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Abstract—In contemporary wideband orthogonal frequency
division multiplexing (OFDM) systems, such as Long Term
Evolution (LTE) and WiMAX, different subcarriers over which a
codeword is transmitted may experience different signal-to-noise-
ratios (SNRs). Thus, adaptive modulation and coding (AMC)
in these systems is driven by a vector of subcarrier SNRs
experienced by the codeword, and is more involved. Exponential
effective SNR mapping (EESM) simplifies the problem by map-
ping this vector into a single equivalent flat-fading SNR. Analysis
of AMC using EESM is challenging owing to its non-linear nature
and its dependence on the modulation and coding scheme. We
first propose a novel statistical model for the EESM, which is
based on the Beta distribution. It is motivated by the central
limit approximation for random variables with a finite support.
It is simpler and as accurate as the more involved ad hoc models
proposed earlier. Using it, we develop novel expressions for the
throughput of a point-to-point OFDM link with multi-antenna
diversity that uses EESM for AMC. We then analyze a general,
multi-cell OFDM deployment with co-channel interference for
various frequency-domain schedulers. Extensive results based on
LTE and WiMAX are presented to verify the model and analysis,
and gain new insights.

Index Terms—Orthogonal frequency division multiplexing
(OFDM), adaptive modulation and coding, exponential effective
SNR mapping (EESM), scheduling, cell throughput, co-channel
interference, beta distribution.

I. INTRODUCTION

H IGH data rate requirements coupled with scarcity of
the spectrum have driven the quest for techniques that

improve spectral efficiency. One important technique for doing
so is adaptive modulation and coding (AMC). In it, the trans-
mitter chooses its modulation and coding scheme (MCS) from
a finite set of MCSs depending on the channel conditions while
satisfying a constraint on the probability of error. AMC is an
integral part of current and next generation wireless systems
such as Long Term Evolution (LTE) and IEEE 802.16e/m
WiMAX. These systems are wideband in nature and use
orthogonal frequency division multiplexing (OFDM).

In a practical OFDM system, however, AMC is not done
on a per-subcarrier basis because of its significant feedback
and control signaling overhead. Instead, the same MCS is
used on all the subcarriers assigned to a user. Due to the
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frequency-selective nature of the wideband channel, the signal-
to-noise-ratios (SNRs) of these subcarriers can be different.
These subcarriers can even span multiple coherence band-
widths. Thus, the MCS chosen is a function of a vector of
subcarrier SNRs. In principle, this requires an unwieldy multi-
dimensional lookup table to map the vector of SNRs to the
MCS, which is cumbersome to generate and store, and is
seldom used [1]. Therefore, link quality metrics (LQMs) have
been proposed to simplify this problem and make it similar
to AMC over narrowband channels, in which a simple, one-
dimensional lookup table suffices [2, Chap. 9].

A popular and accurate LQM is exponential effective SNR
mapping (EESM) [3]. It maps the vector of subcarrier SNRs
seen by the codeword into an effective SNR. If γi denotes the
SNR of the ith subcarrier, for 1 ≤ i ≤ Nsc, then the effective
SNR using EESM γ

(m)
eff for MCS m when transmitted over

these Nsc subcarriers is defined as

γ
(m)
eff = −βm ln

(
1

Nsc

Nsc∑
i=1

exp

(
− γi
βm

))
, (1)

where βm > 0 is an MCS-dependent scaling parameter.
γ
(m)
eff is the equivalent SNR in an additive white Gaussian

noise (AWGN) channel for MCS m that results in the same
block error rate (BLER) as the vector channel with SNRs
γ1, γ2, . . . , γNsc . For binary phase shift keying (βm = 1) and
quadrature phase shift keying (βm = 2), the above expression
can be derived by equating the BLERs in a vector channel and
an AWGN channel [3], [4]. This intuition is then extended to
a general MCS by introducing the MCS-dependent parameter
βm, which is determined empirically to give a good fit. Several
studies have validated the accuracy of EESM [3]–[5].

Besides its use in AMC, EESM is a powerful tool that is
used for physical layer (PHY) abstraction in OFDM system-
level simulations in LTE and WiMAX [6], [7]. It is also used in
the real-time operation of cellular systems to generate channel
quality indicators (CQIs) [8], which are fed back to the base
station (BS) for enabling link adaptation and scheduling.

However, as can be seen from (1), EESM is a non-linear
function of the subcarrier SNRs. No exact closed-form ex-
pression for its statistics is known. Thus, ad hoc distributions
have been used in the literature to approximately characterize
its statistics [8], [9]. Another critical issue with EESM is
that the scaling parameter βm is quite different for different
MCSs [10]. Thus, AMC using EESM involves computing
several effective SNRs, one for each MCS, and then selecting
the MCS using all of them. Consequently, even EESM-based
AMC is more involved than AMC in a narrowband system,
and is the focus of this paper.

1536-1276/14$31.00 c© 2014 IEEE
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A. Contributions

Our objective is to analyze the throughput of EESM-
based AMC that is done over a group of frequency-selective
subcarriers. To this end, we first present a novel statistical
model for EESM, in which the term 1

Nsc

∑Nsc

i=1 e
− γi

βm inside
the logarithm in (1), which lies between 0 and 1, is modeled
as a Beta random variable (RV). The choice of the Beta
distribution, which has a compact support, is motivated by the
central limit approximation for RVs with finite support [11],
[12, Chap. 11]. We show that its accuracy is better than that of
the lognormal and Gaussian models considered in [8] and [9],
respectively, and is comparable to the more involved Pearson
and generalized extreme value (GEV) distributions [9], which
require evaluating more parameters. Secondly, we derive sim-
ple closed-form expressions for the moments of the Beta RV
for both independent and correlated subcarriers, and different
antenna modes. This is unlike the EESM moments that are
required by the lognormal, GEV, and Pearson models, the ex-
pressions for which are either very involved or intractable [9].

The proposed model then leads to novel, closed-form
expressions for the throughput of AMC in a point-to-point
OFDM link. We present an upper bound and an approximation
for it, which are verified to be tight. The analysis covers
different multiple antenna diversity modes and easily accounts
for the correlation among subcarriers.

We then generalize the analysis to cover the multi-cell,
multi-user scenario with OFDM. Our model incorporates
AMC, rate index feedback, frequency-domain schedulers,
multiple antenna diversity, and co-channel interference. Three
different schedulers, namely round robin (RR), greedy, and
modified proportional fair (MPF) [13], which cover a wide
range of the trade-off between user fairness and cell through-
put, are analyzed.

B. Literature on AMC in OFDM

A comprehensive survey of subcarrier-level link adaptation
in OFDM, which is also referred to as bit and power loading, is
given in [14, Chap. 11]. Instead, we focus on adaptation over
a group of subcarriers, which see minor or large variations
in channel gains, and is based on LQMs. A generic approach
to optimal link adaptation using LQMs subject to a BLER
constraint is given in [15], and its throughput with different
LQMs has been studied in [1], [15]–[17], but exclusively
through simulations. The approaches pursued in [1], [15], [16]
can also be considered as providing bounds on the throughput.
However, these approaches do not beget analytical expressions
for the bounds.

To the best of our knowledge, ours is the first compre-
hensive analysis of EESM-based AMC in OFDM systems.
While [8] considers EESM enabled rate index feedback and
frequency-domain scheduling, it does not consider co-channel
interference and uses a sub-optimal AMC scheme. A het-
erogeneous multi-cell orthogonal frequency division multiple
access (OFDMA) system with partial feedback and continuous
rate adaptation is considered in [18]. However, the channel
is assumed to be flat over a resource block, which is the
basic feedback and scheduling unit, and its real-valued and
continuous signal-to-interference-plus-noise ratio (SINR) is

assumed to be fed back and not the rate. While [19] also
considers EESM for cellular network design, its basic model
and goal is different from ours, and rate adaptation, feedback,
scheduling, and multiple antenna diversity are not modeled.

We note that besides EESM, several other LQMs have been
investigated [5], [20]. We focus on EESM because it has
a relatively simpler definition than mutual information-based
LQMs, in which a piecewise polynomial approximation or
numerical integration is required, and is only marginally less
accurate by a fraction of a dB [20]. Thus, EESM strikes a
good balance between the complexity required to compute it
and the accuracy of the BLER estimate obtained from it.

The paper is organized as follows. The point-to-point link
system model is described in Section II. A novel statistical
model for EESM is developed in Section III. The throughput
analysis is presented in Section IV. The multi-cell scenario
with scheduling is analyzed in Section V. Our conclusions
follow in Section VI.

II. SYSTEM MODEL: POINT-TO-POINT LINK

We first consider a point-to-point OFDM link where the
transmitted codeword is encoded across Nsc subcarriers. The
receiver selects an MCS based on the SNRs of these sub-
carriers and feeds it back to the transmitter using a feedback
channel. The feedback is assumed to be error-free and the
feedback delay is assumed to be negligible [1], [8], [10],
[16], [18]. The transmitter then uses the reported MCS for
transmission.

Let hi(k, l) denote the complex baseband channel gain
between the lth transmit antenna and the kth receive antenna
of the ith subcarrier. The complex channel gains are identically
distributed and are circularly symmetric complex Gaussian
RVs with unit variance, which models Rayleigh fading [2].
The channel gains between different transmit-receive (Tx-Rx)
antenna pairs are assumed to be independent, i.e., hi(k, l) is
independent of hj(m,n) if k �= m or l �= n, for any i and j,
which is valid when the antennas are sufficiently spaced apart
in a rich scattering environment. Let Hi denote the Nr ×Nt

channel matrix of the ith subcarrier with hi(k, l) as the (k, l)th

element. Here, Nr and Nt denote the number of receive and
transmit antennas, respectively.

Let σ2 denote the average SNR of a Tx-Rx link and γi
denote the SNR of the ith subcarrier, for 1 ≤ i ≤ Nsc. For
single-input-single-output (SISO) with Nt = Nr = 1, γi =
σ2|hi(1, 1)|2. For single-input-multiple-output (SIMO) with
Nt = 1, Nr > 1, and maximal ratio combining (MRC), γi =
σ2
∑Nr

k=1 |hi(k, 1)|2. Similarly, for closed-loop multiple-input-
single-output (MISO) with Nt > 1, Nr = 1, and maximal
ratio transmission (MRT), γi = σ2

∑Nt

l=1 |hi(1, l)|2. For sin-
gle stream Nr × Nt multiple-imput-multiple-output (MIMO)
diversity transmission, γi = σ2λ2

i , where λi is the largest
singular value of the matrix Hi. Let Γ = [γ1, γ2, . . . , γNsc ]
denote the vector of subcarrier SNRs.

Let Ω denote the set of L MCSs used for AMC. The
information rate of MCS m is denoted by rm and the
MCSs are indexed in the increasing order of their rates,
i.e., r1 ≤ r2 ≤ · · · ≤ rL. The effective SNR for MCS m
is denoted by γ

(m)
eff and the corresponding MCS-dependent
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scaling parameter by βm. Let mopt denote the selected MCS
and let BLERt denote the maximum allowable block error
rate. BLER (Γ,m) denotes the BLER of MCS m when it is
transmitted over Nsc subcarriers whose SNRs are given by Γ.

A. Optimal AMC Using EESM

In order to maximize the average throughput, the optimal
MCS is chosen as a function of Γ as follows:

argmax
m∈Ω

rm, (2)

s. t. BLER (Γ,m) ≤ BLERt. (3)

By the definition of EESM, we have

BLER(Γ,m) ≈ BLERAWGN

(
γ
(m)
eff ,m

)
, (4)

where BLERAWGN (·,m) denotes the BLER in an AWGN
channel for MCS m. This is an approximation and not an
equality because EESM can occasionally predict an incorrect
BLER. Such errors are inherent in all LQMs because they
map Nsc gains into a single number. This error probability is
among the lowest for EESM [3], [5], [15]. For tractability, we
assume it to be negligible. Therefore, this approximation is
assumed to be exact henceforth.

Thus, using EESM, the BLER constraint in (3) can be
mapped to a constraint on the effective SNR as follows. Let
Tm denote the lowest SNR at which the BLER in the AWGN
channel using MCS m is BLERt:

BLERAWGN (Tm,m) = BLERt, m = 1, . . . , L. (5)

Thus, the BLER constraint is equivalent to requiring that the
effective SNR of MCS m be greater than or equal to Tm.
Since the BLER in an AWGN channel is a continuous and
strictly decreasing function of the SNR, the intermediate value
theorem guarantees a unique solution for Tm.

The optimal AMC scheme is now driven by the thresholds
T1, T2, . . . , TL, and proceeds as follows. It chooses the highest
rate MCS if its effective SNR is greater than or equal to TL,
i.e., γ(L)

eff ≥ TL. Else, the scheme moves to the next highest
MCS, and so on. If γ

(i)
eff < Ti, for all i = 1, . . . , L, then no

data transmission takes place and is indexed by MCS 0. Here,
the subcarrier SNRs are so low that the BLER of all the MCSs
exceeds BLERt. Note that given the sequential nature of the
search, no tie between different MCSs occurs.

Note: An alternate AMC formulation is to maximize the
goodput [21]. A sufficient condition for the two formulations
to be equivalent is: BLERt ≤ min

m1,m2∈Ω

{
1− rm1

rm2

}
, where

rm1 < rm2 [16]. Further, if the BLER waterfall curves in an
AWGN channel can be approximated by a step function, then
again the two formulations are equivalent.

B. Notations

Let In and 0n denote the n × n identity matrix and zero
matrix, respectively. The determinant of a matrix A is denoted
by det(A) and its transpose by AT . The matrix diag(v)
denotes a diagonal matrix with elements of the vector v as its

diagonal elements. Let

[
0, . . . , 0, s

(i)
, 0, . . . , 0

]
denote a vector

whose ith element is s and all other elements are 0. Let Re(c),
Im(c), and c∗ respectively denote the real part, the imaginary
part, and the complex conjugate of the complex number c. Let
E [X ] and var(X) denote the expectation and variance of the
RV X , respectively.

III. STATISTICAL MODEL FOR EESM

In order to analyze the performance of EESM-based AMC,
a statistical model for EESM is required. Since no closed-form
expression for the distribution of EESM is available owing to
its non-linear nature, we first present a novel and tractable
approximation for it.

Let Ym = 1
Nsc

∑Nsc

i=1 e
− γi

βm . Notice that e−
γi
βm ∈ [0, 1].

Thus, Ym ∈ [0, 1] is an average of Nsc positive RVs with
finite support. For independent subcarriers, the strong law of
large numbers suggests that Ym is a constant. However, for
values of Nsc that are of practical interest, this turns out to
be inadequate. Another approach, which is motivated by the
central limit theorem, is to approximate Ym scaled by

√
Nsc

as a Gaussian RV [9]. However, Ym ∈ [0, 1], while a Gaussian
RV has a support of (−∞,∞); as we shall see, the Gaussian
model is quite inaccurate.

We propose a new statistical model for EESM that is
motivated by the central limit approximation, in which the
sum of i.i.d. RVs with finite support is approximated by a
Beta distribution [12, Chap. 11]. Thus, we model the RV
Ym = 1

Nsc

∑Nsc

i=1 e
− γi

βm as a Beta RV.
Let Zm denote a Beta distributed RV with parameters am

and bm. Then, its probability density function (PDF) is given
by

fZm(z) =
z(am−1)(1 − z)(bm−1)

B(am, bm)
, 0 ≤ z ≤ 1, (6)

where B(·, ·) is the Beta function and its cumulative distri-
bution function (CDF) is given by FZm(z) = Bi (z, am, bm),
0 ≤ z ≤ 1, where Bi (·, ·, ·) is the incomplete Beta func-
tion [22]. The parameters am and bm can be expressed in
terms of the mean and variance of Zm as

am =
E [Zm]

(
E [Zm]− E [Zm]

2 − var(Zm)
)

var(Zm)
, (7)

bm =
(1− E [Zm])

(
E [Zm]− E [Zm]

2 − var(Zm)
)

var(Zm)
. (8)

The moment-matching method matches E [Zm] and
var(Zm) with the mean μm and variance vm of Ym in order
to determine am and bm. From (1), the CDF of γ(m)

eff , denoted
by F

γ
(m)
eff

(x), can be written in terms of the PDF of Ym as

P
(
Ym ≥ e−

x
βm

)
. Using the proposed Beta approximation for

Ym, it is approximately given by

F
γ
(m)
eff

(x) ≈ 1−Bi

(
e−

x
βm , am, bm

)
, x ≥ 0. (9)

Notice that we approximate the term inside the logarithm
as a Beta RV. Our approach differs from the approaches
used in [8], [9], which attempt to directly approximate the
distribution of EESM itself. A key advantage of our approach
is that it enables a closed-form computation of the moments,
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as we shall see next. It is unlike the lognormal, Pearson, and
GEV distributions that use EESM moments, the analytical ex-
pressions for which are either very involved or intractable [9].

A. Closed-form Expressions for the Mean and Variance of Ym

We see from (7) and (8) that the Beta distribution is
fully specified in terms of its mean and variance. We now
derive closed-form expressions for these for different antenna
modes. We consider the cases where the subcarrier SNRs
are independent and when they are correlated. The former
scenario is simpler and insightful, and occurs when the sub-
carrier bandwidth is close to the coherence bandwidth of the
channel. It also arises if the subcarriers are noncontiguous,
as in the full usage of subchannels (FUSC) or partial usage
of subchannels (PUSC) modes of WiMAX. Otherwise, the
subcarrier SNRs are correlated. This scenario often occurs
in LTE and in the Band AMC mode of WiMAX, in which
contiguous subcarriers are allotted to a user.

1) Independent Subcarriers: We first state the following
general result.

Result 1: The mean and variance of Ym, when each sub-
carrier SNR γi is a Chi-square RV with τ degrees of freedom
and mean cτ , are given by

μm =
(
1 + 2cβ−1

m

)− τ
2 , (10)

vm =
1

Nsc

[(
1 + 4cβ−1

m

)− τ
2 − (

1 + 2cβ−1
m

)−τ
]
. (11)

Proof: The proof is relegated to Appendix A.
The mean and variance of the RV Ym depend on the antenna

mode through c and τ , and can be evaluated as follows. For
SISO, c = σ2

2 and τ = 2. For SIMO with MRC, c = σ2

2

and τ = 2Nr. Similarly, for MISO with MRT, c = σ2

2 and
τ = 2Nt. For MISO with the Alamouti space-time code, c =
σ2

4 and τ = 4 [2]. For single stream MIMO, γi is the square
of the largest singular value of the matrix Hi, and is not a
Chi-square RV. We state the result for 2× 2 MIMO here.1

Result 2: The mean and variance of the RV Ym for single
stream 2× 2 MIMO are given by

μm =
2βm

(
β2
m + σ4 + βmσ2

)
(βm + σ2)

3 − 2βm

2βm + σ2
, (12)

vm =
1

Nsc

[
2βm

(
β2
m + 4σ4 + 2βmσ2

)
(βm + 2σ2)

3 − βm

βm + σ2
− μ2

m

]
.

(13)

Proof: The proof is relegated to Appendix B.
2) Correlated Subcarriers: In this scenario, the channel

gains of any two subcarriers for the same transmit-receive
antenna pair are correlated. In general, the channel gain
vector hkl = [h1(k, l), . . . , hNsc(k, l)]

T is modeled as a
circularly symmetric complex Gaussian random vector with
covariance matrix C, whose (i,j)th element is given by
Cij = E [hi(k, l)hj(k, l)

∗].
We state the following general result.

1The moment generating function (MGF) of γi for the general case is
derived in [23]. Then, the mean and variance of Ym can be obtained using (28)
and (29), respectively, in Appendix A. We do not state the results here as they
are quite involved.

Result 3: The mean and variance of Ym with correlated
subcarriers, for SISO (Nt = Nr = 1), MISO (Nt > 1, Nr =
1), and SIMO (Nt = 1, Nr > 1) are given by

μm = det
(
I2Nsc − 2σ2KP(m)

)−max(Nt,Nr)
2

, (14)

vm =
1

Nsc
2

Nsc∑
i=1

Nsc∑
j=1

det
(
I2Nsc − 2σ2KQ

(m)
ij

)−max(Nt,Nr)
2 − μ2

m,

(15)

where P(m) =

[
R(m) 0Nsc

0Nsc R(m)

]
, Q

(m)
ij =

[
S
(m)
ij 0Nsc

0Nsc S
(m)
ij

]
,

R(m) = diag
([−β−1

m , 0, . . . , 0
])

, K = 1
2

[
Re(C) −Im(C)
Im(C) Re(C)

]
,

S
(m)
ij = diag

([
0, . . . , 0,−β−1

m
(i)

, 0, . . . , 0,−β−1
m

(j)

, 0, . . . , 0

])
,

for i �= j, and S
(m)
ii = diag

([
0, . . . , 0,−2β−1

m
(i)

, 0, . . . , 0

])
.

Proof: The proof is relegated to Appendix C.
MISO with the Alamouti space-time code is equivalent to

closed-loop MISO with half the transmit power [2]. Therefore,
the mean and variance expressions for the Alamouti space-
time code follow from (14) and (15), with K replaced by K

2 .
For single stream Nr × Nt MIMO, no result on the joint

distribution of correlated singular values is available to the
best of our knowledge when the component channel gains are
correlated. Therefore, we use the Monte Carlo method to find
the mean and variance [24]. In it, empirical moments are used
to approximate actual moments. The key advantage of this
method is that the approximation error decreases as O(

√
W ),

where W is the sample size [24]. It has also been extensively
used elsewhere in the literature [8], [25]. In our problem, W
samples of the channel matrix Hi with the required correlation
across the subcarriers are generated. From these, W samples
of the largest singular value are obtained, and are then used
to compute the empirical moments of Ym. Note that this is a
one-time task, and the same samples can be used for finding
in parallel the moments of Ym for different MCSs.

B. Error Analysis of the Beta Approximation

We now derive an expression for the error in the Beta
approximation as an infinite series in terms of the higher order
moments of Ym. First, we define an alternative form of the
Jacobi polynomial as [26]

Gn(am, bm, x) = n!
Γ(n+ am + bm − 1)

Γ(2n+ am + bm − 1)

× Jn(bm − 1, am − 1, 2x− 1), 0 < x < 1, (16)

where Γ(·) is the Gamma function and Jn(a, b, ·) is the
standard Jacobi polynomial of order n with parameters a
and b [22]. Then, the approximation error ε(x) = fYm(x) −
fZm(x), as shown in Appendix D, is given by

ε(x) = fZm(x)

∞∑
k=1

ckGk(am, bm, x), (17)

where ck = (2k+am+bm−1)Γ(2k+am+bm−1)2B(am,bm)
k!Γ(k+am)Γ(k+am+bm−1)Γ(k+bm)

×E [Gk(am, bm, Ym)]. Note that Gk(am, bm, x) is a kth
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Fig. 1. Comparison of CDF and CCDF of EESM with the proposed Beta
distribution-based model for different numbers of independent subcarriers
(σ2 = 10 dB, βm = 5, and τ = 2).

order polynomial. Hence, the higher order moments of Ym

required to evaluate E [Gk(am, bm, Ym)] can be obtained
from the MGF results in Appendix A for independent
subcarriers, and in Appendix C for correlated subcarriers.

C. Empirical Verification of the Proposed Beta Model

In order to assess the accuracy, we compare the CDF and
complementary CDF (CCDF) of the proposed distribution
approximation with the empirical CDF and CCDF, as has
also been done in other wireless modeling problems [8], [27],
[28]. The CDF captures the accuracy of the fit for low values
of γ

(m)
eff . However, it saturates to 1 for large γ

(m)
eff values

for any distribution. In this regime, comparing the CCDF
is more instructive. An alternate way to assess the accuracy
is using Kullback-Leibler (KL) divergence; the smaller its
value, the better the accuracy. The KL divergences for the
proposed Beta model, Gaussian, lognormal, GEV, and Pearson
are 16 × 10−4, 43 × 10−4, 22 × 10−4, 18 × 10−4, 7 × 10−4,
respectively, for Nsc = 12, and 8 × 10−4, 21 × 10−4, 11 ×
10−4, 35 × 10−4, 5 × 10−4 for Nsc = 24, respectively, for
independent subcarriers. Notice that the KL divergence for
the proposed Beta distribution is less than the Gaussian,
lognormal, and GEV distributions and is comparable to the
Pearson distribution. Further, it decreases as Nsc increases.2

1) Independent Subcarriers: Figure 1 compares the empir-
ical CDF and CCDF with those for the proposed Beta, and
Gaussian models, for τ = 2 (SISO). We observe that the Beta
model is quite accurate up to three orders of magnitude even
for Nsc = 4. Its accuracy improves as Nsc increases. It works
better than the Gaussian model. Further, the Gaussian CCDF
saturates for high values of γ(m)

eff , which correspond to small
values of Ym, as it assigns a non-zero probability to negative
values, which Ym cannot take.

Figure 2 compares the CDFs of the different approxima-
tions. A zoomed-in plot is shown in order to make the curves
discernible. The parameters for the GEV, Pearson, and lognor-
mal distributions are obtained by moment-matching, and the

2We have observed that none of the distributions proposed in the literature,
including ours, pass the goodness-of-fit tests such as Kolmogorov-Smirnov
(KS) and Chi-square tests [29]. We, therefore, do not compare the distributions
on the basis of these tests.
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moments are obtained by the Monte Carlo method [24]. We
see that the proposed Beta model, despite its simpler form,
is as accurate as the GEV and Pearson distributions, and is
more accurate than the lognormal and Gaussian models. The
accuracy in matching the CCDF is similar.

2) Correlated Subcarriers: In order to study the effect of
correlation, we set Cij = ρ|i−j|, for 0 < ρ < 1 [8]. Thus, ρ
close to 1 implies highly correlated subcarriers, while ρ close
to 0 implies uncorrelated subcarriers. Figure 3 compares the
CDFs of the different models for ρ = 0.4 and τ = 4 (1 × 2
SIMO). The proposed model tracks the empirical CDF well,
and its accuracy is again comparable to the more involved
GEV and Pearson distributions.

IV. THROUGHPUT ANALYSIS USING BETA MODEL

We now analyze the throughput of the optimal AMC scheme
described in Section II-A. The average throughput R equals

R =

L∑
m=1

rm Pr{mopt = m}. (18)

The AMC scheme chooses MCS m if its effective SNR
exceeds Tm, and the effective SNRs for the higher rate MCSs
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are below their corresponding thresholds. Thus,

Pr{mopt = m} = P
(
γ
(m)
eff ≥ Tm, γ

(m+1)
eff < Tm+1, . . . ,

γ
(L)
eff < TL

)
. (19)

Hence, to compute (19), the (L − m + 1)-dimensional joint

distribution of the effective SNRs
{
γ
(m)
eff , γ

(m+1)
eff , . . . , γ

(L)
eff

}
is needed. However, even with independent subcarriers, the
effective SNRs of different MCSs are correlated, since they
are obtained from the same vector Γ, but with different βm.
No closed-form result is available for their joint distribution.
We circumvent this problem by coming up with a novel upper
bound and an approximation. Before stating the final results,
we state the following lemma, which we shall refer to as the
ordering property of EESM.

Lemma 1: γeff = −β ln
(

1
Nsc

∑Nsc

i=1 e
− γi

β

)
is an increasing

function of β, except when γ1 = γ2 = · · · = γNsc = γ, in
which case γeff = γ and γeff is not a function of β.

Proof: The proof is relegated to Appendix E.
The MCSs used for WiMAX along with the βm parameters

and SNR thresholds are given in Table I. The corresponding
parameters for LTE are given in [10, Tbl. I]. In both tables, we
see that as rm increases, βm also increases. Thus, for every
Γ, the EESM is larger for a higher rate MCS.

Result 4: The average throughput is upper bounded as
follows:

R ≤
L−1∑
m=1

rm min

{
Bi

(
e−

Tm
βm , am, bm

)

−Bi

(
e−

Tm+1
βm , am, bm

)
, Bi

(
e
− Tm

βm+1 , am+1, bm+1

)

−Bi

(
e
−Tm+1

βm+1 , am+1, bm+1

)}
+ rLBi

(
e
−TL

βL , aL, bL

)
.

(20)

Furthermore, R is approximately given by

R ≈ rLBi

(
e
−TL

βL , aL, bL

)
+

L−1∑
m=1

rm

[
Bi

(
e−

Tm
βm , am, bm

)

−Bi

(
e
−Tm+1

βm+1 , am+1, bm+1

)]
. (21)

Proof: The derivation is relegated to Appendix F.
Note that both the upper bound and the approximation only
require the marginal distribution of EESM. Hence, they can
be readily computed using the results in Section III.

A. Numerical Results

We now compare the analytical results with numerical
simulations. The maximum allowable block error rate BLERt

is 0.1 [30]. Results are shown for both LTE and WiMAX,
which use different sets of MCSs. The number of subcar-
riers Nsc is 24, which is equal to two physical resource
blocks (PRBs) in LTE or three bins in the Band AMC mode
of WiMAX (ignoring the pilot subcarriers). For SIMO, we use
Nr = 2, for MISO, we use Nt = 2, and for MIMO, we use
Nr = Nt = 2. We consider the typical urban (TU) channel,

TABLE I
βm VALUES AND SNR THRESHOLDS FOR MCSS SPECIFIED IN THE

WIMAX STANDARD (BLERt = 0.1)

Information SNR
Index Modulation Code rate rate rm βm threshold
(m) (bits/symbol) (dB)

1 QPSK 1/2 1.00 1.66 1.65
2 QPSK 3/4 1.50 1.75 4.77
3 16-QAM 1/2 2.00 9.58 8.40
4 16-QAM 3/4 3.00 9.60 11.54
5 64-QAM 2/3 4.00 40.50 16.79
6 64-QAM 3/4 4.50 41.00 17.51
7 64-QAM 5/6 5.00 41.50 18.89
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Fig. 4. LTE: Average throughput versus average SNR of a transmit-receive
antenna pair link (σ2) for the RA channel (Nsc = 24, BLERt = 0.1, BW =
5 MHz, and 512-point FFT).

whose root mean square (RMS) delay spread is 0.5 μs, and
the less-dispersive rural area (RA) channel, whose RMS delay
spread is 0.1 μs [31]. We use a 512-point FFT and the
bandwidth is 5 MHz. The sampling frequencies for LTE and
WiMAX are 7.68 MHz [6] and 5.6 MHz [7], respectively.

The throughput as a function of σ2 for different antenna di-
versity modes for LTE is plotted in Figures 4 and 5 for the RA
and TU channels, respectively. For WiMAX, the correspond-
ing plot for the TU channel is shown in Figure 6. Notice the
excellent match between the approximation and the simulation
curves for all the antenna modes for both LTE and WiMAX.
Further, the upper bound is reasonably tight in all the plots
and becomes tighter as we go from SISO to MIMO. The key
step in deriving the analytical expressions for the throughput
is to upper bound (19) with P

(
γ
(m)
eff ≥ Tm, γ

(m+1)
eff < Tm+1

)
(cf. (35)). Notice that this bivariate upper bound is exact for a
narrowband fading channel, where the subcarrier SNRs are all
equal. This also explains why the upper bound is tighter in the
less-dispersive RA channel plots in Figure 4 than in the TU
channel plots in Figure 5. In a wideband channel, however, one
cannot guarantee the exactness of this upper bound. However,
one expects it to be exact for most subcarrier gain realizations
because it is unlikely that a higher rate MCS is feasible when
a lower rate MCS is not. For example, in our simulations this
happened in less than 0.005% of the channel realizations.

The throughput as a function of Nsc for different antenna
modes for the RA channel, TU channel, and uncorrelated
subcarriers is plotted in Figure 7. Plots for the Alamouti
space-time code are skipped to avoid clutter. The throughput
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for SISO and SIMO decreases marginally as the number of
subcarriers increases. While the same behavior is observed
for single-stream MIMO for the TU and RA channels, its
throughput marginally increases as Nsc increases for uncor-
related subcarriers.

V. AMC IN MULTI-CELL, MULTI-USER SCENARIO WITH

SCHEDULING

We now analyze the downlink cell throughput of a multi-
cell system with co-channel interferers and frequency-domain
scheduling. As before, a codeword is encoded across Nsc

subcarriers. However, multiple users now contend for the same
Nsc subcarriers. Hence, a frequency-domain scheduler is used
at the BS to select the appropriate user. Based on the channel
power gains of the Nsc subcarriers, each user feeds back to the
BS the index of the highest rate MCS it can receive whose
BLER is below BLERt. The feedback is error-free and the
feedback delay is negligible. Full frequency reuse is assumed.

We consider a cell with K users and M neighboring BSs.
A BS transmits with power PS . Let x

(n)
0 denote the data

sent by the serving BS 0, x
(n)
j denote the data received

from the jth BS on the nth subcarrier, and let
√
α0kh

(n)
0k (l)

and
√
αjkh

(n)
jk (l) denote the corresponding complex channel

gains for the lth receive antenna. The small-scale fading term
h
(n)
jk (l) is a circularly symmetric complex Gaussian RV with
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Fig. 7. LTE: Zoomed-in view of average throughput versus the number of
contiguous subcarriers (SCs) for the TU and RA channels (BLERt = 0.1 and
σ2 = 10 dB). Simulation results are shown using markers ‘o’.

unit variance, which models Rayleigh fading. The lognormal
RV αjk models shadowing. Thus, αjk expressed in dB is a

Gaussian RV with mean −L0 − 10η log
(

djk

d0

)
and standard

deviation σshad, where L0 is the pathloss in dB at a reference
distance d0 from the BS, djk is the distance between user
k and BS j, and η is the pathloss exponent. Without loss of
generality, the average powers of x(n)

0 and x
(n)
j are normalized

to unity, and z
(n)
k (l) denotes white Gaussian noise with power

PN . Then, the received signal for the scheduled user k on the
nth subcarrier and the lth receive antenna is given by

y
(n)
k (l)=

√
PS

√
α0kh

(n)
0k (l)x

(n)
0 +

√
PS

M∑
j=1

√
αjkh

(n)
jk (l)x

(n)
j

+ z
(n)
k (l), l = 1, . . . , Nr. (22)

The complex channel gains of different receive antennas
h
(n)
jk (1), . . . , h

(n)
jk (Nr) are assumed to be independent, which

is valid if the receive antennas are sufficiently spaced apart
in a rich scattering environment [2]. The received SINR with
MRC for the kth user on the nth subcarrier γ(n)

k is given by

γ
(n)
k =

PSα0k

(∑Nr

l=1

∣∣∣h(n)
0k (l)

∣∣∣2)2

PS

∑M
j=1 αjk

∣∣∣∑Nr

l=1 h
(n)
0k (l)∗h(n)

jk (l)
∣∣∣2+ PN

∑Nr

l=1

∣∣∣h(n)
0k (l)

∣∣∣2 .
(23)

The analysis can be extended to the MISO and MIMO antenna
diversity modes using the corresponding SINR expressions.

We consider the following schedulers, which cover a wide
range of the fairness versus throughput trade-off:

a) Greedy Scheduler: It selects the user that reports the
highest rate. In case multiple users report the same highest
rate, one of them is chosen with equal probability. While
the greedy scheduler maximizes the throughput, it is unfair
because users closer to the BS get scheduled more often.

b) RR Scheduler: It selects users in a pre-determined periodic
manner. Each user is scheduled once within a period, mak-
ing the scheduler time-fair. However, it does not exploit
mult-user diversity.
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c) MPF Scheduler: It chooses the user that has the maximum
MPF metric, which is defined as the ratio of the rate
reported by the user to its fading-averaged value [13]. It
has been used in the literature for tractability [8], [13],
[32]. It achieves a compromise between maximizing the
cell throughput and ensuring user fairness, which is similar
to the PF scheduler [33].

A. Cell Throughput Analysis

1) Beta Model for EESM: As before, we model Ym,k =

1
Nsc

∑Nsc

n=1 e
−γ

(n)
k
βm as a Beta RV whose parameters are denoted

by am,k and bm,k. With co-channel interference, the joint

distribution of
{
γ
(1)
k , γ

(2)
k , . . . , γ

(Nsc)
k

}
is not known. Hence,

it is no longer possible to derive closed-form expressions for
the moments of Ym,k. Therefore, we use the aforementioned
Monte Carlo method to compute its moments. Note that
the Monte Carlo method only involves generating samples
of Ym,k, while a full system simulation further involves
simulating AMC, feedback of the MCS index, scheduler,
and transmission to the scheduled user with the reported
MCS. Thus, a full system simulation is more computationally
intensive and time consuming. As discussed in Section III-A2,
the approximation error in the Monte Carlo method decays as
O(

√
W ), where W is the sample size [24].

2) Cell Throughput: Let Ck denote the throughput of user
k. Since only one user is scheduled at any time, the cell
throughput is

∑K
k=1 Ck. Let Rk denote the rate reported by

user k and let k̃ denote the scheduled user. Then,

Ck =

L∑
i=1

riP (Rk = ri)P (k̃ = k|Rk = ri). (24)

The term P (Rk = ri) above is determined by the AMC
scheme. Specifically, using the approximation in (21), we
know that

P (Rk = ri)

≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1−Bi

(
e−

T1
β1 , a1,k, b1,k

)
, i = 0,

Bi

(
e
−Ti

βi , ai,k, bi,k

)
−Bi

(
e
−Ti+1

βi+1 , ai+1,k, bi+1,k

)
, 1 ≤ i < L,

Bi

(
e
−TL

βL , aL,k, bL,k

)
, i = L.

(25)

We now evaluate P (k̃ = k|Rk = ri), which depends on the
scheduler. The final expression for Ck then follows directly
from (24).

Result 5: The term P (k̃ = k|Rk = ri) for different
schedulers is as follows:

1) Greedy scheduler: It is given by (26) at the top of the
next page.

2) RR scheduler: P (k̃ = k|Rk = ri) =
1
K .

3) MPF scheduler: Let ilk be the index of the highest rate
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that is strictly less than ri
E[Rl]
E[Rk]

. Then,

P (k∗ = k|Rk = ri)

=

K∏
l=1
l �=k

[
1−Bi

(
e
−Tilk+1

βilk+1 , ailk+1,l, bilk+1,l

)]
. (27)

Proof: The proof is relegated to Appendix G.

B. Numerical Results

Given the large number of possible parameter combinations,
we illustrate a sampling of them to study the effect of different
antenna modes, schedulers, cell corner SNR, number of users
in the cell, and other system parameters. A hexagonal cellular
layout is considered with M = 6 first-tier interfering BSs.
The cell radius R is 10 d0. The kth user is placed at a radial
distance of k

KR from the serving BS and at an azimuth of
2πk
K . Such a user placement captures the interference variations

at different locations in a cell and the non-identical channels
seen by different users. Furthermore, Nsc = 24, η = 3.7, and
σshad = 8 dB.

The cell throughput for LTE as a function of the cell corner
SNR for K = 10 users per cell is plotted in Figure 8 for
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P (k∗ = k|Rk = ri) =

K−1∑
p=1

1

p+ 1

⎡
⎢⎢⎣

K∑
n1=1
n1 �=k

· · ·
K∑

np=np−1+1
np �=k

∏
q∈{n1,...,np}

[
Bi

(
e
−Ti

βi , ai,q, bi,q

)
−Bi

(
e
−Ti+1

βi+1 , ai+1,q, bi+1,q

)]

×
K∏

t=1,t�=k
t/∈{n1...,np}

[
1−Bi

(
e
−Ti

βi , ai,t, bi,t

)]⎤⎥⎥⎦+

K∏
l=1
l �=k

[
1−Bi

(
e
−Ti

βi , ai,l, , bi,l

)]
. (26)

the three schedulers and SISO. We see that the analysis and
simulations match well for all the schedulers. In the single cell
scenario, in which there is no co-channel interfererence, the
throughputs of the RR and MPF schedulers increase almost
linearly with the cell corner SNR. The throughput of the
greedy scheduler saturates to the highest MCS rate. However,
in the multi-cell scenario, the co-channel interference power
simultaneously grows with the cell corner SNR. Hence, the
throughput increase in the RR and MPF schedulers becomes
sub-linear, and the greedy scheduler’s throughput saturates
to a lower value. The drop in throughput depends on the
scheduler. For example, at a cell corner SNR of 5 dB, the drop
is 39%, 29%, and 3% for the RR, MPF, and greedy schedulers,
respectively. The greedy scheduler exhibits minimal loss as it
schedules users closer to the serving BS that are farther away
from the interfering BSs.

The cell throughput as a function of K , with the cell
corner SNR set to 5 dB, is plotted in Figure 9 for SIMO.
Notice the excellent match between analysis and simulations.
As expected, the throughput improvement is the highest for
the greedy scheduler and the lowest for the RR scheduler.
Further, the throughput loss due to interference for the greedy
scheduler becomes negligible as K increases, which is not the
case for the RR and MPF schedulers.

VI. CONCLUSIONS

We developed a general framework for analyzing the
throughput of the optimal link adaptation scheme for an
OFDM system in which the packets are sent over multiple
subcarriers that see different gains. EESM is used as the link
quality metric for AMC. We saw that EESM is well modeled
in terms of the Beta distribution for a wide range of subcarrier
correlations and for various antenna diversity modes. For a
point-to-point link, it led to a tight upper bound and an
accurate approximation for the throughput. We then developed
closed-form throughput expressions for the multi-cell, multi-
user scenario in which multi-user diversity is exploited by a
frequency-domain scheduler. Co-channel interference was also
modeled and three different schedulers were analyzed.

APPENDIX

A. Mean and Variance of Ym for Independent Subcarriers

The MGF ΨX(t) of an RV X is defined as ΨX(t) =
E
[
etX

]
. When the Nsc subcarrier SNRs are i.i.d., the mean

μm and variance vm of Ym can be expressed in terms of the

MGF of γi as

μm = Ψγi

(−β−1
m

)
, (28)

vm =
1

Nsc

(
Ψγi

(−2β−1
m

)− [
Ψγi

(−β−1
m

)]2)
. (29)

Since γi = cXτ , where Xτ is a standard Chi-squared RV with
τ degrees of freedom, it can be shown that its MGF is given
by Ψγi(t) = (1− 2ct)−

τ
2 . Substituting this in (28) and (29)

yields (10) and (11), respectively.

B. Mean and Variance of Ym for 2× 2 MIMO with Indepen-
dent Subcarriers

The PDF of γi is given by fγi(x) =
1
σ2

((
x
σ2

)2 − 2x
σ2 + 2

)
e−

x
σ2 − 2

σ2 e
− 2x

σ2 , for x ≥ 0 [8]. Its MGF

can then be shown to be Ψγi(t) =
2(1+t2σ4−tσ2)

(1−tσ2)3
− 2

2−tσ2 .
Substituting this in (28) and (29) yields (12) and (13),
respectively.

C. Mean and Variance of Ym for Correlated Subcarriers

The joint MGF of Γ, ΨΓ (t1, . . . , tNsc), is defined as

ΨΓ (t1, . . . , tNsc) = E

[
e
∑Nsc

i=1 tiγi

]
. The mean μm and the

variance vm can be expressed in terms of ΨΓ as

μm = ΨΓ (t1, . . . , tNsc)

∣∣∣∣∣t1=−β−1
m

tk=0, else

, (30)

vm =
1

Nsc
2

⎡
⎣Nsc∑

i=1

Nsc∑
j=1,j �=i

ΨΓ (t1, . . . , tNsc)

∣∣∣∣∣ti, tj=−β−1
m

tk=0, else

+

Nsc∑
i=1

ΨΓ (t1, . . . , tNsc)

∣∣∣∣∣ti=−2β−1
m

tk=0, else

]
− μ2

m. (31)

Since the channel gains of the different transmit-
receive antenna pairs are i.i.d., ΨΓ simplifies to

ΨΓ (t1, . . . , tNsc) =
(
E

[
eg

T
11Sg11

])max(Nt,Nr)

, where

S = σ2

[
diag([t1, . . . , tNsc ]) 0Nsc

0Nsc diag([t1, . . . , tNsc ])

]
and

g11 =
[
Re(h11)

T Im(h11)
T
]T

. Recall that h11 is defined
in Section III-A2. Since g11 is a zero-mean Gaussian
random vector with covariance matrix K, we can show
that E

[
eg

T
11Sg11

]
= det (I2Nsc − 2KS)

− 1
2 . Substituting ΨΓ

in (30) and (31), yields the desired closed-form expressions.
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D. Brief Derivation of Approximation Error

The support of fYm(x) is [0, 1], and it is square integrable.
The alternative form of the Jacobi polynomials form a com-
plete orthogonal system in L2[0, 1], which is the space of
all square integrable functions with support in [0, 1], with
the weight function fZm(x) provided am, bm > 0, which is
satisfied in our problem. Thus, we can express fYm(x) in terms
of the alternative form of the Jacobi polynomials as

fYm(x) = fZm(x)

∞∑
k=0

ckGk(am, bm, x), (32)

where ck is given in the result statement. Further, ∀x ∈ [0, 1],
G0(am, bm, x) = 1 and c0 = 1. Subtracting fZm(x) from (32)
yields (17).

E. Proof of Lemma 1

The derivative of γeff with respect to (w.r.t.) β is given by

dγeff

dβ
= − log

(
1

Nsc

Nsc∑
i=1

e−
γi
β

)
− 1

β

Nsc∑
i=1

γie
− γi

β∑Nsc

i=1 e
−γi

β

. (33)

To prove the monotonicity of γeff w.r.t. β, we need to show
that dγeff

dβ ≥ 0, which after some algebraic manipulations, is
equivalent to showing that

log(Nsc) ≥ −
Nsc∑
i=1

ν̃i log (ν̃i) , (34)

where ν̃i = e−
γi
β

(∑Nsc

j=1 e
−γj

β

)−1

. Note that ν̃i lies between

0 and 1, and
∑Nsc

i=1 ν̃i = 1. Thus, {ν̃i}Nsc
i=1 is a valid probability

mass function, and the term on the right hand side in (34) is its
entropy. Since the entropy is less than or equal to the logarithm
of the support set’s cardinality, (34) follows.

F. Upper Bound and Approximation for Average Throughput

Upper bound: The probability of selecting MCS m is upper
bounded by

P
(
γ
(m)
eff ≥ Tm, γ

(m+1)
eff < Tm+1, . . . , γ

(L)
eff < TL

)
≤ P

(
γ
(m)
eff ≥ Tm, γ

(m+1)
eff < Tm+1

)
. (35)

Using the ordering property of γeff in Lemma 1, it follows that

P
(
γ
(m)
eff ≥ Tm, γ

(m+1)
eff < Tm+1

)
= P

(
Tm ≤ γ

(m)
eff < γ

(m+1)
eff < Tm+1

)
,

≤ min
{
P
(
Tm ≤ γ

(m)
eff < Tm+1

)
,

P
(
Tm ≤ γ

(m+1)
eff < Tm+1

)}
. (36)

Equation (36) follows because individually
P
(
Tm ≤ γ

(m)
eff < Tm+1

)
and P

(
Tm ≤ γ

(m+1)
eff < Tm+1

)
are upper bounds. Substituting (36) in (18), and expressing
the probabilities in terms of the incomplete Beta function
using (9), yields (20).

Approximation: We lower bound the expression in (35) as
follows. This is an approximation because it lower bounds an
upper bound.

P
(
γ
(m)
eff > Tm, γ

(m+1)
eff < Tm+1

)
= P

(
γ
(m)
eff > Tm

)
− P

(
γ
(m)
eff > Tm, γ

(m+1)
eff > Tm+1

)
,

≥ P
(
γ
(m)
eff > Tm

)
− P

(
γ
(m+1)
eff > Tm+1

)
. (37)

Substituting (37) in (18), and expressing the probabilities in
terms of the incomplete Beta function using (9), yields (21).

G. P (k̃ = k|Rk = ri) for Different Schedulers

1) Greedy Scheduler: User k is scheduled if one of the fol-
lowing two mutually exclusive events occurs: (i) the reported
rate of user k is higher than that of every other user, or (ii) user
k and p other users, 1 ≤ p ≤ K − 1, report the same highest
rate, and the breaking of ties among these users results in user
k being selected. Let {RΛ = ri} denote the event that all the
users in the set Λ report rate ri, let |Λ| denote the cardinality
of the set Λ, and let Λc denote its complement. Hence,

P (k∗ = k|Rk = ri) = P (Rl < Rk, ∀ l �= k|Rk = ri)

+

K−1∑
p=1

1

p+ 1

∑
Λ⊂{1,...,K}\{k}

|Λ|=p

P (RΛ = ri, RΛc < ri|Rk = ri) .

(38)

Since the rates reported by the users are independent, we get

P (k∗ = k|Rk = ri) =

K∏
l=1,l �=k

P (Rl < ri)

+
K−1∑
p=1

1

p+ 1

⎛
⎜⎜⎝

K∑
n1=1
n1 �=k

· · ·
K∑

np=np−1+1
np �=k

⎡
⎣ ∏
q∈{n1,...,np}

P (Rq = ri)

⎤
⎦

×
⎡
⎣ K∏
t=1,t/∈{k,n1,...,np}

P (Rt < ri)

⎤
⎦
⎞
⎠ . (39)

Writing the probability terms in (39) in terms of the incom-
plete Beta function yields (26).

2) RR Scheduler: The RR scheduler does not use the
reported rate. Hence, P (k̃ = k|Rk = ri) = P (k̃ = k) = 1

K .
3) MPF Scheduler: User k is scheduled if its MPF metric,

which is a real-valued RV, exceeds that of every other user.
Hence,3

P (k̃ = k|Rk = ri) = P

(
Rl

E [Rl]
<

Rk

E [Rk]
, ∀ l �= k|Rk = ri

)
,

=

K∏
l=1
l �=k

P (Rl ≤ rilk) , (40)

where rilk is defined in the result statement. To arrive at
the above expression in (40), we used the fact that the rates
reported by the users are independent. Writing the probability
terms in terms of the incomplete Beta function yields (27).

3We do not consider the the event in which the real-valued MPF metrics
of two users are the same, since it occurs with zero probability.
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