
𝑘 = −𝜆 ln

(
1

𝑀

∑
𝑣∈ℐ𝑘

𝑒−
𝛾sub
𝑣,𝑘
𝜆

)
. (3)

For example, in Figure 1, 𝑞 = 4, 𝑀 = 2, and ℐ𝑘 = {1, 3}.
The CQI fed back is 𝐶bestM

𝑘 = 𝑟𝑖, if 𝛾rep
𝑘 ∈ [𝑇𝑖−1, 𝑇𝑖). Here,

𝑇0, 𝑇1, . . . , 𝑇𝐿−1, 𝑇𝐿 (where 𝑇𝐿 = ∞) are the link adaptation
thresholds that ensure that a target block error rate is met
should the BS transmit over all its 𝑀 best subbands [1],
[26]. For ease of explanation, we henceforth do not distinguish
between 𝑟𝑖 and its 4-bit CQI index 𝑖.

2) Subband-Level Feedback: Unlike the UE selected sub-
band scheme, here the 𝑘th UE reports a separate CQI, 𝐶sub

𝑠,𝑘,
for every subband 𝑠. It is based on 𝛾sub

𝑠,𝑘 (which is given in (2)).
The CQI fed back is 𝐶sub

𝑠,𝑘 = 𝑟𝑖, if 𝛾sub
𝑠,𝑘 ∈ [𝑇𝑖−1, 𝑇𝑖). As before,

𝐶sub
𝑠,𝑘 also takes one of 16 possible values. It can be different

for different subbands.

C. Frequency-Domain Scheduling

Based on the CQI reports from all the UEs, the scheduler in
the BS decides which PRB to allocate to which UE.6 The BS
then signals on the downlink control channel the specific PRBs
that are allocated to different UEs [1, Sec. 9.3.3]. The sched-
uler is not specified in the standard and is implementation-
dependent. Due to space constraints, we focus on the PF
scheduler as it exploits multi-user diversity while also ensuring
fairness [27]–[29].

1) Using UE Selected Subband CQI Feedback: The BS
uses ℐ𝑘 and 𝐶bestM

𝑘 reported by all the 𝐾 UEs to determine
which UE to assign to each PRB. Recall that 𝑠(𝑛) denotes the
subband that contains PRB 𝑛. Let 𝒵𝑠(𝑛) denote the subset of
UEs that have reported the subband 𝑠(𝑛) as one of their best
𝑀 subbands. The PF scheduler [28] assigns the 𝑛th PRB to
UE 𝑘∗(𝑛), where

𝑘∗(𝑛) = arg max
𝑘∈𝒵𝑠(𝑛)

𝐶bestM
𝑘

𝔼
[
𝐶bestM
𝑘

] , (4)

6In LTE, a pair of PRBs that span a duration of 1 ms are assigned together.
For brevity, we refer to the pair as a PRB.

and 𝔼
[
𝐶bestM
𝑘

]
is the average rate reported by the 𝑘th UE.

Thus, a PRB gets assigned to the UE whose CQI exceeds its
mean rate the most. This ensures fairness across UEs with
different mean rates.

Different versions of PF schedulers have been considered in
the literature. In practice, the moving window average is used
instead of 𝔼

[
𝐶bestM
𝑘

]
in the denominator of (4) [22], [29].

Our model accurately models window averaging for window
sizes as small as 50 [30]. In [31], the ratio of instantaneous
SNR to its time-averaged value is used instead. However, these
versions share similar characteristics such as allotting almost
the same amount of time to each user.

Outage: Since the CQI value corresponds to the effective
SNR for the best 𝑀 subbands, the SNR of the 𝑛th PRB may
be less than the lower threshold of the MCS being used for
the PRB. This causes an outage, and the throughput is 0 in
that subframe. Outage for the 𝑛th PRB also occurs if 𝒵𝑠(𝑛) is
a null set since the PRB is then not allocated to any UE.7

2) Using Subband-Level CQI Feedback: The PF scheduler
uses 𝐶sub

𝑠,𝑘 reported by all the UEs to allocate the PRBs in a
subband. PRB 𝑛, which lies in subband 𝑠(𝑛), is assigned to
UE 𝑘∗(𝑛), where

𝑘∗(𝑛) = arg max
1≤𝑘≤𝐾

𝐶sub
𝑠(𝑛),𝑘

𝔼

[
𝐶sub
𝑠(𝑛),𝑘

] . (5)

The BS then transmits data on PRB 𝑛 to UE 𝑘∗(𝑛) at a rate
𝐶sub
𝑠(𝑛),𝑘∗(𝑛). As before, if the SNR for a PRB is less than the

lower threshold of the MCS used for it, then the PRB is in
outage.

III. STATISTICAL MODEL FOR EESM AND ITS ROLE IN

LTE THROUGHPUT ANALYSIS

For both the CQI feedback schemes, we saw that EESM
plays a crucial role in the generation of CQI of a subband from
the SNRs of its constituent PRBs. An analytically tractable
statistical characterization of EESM is, therefore, essential in

7Making a UE feed back, in addition, the CQI averaged over the entire
system bandwidth can mitigate this outage further since it gives the BS partial
knowledge about the CSI of the PRBs.
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order to analyze the performance of the feedback schemes. To
this end, we first propose a new tractable statistical model for
EESM and verify its accuracy. We then apply it to analyze the
system throughput in Sec. III-C.

A. Statistical Model for EESM

As stated earlier, a closed-form expression for the PDF of
𝑋eff, which is computed from the PRB SNRs 𝑋1, . . . , 𝑋𝑁

using (1), is not known because of the highly non-linear
nature of the EESM mapping. We propose modeling 𝑋eff

as a lognormal RV, which can be written as 𝑒𝐺, where 𝐺
is a Gaussian RV with mean 𝜇 and standard deviation Ω.
Therefore, the PDF, 𝑓𝑋eff(𝑥), of 𝑋eff is approximated as

𝑓𝑋eff(𝑥) ≈
1

𝑥Ω
√
2𝜋

𝑒−
(ln 𝑥−𝜇)2

2Ω2 , 𝑥 ≥ 0. (6)

By matching the first two moments of 𝑋eff and 𝑒𝐺, it can
be shown that

𝜇 = ln (𝔼 [𝑋eff])− Ω2

2
, and (7)

Ω =

√√√⎷ln

(
𝔼 [𝑋2

eff]− (𝔼 [𝑋eff])
2

(𝔼 [𝑋eff])
2 + 1

)
. (8)

The two parameters 𝜇 and Ω shall henceforth be referred
to as the lognormal parameters of 𝑋eff over its constituents
𝑋1, . . . , 𝑋𝑁 . The two moments 𝔼 [𝑋eff] and 𝔼

[
𝑋2

eff

]
, which

are required in (8), are computed using one of the following
two different methods.

1) Using Analytical Formulae: Expressions for the moment
generating function (MGF) and the moments of 𝑋eff for
correlated Nakagami-𝑚 fading are derived in [10]. However,
these expressions are quite involved. For example, an 𝑁 -fold
summation, in which each summation is over a variable set
of limits, and a summation over 𝑁 ! permutation terms are
required in [10, (47), (48), (50), and (52)] to compute the first
two moments.

2) Using Monte Carlo Integration Methods: An attractive
alternative is the use of efficient Monte Carlo methods [32]
to compute the moments of 𝑋eff. In it, several samples of
the subcarrier SNRs are generated and empirical moments
of 𝑋eff are computed to approximate the actual moments.
The accuracy of this method depends on the sample size,
𝑊 . Notably, the approximation error decreases as 𝑂(𝑊− 1

2 ),
and does not depend on 𝑁 [32]. Such methods have been
put to good use in communication-theoretic literature, see,
for example, [33], [34]. We have found that a sample size of
𝑊 = 5000 is sufficient to compute the moments accurately
enough for our analysis. Note that these computations need to
be carried out only once in our analysis. Further, this approach
can be easily applied for any joint probability distribution of
the PRB SNRs.

B. Empirical Verification of Lognormal Model for EESM

We verify the model using two different methods. The first
method follows the convention used in lognormal approxima-
tion literature [24], [25]. It compares the cumulative distri-
bution function (CDF) and the complementary CDF (CCDF)
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Fig. 2. Verification of the accuracy of the CDF generated by the proposed
lognormal model for EESM and comparison with other proposed distributions
(𝜎2 = 10 dB, 𝜏 = 2, 𝜆 = 1.5, and 𝑁 = 4).
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Fig. 3. Verification of the accuracy of the CCDF generated by lognormal
model for EESM and comparison with other proposed distributions (𝜎2 =
10 dB, 𝜏 = 2, 𝜆 = 1.5, and 𝑁 = 4).

of the lognormal model for 𝑋eff with its empirical CDF and
CCDF, which are generated from 106 samples. Small values
of the CDF reveal the accuracy in tracking the probability of
smaller 𝑋eff values. Since all CDFs saturate to 1 for large 𝑋eff

values, the accuracy in tracking the probability distribution
of larger 𝑋eff values is revealed by studying the CCDF
instead. The comparison is done in Figures 2 and 3 when
the PRB SNRs are exponential RVs, i.e., squares of Rayleigh
RVs (which also are Chi-square RVs with 𝜏 = 2). The
constituent SNRs are independent and identically distributed
(i.i.d.) exponential RVs with mean 10 dB. Also plotted are the
CDF and CCDF of the Gaussian and log-Gaussian models
of [11]. We notice that the lognormal approximation, while
not perfect, tracks both the CDF and CCDF of EESM well
and is significantly better than the Gaussian and log-Gaussian
approximations for both the CDF and the CCDF.

We have also compared the accuracy of the proposed model
with several other common probability distributions such as
Gamma, Chi-square, Weibull, and 𝐾 [35], with moment
matching used to determine their parameters. These are not
shown in the figure to avoid clutter. In all comparisons, the
proposed model gives the best match for both CDF and CCDF.
The effect of increasing the number of constituent SNRs, 𝑁 ,
is investigated in Figure 4, which plots both the CDF and
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Fig. 4. Effect of the number of constituent SNRs, 𝑁 , on the accuracy of the
proposed statistical model for EESM (𝜎2 = 10 dB, 𝜏 = 2, and 𝜆 = 1.5).

TABLE I
KL DISTANCE FOR DIFFERENT DISTRIBUTIONS (𝜎2 = 10 DB, 𝜆 = 1.5,

𝜏 = 2, AND 𝑁 = 4)

Probability distribution KL divergence
Lognormal 0.024
Chi-square 0.052

K-distribution 0.093
Gamma 0.214
Weibull 0.403

Gaussian 3.50× 106

Log-Gaussian 1.40× 107

CCDF. We see that the lognormal model’s accuracy, in fact,
increases as 𝑁 increases for both the CDF and the CCDF.

The second method of comparison that quantifies the accu-
racy of the proposed model in a different manner is a mea-
surement of its Kullback-Leibler (KL) divergence [36] from
the empirically measured PDF. The KL divergence is a useful
metric because it is zero if and only if the two distributions are
identical. It is always positive, and a smaller value indicates
a better match between the two distributions. The results are
shown in Table I. Also tabulated are the KL divergence values
for the above mentioned common distributions. We again see
that the proposed lognormal model is the best one among all.

Recall that the square of a Rayleigh RV is an exponential
RV, which is a Chi-square RV with 𝜏 = 2 degrees of freedom.
We now consider a more general case where the constituent
SNRs are Chi-square RVs with 𝜏 ≥ 2 degrees of freedom,
whose PDF is given by

𝑓𝑋𝜏 (𝑥) =
𝑥

𝜏
2 −1𝑒−

𝑥
2

2
𝜏
2 Γ

(
𝜏
2

) , for 𝑥 ≥ 0. (9)

As we shall see, a larger 𝜏 models the effect of diversity.
This can arise, for example, when multiple antenna techniques
are used. Figure 5 compares the lognormal CDF with the
empirical CDF of EESM for 𝜏 = 2 and 8. The other
parameters are kept unchanged. Again, we observe that the
lognormal model characterizes the statistics of EESM well,
and is considerably better than the Gaussian and log-Gaussian
models. The CCDF match, which is not shown due to space
constraints, is even more accurate.

The results presented thus far assumed that the PRB SNRs
are uncorrelated. We now investigate the effect of correlation
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Fig. 5. Plot of the CDF of the lognormal model of EESM for different
degrees of freedom, 𝜏 , which correspond to different multiple antenna modes
(𝜎2 = 10 dB).
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Fig. 6. Effect of frequency-domain correlation between PRBs on the accuracy
of proposed lognormal model for EESM (𝜎2 = 10 dB, 𝜏 = 4, 𝜆 = 1.5, and
𝑁 = 4).

across PRBs on the accuracy of the proposed model. Figure 6
plots the empirical CDF of EESM and the CDF from the pro-
posed lognormal model. Correlation between the 𝑚th and 𝑛th

PRBs is modeled using the following geometrically decaying
correlation model [12]:

𝔼

[
ℎ𝑛,𝑘(𝑖, 𝑗)ℎ

∗
𝑚,𝑘(𝑖, 𝑗)

]
𝜎2
𝑘

= 𝜌
∣𝑛−𝑚∣
𝑓 .

Results are shown for a high correlation value of 𝜌𝑓 = 0.7.
We again see that the proposed model tracks the empirical
CDF of EESM well. The corresponding CCDF curves are not
shown due to space constraints. We have also verified the
validity of the model when the channel gains are spatially
correlated or when a line-of-sight component is present. In
both these cases, the PRB SNRs are no longer Chi-square
RVs. The corresponding figures are again not shown due to
space constraints.

Comments: Based on the CDF and CCDF matching and the
KL divergence results, we find that the proposed lognormal
model for EESM is accurate for a wide range of SNRs,
number of constituent PRBs, and degrees of freedom (𝜏 ). It
worth noting from Table I that even the Chi-square distribution
comes second to the proposed model in terms of accuracy.
This is an interesting observation because, at low SNRs, the
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EESM can be approximated by the arithmetic mean, which has
a Chi-square PDF when the PRB SNRs are i.i.d. Even when
the PRB SNRs are correlated, we find the lognormal model
is quite accurate even for correlations as high as 𝜌𝑓 = 0.9.

C. Throughput Analysis of CQI Feedback Schemes

We now analyze the throughput of the UE selected subband
feedback and subband-level feedback schemes. While the
statistical model for EESM is a significant step forward in
enabling the analysis, the following additional assumptions are
made about the system model to make it analytically tractable
and yet capture the interactions between the different CQI
feedback techniques, EESM, scheduler, and multiple antenna
diversity. We note that several of these assumptions have also
been made in the related literature for analyzing relatively
simpler models, and that our results are novel and significant
even with these assumptions.

1) Assumptions: (i) The channel gains across different
PRBs are assumed to be i.i.d. This is a valid assumption
when the coherence bandwidth of the channel is close to the
180 kHz bandwidth of a PRB [1, Sec. 5.3.2]. This has also
been assumed, for example, in [7], [8], [15], [22], [23], [37] to
ensure analytical tractability. The channel gains are assumed
to be i.i.d. across different transmit-receive antenna pairs for
all UEs, which is the case when the antennas are spaced
sufficiently far apart in a rich scattering environment [14],
[16], [28]. This scenario has also been used in LTE per-
formance evaluations. Thus, the gains are i.i.d. across the
antenna indices 𝑙 and 𝑗 and across the PRB index 𝑛. However,
they need not be identically distributed across the UEs since
𝜎2
𝑘 = 𝔼

[∣ℎ𝑛,𝑘(𝑙, 𝑗)∣2], which depends on the distance of the
UE from the BS and shadowing, depends on 𝑘. The channel
gain is assumed to remain constant over a 1 ms subframe and
the feedback delays are assumed to be insignificant, which
easily holds for UE speeds up to 30 kmph.

(ii) We assume that the scheduler can assign different MCSs
to different PRBs that are assigned to a UE. However, in
LTE, all the PRBs assigned to a UE use the same MCS. The
simulation results in [38] show that the throughput difference
between the two approaches is marginal.

(iii) To focus on CQI feedback, we assume ideal beamform-
ing weight feedback for closed-loop MISO and single-stream
MIMO. Clearly, no such assumption is required for SISO,
SIMO, and open-loop MISO. As shown in [39], quantization
of weights typically incurs a 10% loss in throughput for
𝑁r = 𝑁t = 2 compared to ideal feedback.

Extension to a Multi-cell Scenario: With the assumptions
above, the analysis directly applies to a single cell scenario [8],
[15]–[17], [23], [28], [40]. In a multi-cell scenario, the
methodology can be extended by accounting for co-channel
interference through its fading-averaged power. However, this
extension does have its limitations since there are only six
dominant first-tier interfering cells in a multi-cell OFDM
system. A more sophisticated approach is pursued in [31],
[41] (and references therein), which analyze cell throughput
by conditioning on the fading experienced by co-channel
interference. However, their models cannot be generalized
to ours as they do not consider OFDM, frequency-domain

scheduling, CQI feedback, and multiple antenna diversity.
While [11] also conditions on the fading experienced by the
co-channel interference signals and incorporates EESM, its
simple cell planning oriented analysis does not consider rate
adaptation, multiple antenna modes, and scheduling. Further,
it uses simulations to determine the statistics of signal-to-
interference-plus-noise-ratio (SINR).

2) Common Distribution for 𝛾𝑛,𝑘: The statistics of the SNR
of 𝑛th PRB of 𝑘th UE, 𝛾𝑛,𝑘, shall play a crucial role in the
analysis as the CQI depends on it. We first present a single
unified characterization of the PDF of 𝛾𝑛,𝑘 for all the multiple
antenna diversity modes, and then use it to analyze all of them
together.

For SIMO (𝑁t = 1, 𝑁r ≥ 2), the receiver employs
maximal-ratio combining (MRC) [27, Chap. 3]. Hence, 𝛾𝑛,𝑘 =∑𝑁r

𝑙=1∣ℎ𝑛,𝑘(𝑙, 1)∣2 is the summation of 𝑁r i.i.d. exponential
RVs, which is nothing but a Chi-square RV with 𝜏 = 2𝑁r

degrees of freedom and mean 𝑁r𝜎
2
𝑘. Recall that ℎ𝑛,𝑘(𝑙, 𝑗) are

i.i.d. across the transmit and receive antenna indices 𝑙 and
𝑗. Clearly, SISO is a special case of SIMO with 𝑁r = 1.
For closed-loop MISO, given the ideal beamforming weight
assumption, 𝛾𝑛,𝑘 =

∑𝑁t

𝑗=1∣ℎ𝑛,𝑘(1, 𝑗)∣2 is a Chi-square RV
with 𝜏 = 2𝑁t degrees of freedom and mean 𝑁t𝜎

2
𝑘 since the

transmitter employs maximal ratio transmission (MRT) for
every PRB. For open-loop MISO (𝑁t = 2, 𝑁r = 1), the
Alamouti code is used. Therefore, 𝛾𝑛,𝑘 is again a Chi-square

RV with 𝜏 = 2𝑁t degrees of freedom and mean 𝑁t
𝜎2
𝑘

2 . Thus,
for all the above multi-antenna diversity modes, we can write
𝛾𝑛,𝑘 as [21]

𝛾𝑛,𝑘 = 𝑎𝑋𝜏 + 𝑏, (10)

where 𝑋𝜏 is a standard Chi-square RV with 𝜏 degrees of
freedom. The values of 𝑎 for SISO, SIMO, closed-loop MISO,
and open-loop MISO are 𝜎2

𝑘

2 , 𝜎2
𝑘

2 , 𝜎2
𝑘

2 , and 𝜎2
𝑘

4 , respectively, and
𝑏 = 0 for all these modes.

For single-stream MIMO (𝑁t = 𝑁r = 2), 𝛾𝑛,𝑘 is the square
of the largest singular value of the matrix {ℎ𝑛,𝑘(𝑖, 𝑗)}𝑖,𝑗 and
its PDF is given as [42]

𝑓𝛾𝑛,𝑘
(𝑥) =

1

𝜎2
𝑘

((
𝑥

𝜎2
𝑘

)2

− 2𝑥

𝜎2
𝑘

+ 2

)
𝑒
− 𝑥

𝜎2
𝑘 − 2

𝜎2
𝑘

𝑒
− 2𝑥

𝜎2
𝑘 , 𝑥 ≥ 0.

(11)
Its first two moments are

𝑚1 ≜ 𝔼 [𝛾𝑛,𝑘] = 3.5𝜎2
𝑘 and 𝑚2 ≜ 𝔼

[
𝛾2𝑛,𝑘

]
= 15.5𝜎4

𝑘. (12)

While 𝛾𝑛,𝑘 is not a Chi-square RV, we approximate it us-
ing (10) as 𝑎𝑋𝜏 + 𝑏, where 𝑋𝜏 is a Chi-square RV with
𝜏 = 8 degrees of freedom. Matching the first and second
moments of 𝛾𝑛,𝑘 in (10) with its moments 𝑚1 and 𝑚2, we

get 𝑎 =

√
𝜏
𝑚2−𝑚2

1

2 = 0.451𝜎2
𝑘 and 𝑏 = 𝑚1 − 𝜏

√
𝑚2−𝑚2

1

2𝜏 =

−0.106𝜎2
𝑘. Figure 7 compares the actual and the approximate

PDFs of 𝛾𝑛,𝑘 and verifies that the model is accurate over a
wide range of values of 𝛾𝑛,𝑘 for single-stream MIMO.

3) Throughput of UE Selected Subband Feedback Scheme:
The following two claims shall lead us to the final result for
the throughput in (17). An important issue that the analysis
handles is that while the CQI feedback has a coarse frequency
granularity of a subband (𝑞 PRBs) or even 𝑀 subbands (𝑀𝑞
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Fig. 7. Comparison of the actual PDF and approximate Chi-square PDF
(with 𝜏 = 8) of 𝛾𝑛,𝑘 for single-stream MIMO (𝜎2 = 10 dB).

PRBs), the BS schedules over a narrower PRB. This can
occasionally lead to an incorrect choice of the MCS.

Claim 1: The probability that the 𝑘th UE reports a CQI of
𝑟𝑖, for 1 ≤ 𝑖 ≤ 𝐿, is

Pr
(
𝐶bestM
𝑘 = 𝑟𝑖

)
= Pr

(
𝐶bestM
𝑘 ≤ 𝑟𝑖

)− Pr
(
𝐶bestM
𝑘 ≤ 𝑟𝑖−1

)
,

(13)
where

Pr
(
𝐶bestM
𝑘 ≤ 𝑟𝑖

) ≈ 1

𝛽Ω
(𝑀𝑞)
𝑘

√
2𝜋

∫ 𝑇𝑖

0

𝑒
−(ln 𝑧−𝜇

(𝑀𝑞)
𝑘 )

2

2(Ω(𝑀𝑞)
𝑘 )

2

𝑧

×
(
1− 2𝑄

(
ln 𝑧 − 𝜇

(𝑞)
𝑘

Ω
(𝑞)
𝑘

))(𝑆−𝑀)

𝑑𝑧. (14)

Here,

𝛽≈ 1√
𝜋

𝑈∑
𝑙=1

𝑤𝑙

(
1−2𝑄

(√
2Ω

(𝑀𝑞)
𝑘 𝛼𝑙 + 𝜇

(𝑀𝑞)
𝑘 − 𝜇

(𝑞)
𝑘

Ω
(𝑞)
𝑘

))(𝑆−𝑀)

,

(15)
and {𝑤𝑙}𝑈𝑙=1 and {𝛼𝑙}𝑈𝑙=1 are the 𝑈 Gauss-Hermite weights
and abscissas, respectively [43, Tbl. 25.10]. And, 𝜇(𝑀𝑞)

𝑘 and
Ω

(𝑀𝑞)
𝑘 are the lognormal parameters, as per Sec. III-A, of the

EESM over the SNRs of 𝑀𝑞 PRBs in any 𝑀 subbands. An
example of these SNRs is {𝛾ℓ,𝑘}𝑀𝑞

ℓ=1. Similarly, 𝜇(𝑞)
𝑘 and Ω

(𝑞)
𝑘

are the lognormal parameters of EESM over the SNRs of 𝑞
PRBs in any subband. An example of these SNRs is {𝛾ℓ,𝑘}𝑞ℓ=1.

Proof: The derivation is relegated to Appendix A.
Claim 2: Let the 𝑘th UE be selected (sel.) for the 𝑛th PRB

and let 𝑟𝑖 be the CQI value that it reports. Then, the conditional
probability that 𝛾𝑛,𝑘 is less than 𝑇𝑖−1 is

Pr
(
𝛾𝑛,𝑘 < 𝑇𝑖−1∣𝐶bestM

𝑘 = 𝑟𝑖, 𝑘 is sel. for 𝑛th PRB
)

≈ 1

𝑄

(
ln𝑇𝑖−1−𝜇

(𝑀𝑞)
𝑘

Ω
(𝑀𝑞)
𝑘

)
−𝑄

(
ln𝑇𝑖−𝜇

(𝑀𝑞)
𝑘

Ω
(𝑀𝑞)
𝑘

)∫
𝑇𝑖−1−𝑏

𝑎

− 𝑏
𝑎

𝑦
𝜏
2 −1𝑒−

𝑦
2

2
𝜏
2

(
𝜏
2 − 1

)
!

×

⎡
⎢⎢⎢⎢⎣𝑄
⎛
⎜⎜⎜⎜⎝
ln

[
−𝜆 ln

(
𝑀𝑞𝑒−

𝜁𝑀 (𝑇𝑖−1,
𝑦−𝑏
𝑎

)

𝜆 −𝑒−
𝑦−𝑏
𝑎𝜆

𝑀𝑞−1

)]
−𝜇(𝑀𝑞−1)

𝑘

Ω
(𝑀𝑞−1)
𝑘

⎞
⎟⎟⎟⎟⎠

−𝑄

⎛
⎜⎜⎜⎜⎝
ln

[
−𝜆ln

(
𝑀𝑞𝑒−

𝜁𝑀 (𝑇𝑖,
𝑦−𝑏
𝑎

)

𝜆 −𝑒−
𝑦−𝑏
𝑎𝜆

𝑀𝑞−1

)]
−𝜇(𝑀𝑞−1)

𝑘

Ω
(𝑀𝑞−1)
𝑘

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦𝑑𝑦,

where

𝜁ℓ(𝑥, 𝑦) = min

{
max

{
−𝜆 ln

(
ℓ𝑞 − 1 + 𝑒−

𝑦
𝜆

ℓ𝑞

)
, 𝑥

}
,

𝑦 + 𝜆 ln(ℓ𝑞)} , for 𝑙 = 1, 2, . . . . (16)

As used in Claim 1, 𝜇(𝑀𝑞)
𝑘 and Ω

(𝑀𝑞)
𝑘 are the lognormal

parameters of EESM over any 𝑀𝑞 PRBs. And, 𝜇(𝑀𝑞−1)
𝑘 and

Ω
(𝑀𝑞−1)
𝑘 are the lognormal parameters of EESM over the

SNRs 𝛾1,𝑘, 𝛾2,𝑘, . . . , 𝛾𝑀𝑞−1,𝑘.
Proof: The proof is relegated to Appendix B.

Using the above results, the throughput of the PF scheduler,
which is defined in (4), is as follows.

Result 1: The average throughput, �̄�𝑛, for PRB 𝑛 is

�̄�𝑛 =
∑
𝒵𝑠(𝑛)

Pr
(𝒵𝑠(𝑛)

) ∑
𝑘∈𝒵𝑠(𝑛)

𝐿∑
𝑖=1

𝑟𝑖Pr
(
𝐶bestM
𝑘 = 𝑟𝑖

)
× (

1− Pr
(
𝛾𝑛,𝑘 < 𝑇𝑖−1∣𝐶bestM

𝑘 = 𝑟𝑖, 𝑘 is sel. for 𝑛th PRB
))

×
⎡
⎣ ∏
𝑙∈𝒵𝑠(𝑛), 𝑙 ∕=𝑘

Pr
(
𝐶bestM
𝑙 ≤ 𝜗𝑙,𝑖

)⎤⎦ . (17)

where 𝜗𝑙,𝑖 is the largest rate that is strictly less

than
𝔼[𝐶bestM

𝑙 ]
𝔼[𝐶bestM

𝑘 ]
𝑟𝑖, Pr

(
𝐶bestM
𝑙 ≤ 𝜗𝑙,𝑖

)
is given by Claim 1,

Pr
(
𝛾𝑛,𝑘<𝑇𝑖−1∣𝐶bestM

𝑘 = 𝑟𝑖, 𝑘 is sel. for 𝑛th PRB
)

is given in
Claim 2, and
Pr
(𝒵𝑠(𝑛)

)
=
(
𝑀
𝑆

)∣𝒵𝑠(𝑛)∣ (1−𝑀
𝑆

)𝐾−∣𝒵𝑠(𝑛)∣.
Proof: The proof is given in Appendix C.

The above throughput expression is in the form of a single
integral, which is numerically evaluated. This is a significant
simplification compared to either brute-force simulations or an
𝑁 -fold integral with a considerably more involved integrand
that would arise if the proposed lognormal model is not used
for EESM.

4) Throughput of Subband-Level Feedback Scheme: The
following claim shall lead us to the final expression for the
throughput in (20).

Claim 3: Let the 𝑘th UE be selected for the 𝑛th PRB and
the CQI value reported by it be 𝑟𝑖. The probability of an
outage, i.e., 𝛾𝑛,𝑘 ≤ 𝑇𝑖−1, is

Pr
(
𝛾𝑛,𝑘 < 𝑇𝑖−1∣𝐶sub

𝑠(𝑛),𝑘 = 𝑟𝑖, 𝑘 is sel. for 𝑛th PRB
)

=
1

Pr
(
𝐶sub
𝑠(𝑛),𝑘 = 𝑟𝑖

) ∫
𝑇𝑖−1−𝑏

𝑎

− 𝑏
𝑎

𝑦
𝜏
2 −1𝑒−

𝑦
2

2
𝜏
2

(
𝜏
2 − 1

)
!

×

⎡
⎢⎢⎢⎢⎢⎢⎣
𝑄

⎛
⎜⎜⎜⎜⎜⎜⎝
ln

⎡
⎣−𝜆 ln

⎛
⎝ 𝑞𝑒−

𝜁1(𝑇𝑖−1,
𝑦−𝑏
𝑎 )

𝜆 −𝑒−
𝑦−𝑏
𝑎𝜆

𝑞−1

⎞
⎠
⎤
⎦− 𝜇

(𝑞−1)
𝑘

Ω
(𝑞−1)
𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠
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−𝑄

⎛
⎜⎜⎜⎜⎜⎜⎝
ln

⎡
⎣−𝜆 ln

⎛
⎝ 𝑞𝑒−

𝜁1(𝑇𝑖,
𝑦−𝑏
𝑎 )

𝜆 −𝑒−
𝑦−𝑏
𝑎𝜆

𝑞−1

⎞
⎠
⎤
⎦− 𝜇

(𝑞−1)
𝑘

Ω
(𝑞−1)
𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦
𝑑𝑦,

(18)

where

Pr
(
𝐶sub
𝑠(𝑛),𝑘 = 𝑟𝑖

)
= 𝑄

(
ln (𝑇𝑖−1)− 𝜇

(𝑞)
𝑘

Ω
(𝑞)
𝑘

)

−𝑄

(
ln (𝑇𝑖)− 𝜇

(𝑞)
𝑘

Ω
(𝑞)
𝑘

)
, (19)

and 𝜁1(𝑥, 𝑦) is defined in Claim 2. Here, 𝜇(𝑞)
𝑘 and Ω

(𝑞)
𝑘 , as

already used in Claim 1, are the lognormal parameters of
EESM over the SNRs of all the 𝑞 PRBs of a subband for the
𝑘th UE. And, 𝜇(𝑞−1)

𝑘 and Ω
(𝑞−1)
𝑘 are the lognormal parameters

of EESM over the SNRs of any 𝑞 − 1 PRBs in a subband of
the 𝑘th UE, e.g., {𝛾ℓ,𝑘}𝑞−1

ℓ=1 .
Proof: The proof is similar to that in Appendix B and is

omitted to conserve space.
Result 2: The average throughput, �̄�𝑛, for PRB 𝑛 of the

subband-level CQI feedback scheme is

�̄�𝑛=

𝐾∑
𝑘=1

𝐿∑
𝑖=1

𝑟𝑖Pr
(
𝐶sub
𝑠(𝑛),𝑘 = 𝑟𝑖

)⎡⎣ 𝐾∏
𝑙=1,𝑙 ∕=𝑘

Pr
(
𝐶sub
𝑠(𝑛),𝑙 ≤ 𝜗𝑙,𝑖

)⎤⎦
×
(
1−Pr

(
𝛾𝑛,𝑘< 𝑇𝑖−1∣𝐶sub

𝑠(𝑛),𝑘= 𝑟𝑖, 𝑘 is sel. for 𝑛th PRB
))
,

(20)

where 𝜗𝑙,𝑖 is the largest rate among {𝑟1, . . . , 𝑟𝐿} that

is strictly less than
𝔼[𝐶sub

𝑠(𝑛),𝑙]
𝔼

[
𝐶sub

𝑠(𝑛),𝑘

]𝑟𝑖, and Pr
(
𝐶sub
𝑠(𝑛),𝑘=𝑟𝑖

)
and Pr

(
𝛾𝑛,𝑘 < 𝑇𝑖−1∣𝐶sub

𝑠(𝑛),𝑘 = 𝑟𝑖, 𝑘 is sel. for 𝑛th PRB
)

are
given in Claim 3.

Proof: The proof is relegated to Appendix D.
As before, the final result is in the form of a single integral,

which is numerically evaluated.

IV. LTE THROUGHPUT RESULTS AND COMPARISONS

We now use Monte Carlo simulations that average over
50,000 samples to verify the analysis. We consider a single
cell with 𝐾 = 6 UEs in it and a BS at the center of the cell.
As discussed in Section II, the channel gains of the PRBs
for different transmit-receive antenna pairs for the 𝑘th UE are
generated as independent zero-mean complex Gaussian RVs
with variance 𝜎2

𝑘 . To model the non-i.i.d. channels seen by
different UEs, we set 𝜎2

𝑘 = 𝜆/𝛼𝑘−1, 1 ≤ 𝑘 ≤ 𝐾 , where
𝛼 ≥ 1. Effectively, the first UE sees the strongest channel (on
average) and UEs 2, . . . ,𝐾 see successively weaker channels
(on average).

The set of link adaptation thresholds are generated using
the coding gain loss model of [44]. They are related to the
rate as follows: 𝑟𝑖 = log2 (1 + 𝜁𝑇𝑖−1). Here, 𝜁 is the coding
gain loss, and is set as 𝜁 = 0.398 as per [44]. A smaller value
of 𝜁 means a lower (tighter) bit error constraint. Note that our
analysis applies to any set of adaptation thresholds 𝑇0, . . . , 𝑇𝐿.

TABLE II
LOGNORMAL PARAMETERS OF EESM (𝜎2 = 10 DB AND 𝜆 = 1.5)

Degrees of freedom Number of subcarriers Lognormal parameters
𝜏 𝜇 Ω

2

3 1.35 0.40
4 1.26 0.30
11 1.16 0.09
12 1.16 0.08

4

3 2.26 0.27
4 2.19 0.22
11 1.96 1.11
12 1.94 0.10

8

3 3.19 0.14
4 3.09 0.14
11 2.87 0.08
12 2.25 0.08

The thresholds can alternately be chosen based on link-level
simulation results.

A subband consists of 𝑞 = 4 PRBs. The number of
subbands is 𝑆 = 6, which corresponds to a cell bandwidth of
𝐵 = 5 MHz. In the UE selected subband feedback scheme,
each UE selects 𝑀 = 3 out of 𝑆 = 6 subbands. Unless
mentioned otherwise, 𝜌 = 10 dB, 𝛼 = 1.2, and 𝜆 = 1.5. Since
we are using the lognormal model of EESM, the lognormal
parameters of EESM are computed once in the analysis. For
example, Table II enumerates these parameters for the 1st UE
for different 𝜏 . Since the throughput for SIMO and closed-
loop MISO are the same given 𝜎2

𝑘 , we show results only for
the former.

Figure 8 plots the average throughput as a function of 𝐾
for the UE selected subband scheme. This is done for SISO,
SIMO (𝑁r = 2), open-loop MISO (𝑁t = 2), and single-stream
MIMO. The throughput decreases marginally once 𝐾 exceeds
4. This is because the PF scheduler ensures fairness among the
UEs even though the additional UEs have lower average SNRs.
A similar effect is observed for the subband-level feedback
scheme. The throughput of single-stream MIMO, SIMO, and
open-loop MISO is 140%, 70%, and 10% more than SISO,
respectively. We see that the analysis and simulation results
differ by no more than 8%. The difference occurs because of
the lognormal approximation of EESM and the approximation
in Claim 1.

To compare the two CQI feedback schemes, Figure 9 plots
their average throughput (from analysis) for SISO, SIMO, and
single-stream MIMO. As the number of UEs increases, the
throughput of the UE selected subband scheme approaches
that of the subband-level feedback scheme for all the multiple
antenna modes despite its lower feedback overhead.

Figure 10 plots the throughput of UE selected subband
feedback (from analysis) for different values of 𝑀 and 𝑞
for SISO. When 𝑀 is small, the throughput increases as
𝑀 increases since the CQI is reported for more subbands.
However, for larger 𝑀 , the throughput decreases since the UE
feeds back only one CQI value for all 𝑀 subbands. Further,
for the same 𝑀 , a larger 𝑞 always leads to a lower throughput
since the subband-level CQI is an average of more PRBs. We
see that for 𝑞 = 2, the optimum 𝑀 is 2, while for 𝑞 = 4, the
optimum 𝑀 is 3.
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Fig. 8. Comparison of the average throughput of UE selected subband
feedback scheme from analysis and simulations for different multiple antenna
modes.
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Fig. 9. Comparison of the average throughputs of UE selected subband
feedback and subband-level feedback schemes (from analysis) for different
numbers of UEs, 𝐾 .

V. CONCLUSIONS

EESM is an empirical tool that is widely used in the design,
analysis, and simulation of OFDM and OFDM systems. How-
ever, an analysis of systems that use EESM has been hampered
by the highly non-linear nature of EESM. Even a closed-
form probability distribution function for the effective SNR
is unknown. We developed an analytically tractable model
for EESM that empirically models it as a lognormal RV, and
showed that the model is accurate under a variety of scenarios.
We verified its accuracy when the PRBs channel gains are
uncorrelated or correlated, and in the presence of frequency-
domain correlation and spatial-domain correlation.

The lognormal model of EESM was then instrumental in
developing an accurate analysis for the throughput of the
UE selected subband CQI feedback and subband-level CQI
feedback schemes of LTE. In both these schemes, EESM is
used to determine the CQI, which is averaged over many
PRBs to reduce the feedback overhead. The analysis captured
the joint effect of multi-antenna diversity mode, scheduler,
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Fig. 10. Optimization of parameters of the UE selected subband feedback
scheme as a function of the number of PRBs in a subband, 𝑞. The bars
corresponding to the optimal values of 𝑀 are encircled.

CQI feedback scheme, and CQI generation. The throughput
expressions were in the form of single integrals, which is a
significant advance compared to the brute-force simulations
that have typically been used to study this problem. It also
enabled the optimization of the CQI feedback scheme’s param-
eters.While the analysis does not obviate the need for detailed
system-level simulations, it provides a valuable, independent
and common theoretical reference to an LTE system designer.
It enables the designer to quickly optimize parameters, gain
intuition, and saves considerable simulation effort.

APPENDIX

A. Proof of Claim 1

From Sec. II-B1, Pr
(
𝐶bestM
𝑘 ≤ 𝑟𝑖

)
= Pr

(
𝛾rep
𝑘 < 𝑇𝑖

)
. To

evaluate this probability, we need the PDF of the EESM of
𝑀 ordered subband effective SNRs, which is analytically
intractable. We circumvent this problem by deriving an ap-
proximate expression that involves only a single integral as
follows [21]:

Pr
(
𝛾rep
𝑘 < 𝑇𝑖

) (i)
=
∑

𝑖1,...,𝑖𝑀

Pr
(
𝛾rep
𝑘 < 𝑇𝑖, ℐ𝑘 = {𝑖1, . . . , 𝑖𝑀})

(ii)
=

(
𝑆

𝑀

)
Pr
(
𝛾rep
𝑘 < 𝑇𝑖, ℐ𝑘 = {1, . . . ,𝑀}) .

(21)

Here, (i) follows from the law of total probability. Since for
a given UE, the subband SNRs are i.i.d. and there are

(
𝑆
𝑀

)
possible combinations of best 𝑀 subbands, we get (ii).

Let Λ be the event ℐ𝑘={1, . . . ,𝑀}. Then,

Pr(Λ)=Pr
( max
𝑀+1≤𝑙≤𝑆

(
𝛾sub
𝑙,𝑘

)≤min
(
𝛾sub
1,𝑘, . . . , 𝛾

sub
𝑀,𝑘

))
. (22)

From [10], we know that

min
(
𝛾sub
1,𝑘, . . . , 𝛾

sub
𝑀,𝑘

) ≤ 𝛾rep
𝑘 = −𝜆 ln

(
1

𝑀

𝑀∑
𝑖=1

𝑒−
𝛾sub
𝑖,𝑘
𝜆

)
.

We then get

Pr(Λ) ≤ Pr

(
max

𝑀+1≤𝑙≤𝑆

(
𝛾sub
𝑙,𝑘

) ≤ 𝛾rep
𝑘

)
. (23)
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Thus, from (21),

Pr
(
𝐶bestM
𝑘 ≤ 𝑟𝑖

)
(24)

≤
(
𝑆

𝑀

)
Pr

(
max

𝑀+1≤𝑙≤𝑆

(
𝛾sub
𝑙,𝑘

) ≤ 𝛾rep
𝑘 < 𝑇𝑖

)
,

=

(
𝑆

𝑀

)∫ 𝑇𝑖

0

𝑓𝛾rep
𝑘
(𝑧)

(
Pr
(
𝛾sub
𝑀+1,𝑘 ≤ 𝑧

))(𝑆−𝑀)
𝑑𝑧.

(25)

At the same time, we know that Pr
(
𝐶bestM
𝑘 ≤ 𝑟𝐿

)
= 1,

since 𝑟𝐿 is the highest rate. This motivates the following
approximation that, by design, is exact for 𝑖 = 𝐿. In it,
the upper bound in (25) is divided by a factor

(
𝑆
𝑀

)
𝛽, where

𝛽 is the probability that 𝐶bestM
𝑘 = 𝑟𝐿. Using the proposed

lognormal approximation (Sec. III-A), we know that 𝛾rep
𝑘 =

−𝜆 ln
(

1
𝑀

∑𝑀
𝑖=1 𝑒

− 𝛾sub
𝑖,𝑘
𝜆

)
, which is the EESM computed over

𝑀𝑞 PRB SNRs, is a lognormal RV with parameters 𝜇(𝑀𝑞)
𝑘 and

Ω
(𝑀𝑞)
𝑘 . Similarly, 𝛾sub

𝑀+1,𝑘 is a lognormal RV with parameters

𝜇
(𝑞)
𝑘 and Ω

(𝑞)
𝑘 . Therefore,

𝛽 =

∫ ∞

−∞

𝑒
−(𝑧−𝜇

(𝑀𝑞)
𝑘 )

2

2(Ω(𝑀𝑞)
𝑘 )

2

Ω
(𝑀𝑞)
𝑘

√
2𝜋

(
1−𝑄

(
𝑧 − 𝜇

(𝑞)
𝑘

Ω
(𝑞)
𝑘

))(𝑆−𝑀)

𝑑𝑧.

(26)
Applying Gauss-Hermite quadrature [43] to (26) results in the
desired expression for 𝛽.

B. Proof of Claim 2

For brevity, let

𝜓𝑘 = Pr
(
𝛾𝑛,𝑘<𝑇𝑖−1∣𝐶bestM

𝑘 = 𝑟𝑖, 𝑘 is sel. for 𝑛th PRB
)
.

(27)
Applying a method similar to the one used in Appendix A
results in a three-fold integral expression for 𝜓𝑘 that cannot
be simplified further. Hence, we develop a different method
below, which leads to a much simpler single-fold integral
expression.

From Baye’s rule and (4), we get

𝜓𝑘 =

Pr

(
𝛾𝑛,𝑘<𝑇𝑖−1, 𝐶

bestM
𝑘 = 𝑟𝑖,

𝐶bestM
𝑙

𝔼[𝐶bestM
𝑙 ]

< 𝑟𝑖
𝔼[𝐶bestM

𝑘 ]
, ∀ 𝑙 ∕= 𝑘

)

Pr

(
𝐶bestM
𝑘 = 𝑟𝑖,

𝐶bestM
𝑙

𝔼[𝐶bestM
𝑙 ]

< 𝑟𝑖
𝔼[𝐶bestM

𝑘 ]
, ∀ 𝑙 ∕= 𝑘

) .

Since the CQIs fed back by different UEs are mutually
independent, the above expression simplifies to

𝜓𝑘 =
Pr
(
𝛾𝑛,𝑘<𝑇𝑖−1, 𝐶

bestM
𝑘 = 𝑟𝑖,

)
Pr
(
𝐶bestM
𝑘 = 𝑟𝑖

) . (28)

Further, 𝐶bestM
𝑘 = 𝑟𝑖 if and only if the EESM of the subband

SNRs in ℐ𝑘 , 𝛾rep
𝑘 = −𝜆 ln

(
1
𝑀

∑
𝑣∈ℐ𝑘

𝑒−
𝛾sub
𝑣,𝑘
𝜆

)
, lies in between

𝑇𝑖−1 and 𝑇𝑖. Hence,

𝜓𝑘=

Pr

(
𝛾𝑛,𝑘<𝑇𝑖−1, 𝑇𝑖−1≤−𝜆 ln

(
1
𝑀

∑
𝑣∈ℐ𝑘

𝑒−
𝛾sub
𝑣,𝑘
𝜆

)
<𝑇𝑖

)

Pr

(
𝑇𝑖−1 ≤ −𝜆 ln

(
1
𝑀

∑
𝑣∈ℐ𝑘

𝑒−
𝛾sub
𝑣,𝑘
𝜆

)
< 𝑇𝑖

) .

(29)

Note that the set ℐ𝑘 contains the subband 𝑠(𝑛).
Without loss of generality, since the PRB SNRs and

the subband effective SNRs are i.i.d., let 𝑛 = 1,
𝑠(1) = 1, and ℐ𝑘 = {1, . . . ,𝑀}. Since

(
𝑆−1
𝑀−1

)
sets

of 𝑀 subbands contain subband 1, the numerator of (29)

is
(
𝑆−1
𝑀−1

)
Pr

(
𝛾1,𝑘<𝑇𝑖−1, 𝑇𝑖−1≤−𝜆 ln

(
1
𝑀

∑
𝑣∈ℐ𝑘

𝑒−
𝛾sub
𝑣,𝑘
𝜆

)
<

𝑇𝑖, ℐ𝑘 = {1, . . . ,𝑀}). Similarly, the denominator of (29) is

(
𝑆 − 1

𝑀 − 1

)
Pr

(
𝑇𝑖−1≤−𝜆 ln

(
1

𝑀

∑
𝑣∈ℐ𝑘

𝑒−
𝛾sub
𝑣,𝑘
𝜆

)
<𝑇𝑖,

ℐ𝑘 = {1, . . . ,𝑀}
)
.

Substituting these in (29) and using Baye’s rule yields

𝜓𝑘 =

Pr

⎛
⎝ℐ𝑘 = {1, . . . ,𝑀} ∣𝛾1,𝑘<𝑇𝑖−1, 𝑇𝑖−1≤

−𝜆 ln
(

1
𝑀

∑𝑀
𝑣=1 𝑒

−𝛾sub
𝑣,𝑘
𝜆

)
<𝑇𝑖

⎞
⎠

Pr

⎛
⎝ℐ𝑘 = {1, . . . ,𝑀} ∣𝑇𝑖−1 ≤

−𝜆 ln
(

1
𝑀

∑𝑀
𝑣=1 𝑒

− 𝛾sub
𝑣,𝑘
𝜆

)
< 𝑇𝑖

⎞
⎠

×
Pr

(
𝛾1,𝑘<𝑇𝑖−1, 𝑇𝑖−1≤−𝜆 ln

(
1
𝑀

∑𝑀
𝑣=1 𝑒

− 𝛾sub
𝑣,𝑘
𝜆

)
<𝑇𝑖

)

Pr

(
𝑇𝑖−1 ≤ −𝜆 ln

(
1
𝑀

∑𝑀
𝑣=1 𝑒

− 𝛾sub
𝑣,𝑘
𝜆

)
< 𝑇𝑖

) .

(30)

We observe that the event ℐ𝑘 = {1, . . . ,𝑀} is weakly
dependent on the event 𝛾1,𝑘 < 𝑇𝑖−1. This is because the event
𝛾1,𝑘 < 𝑇𝑖−1 primarily affects the probability that subband
1 is selected. Further, 𝑀𝑞 − 1 other PRBs also affect ℐ𝑘.
Neglecting 𝛾1,𝑘 < 𝑇𝑖−1 in the numerator and simplifying gives

𝜓𝑘≈
Pr

(
𝛾1,𝑘<𝑇𝑖−1, 𝑇𝑖−1≤−𝜆 ln

(
1
𝑀

∑𝑀
𝑣=1 𝑒

−𝛾sub
𝑣,𝑘
𝜆

)
<𝑇𝑖

)

Pr

(
𝑇𝑖−1 ≤ −𝜆 ln

(
1
𝑀

∑𝑀
𝑣=1 𝑒

−𝛾sub
𝑣,𝑘
𝜆

)
< 𝑇𝑖

) .

(31)

From (2) and (3), we have −𝜆 ln
(

1
𝑀

∑𝑀
𝑣=1 𝑒

−𝛾sub
𝑣,𝑘
𝜆

)
=

−𝜆 ln
(

1
𝑀𝑞

∑𝑀𝑞
𝑣=2 𝑒

− 𝛾𝑣,𝑘
𝜆 + 𝑒−

𝛾1,𝑘
𝜆

𝑀𝑞

)
, which is the EESM of

𝑀𝑞 PRB SNRs, one of which is 𝛾1,𝑘. Further, from (10),
𝛾1,𝑘 = 𝑎𝑋𝜏 + 𝑏, where 𝑎, 𝑏, and 𝜏 depend on the multiple
antenna mode. Upon writing the numerator of (31) in terms
of PDF of the Chi-square RV 𝑋𝜏 (given in (9)), we get

Pr

⎛
⎝ 𝛾1,𝑘 < 𝑇𝑖−1, 𝑇𝑖−1 ≤

−𝜆 ln
(

1
𝑀𝑞

∑𝑀𝑞−1
𝑣=1 𝑒−

𝛾𝑣,𝑘
𝜆 + 𝑒−

𝑎𝑋𝜏+𝑏
𝜆

𝑀𝑞

)
< 𝑇𝑖

⎞
⎠

=

∫ 𝑇𝑖−1−𝑏

𝑎

− 𝑏
𝑎

𝑦
𝜏
2 −1𝑒−

𝑦
2

(2)
𝜏
2

(
𝜏
2 − 1

)
!
Pr

(
𝜁𝑀

(
𝑇𝑖−1,

𝑦 − 𝑏

𝑎

)
≤

− 𝜆 ln

(
1

𝑀𝑞

𝑀𝑞−1∑
𝑣=1

𝑒−
𝛾𝑣,𝑘
𝜆 +

𝑒−
𝑦−𝑏
𝑎𝜆

𝑀𝑞

)
<𝜁𝑀 (𝑇𝑖, 𝑦)

)
𝑑𝑦,

where 𝜁𝑀 (⋅, ⋅) is given in the claim statement. It
follows because, given that 𝛾𝑛,𝑘 = 𝑦, the term
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−𝜆 ln
(

1
𝑀𝑞

∑𝑀𝑞−1
𝑣=1 𝑒−

𝛾𝑣,𝑘
𝜆 + 𝑒−

𝑦
𝜆

𝑀𝑞

)
must lie between

−𝜆 ln
(

𝑀𝑞−1+𝑒−
𝑦−𝑏
𝑎𝜆

𝑀𝑞

)
and 𝑦−𝑏

𝑎 + 𝜆 ln(𝑀𝑞).

Rearranging the terms and opening up the integrand in the
numerator, simplifies the numerator to

∫ 𝑇𝑖−1−𝑏

𝑎

− 𝑏
𝑎

𝑦
𝜏
2 −1𝑒−

𝑦
2

(2)
𝜏
2

(
𝜏
2 − 1

)
!

×

⎡
⎢⎢⎣Pr

⎛
⎜⎜⎝
−𝜆 ln

(
1

𝑀𝑞−1

∑𝑀𝑞−1
𝑣=1 𝑒−

𝛾𝑣,𝑘
𝜆

)
<

−𝜆 ln
(

𝑀𝑞𝑒−
𝜁𝑀 (𝑇𝑖,

𝑦−𝑏
𝑎

)

𝜆 −𝑒−
𝑦−𝑏
𝑎𝜆

𝑀𝑞−1

)
⎞
⎟⎟⎠

−Pr

⎛
⎜⎜⎝
−𝜆 ln

(
1

𝑀𝑞−1

∑𝑀𝑞−1
𝑣=1 𝑒−

𝛾𝑣,𝑘
𝜆

)
≤

−𝜆 ln
(

𝑀𝑞𝑒−
𝜁𝑀 (𝑇𝑖−1,

𝑦−𝑏
𝑎

)

𝜆 −𝑒−
𝑦−𝑏
𝑎𝜆

𝑀𝑞−1

)
⎞
⎟⎟⎠
⎤
⎥⎥⎦ 𝑑𝑦.

The above two probabilities can be written in terms of the
Gaussian 𝑄(.) function since −𝜆 ln

(
1

𝑀𝑞−1

∑𝑀𝑞−1
𝑣=1 𝑒−

𝛾𝑣,𝑘
𝜆

)
,

which is the effective SNR over 𝑀𝑞 − 1 PRB SNRs, is
a lognormal RV with parameters 𝜇

(𝑀𝑞−1)
𝑘 and Ω

(𝑀𝑞−1)
𝑘 .

Similarly, we use the lognormal model for EESM to simplify
the denominator of (31) as well. Combining these gives the
required result.

C. Proof of Result 1

Since the SNRs of different PRBs of a UE are i.i.d., the
probability that a UE selects the subband 𝑠(𝑛) is 𝑀

𝑆 . Hence,

Pr
(𝒵𝑠(𝑛)

)
=

(
𝑀
𝑆

)∣𝒵𝑠(𝑛)∣ (1− 𝑀
𝑆

)(𝐾−∣𝒵𝑠(𝑛)∣). A rate 𝑟𝑖 is
achieved if the UE that is selected for the PRB fed back a
CQI value equal to 𝑟𝑖 and there was no outage. The probability
that the 𝑘th UE gets selected, given that it fed back the rate
𝑟𝑖, is

∏
𝑙∈𝒵𝑠(𝑛)

𝑙 ∕=𝑘

Pr
(
𝐶bestM
𝑙 ≤ 𝜗𝑙,𝑖

)
. This is because the 𝑘th UE

is selected only if 𝐶bestM
𝑙 <

𝔼[𝐶bestM
𝑙 ]

𝔼[𝐶bestM
𝑘 ]

𝑟𝑖, for 𝑙 ∕= 𝑘.8 The law of

total expectation then yields (17).

D. Proof of Result 2

A rate 𝑟𝑖 is achieved if the UE, say the 𝑘th UE, that
is selected for the PRB fed back a CQI value equal to 𝑟𝑖
and there was no outage. This results in the expression for
the average throughput in (20), where the probability that
the 𝑘th UE gets selected given that it fed back the rate 𝑟𝑖
is
∏𝐾

𝑙=1
𝑙 ∕=𝑘

Pr
(
𝐶sub
𝑠(𝑛),𝑙 ≤ 𝜗𝑙,𝑖

)
. This is because the 𝑘th UE is

selected only if 𝐶sub
𝑠(𝑛),𝑙 <

𝔼[𝐶sub
𝑠(𝑛),𝑙]

𝔼

[
𝐶sub

𝑠(𝑛),𝑘

]𝑟𝑖, for all 𝑙 ∕= 𝑘.
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8The equality case 𝐶bestM
𝑙 =

𝔼[𝐶bestM
𝑙 ]

𝔼[𝐶bestM
𝑘 ]

𝑟𝑖 need not be considered as it

occurs with zero probability in a random deployment of UEs.
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