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Characterizing the Impact of Feedback Delays on
Wideband Rate Adaptation
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Abstract—In contemporary orthogonal frequency division mul-
tiplexing (OFDM) systems, such as Long Term Evolution (LTE),
LTE-Advanced, and WiMAX, a codeword is transmitted over
a group of subcarriers. Since different subcarriers see different
channel gains in frequency-selective channels, the modulation and
coding scheme (MCS) of the codeword must be selected based on
the vector of signal-to-noise-ratios (SNRs) of these subcarriers.
Exponential effective SNR mapping (EESM) maps the vector of
SNRs into an equivalent flat-fading SNR, and is widely used to
simplify this problem. We develop a new analytical framework
to characterize the throughput of EESM-based rate adaptation
in such wideband channels in the presence of feedback delays.
We derive a novel accurate approximation for the throughput as
a function of feedback delay. We also propose a novel bivariate
gamma distribution to model the time evolution of EESM between
the times of estimation and data transmission, which facilitates
the analysis. These are then generalized to a multi-cell, multi-user
scenario with various frequency-domain schedulers. Unlike prior
work, most of which is simulation-based, our framework encom-
passes both correlated and independent subcarriers and various
multiple antenna diversity modes; it is accurate over a wide range
of delays.

Index Terms—OFDM, adaptation, Exponential Effective SNR
Mapping (EESM), feedback delay, scheduling, co-channel inter-
ference, bivariate gamma distribution.

I. INTRODUCTION

CURRENT and next generation wireless systems, such
as Long Term Evolution (LTE), LTE-Advanced, and

WiMAX, have been designed to meet the incessant demand for
higher data rates. They employ orthogonal frequency division
multiplexing (OFDM) because it avoids inter-symbol and intra-
cell interference. OFDM divides the available bandwidth into
narrowband orthogonal subcarriers. To efficiently utilize the
scarce bandwidth, adaptive modulation and coding (AMC), in
which rate is adapted, and scheduling, in which the user that is
transmitted to is adapted, are extensively utilized.

In these OFDM systems, a codeword is transmitted over a
group of subcarriers [2]. Due to the frequency-selective nature
of the channel, different subcarriers see different gains. Thus,
the block error rate (BLER) is a function of the vector of
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signal-to-noise-ratios (SNRs) of the subcarriers assigned to the
codeword. Consequently, the AMC scheme must select the
modulation and coding scheme (MCS) based on this vector
of SNRs. Further, no closed-form expression for the BLER
in vector channels is available. This is unlike the well-studied
problem of AMC over narrowband channels, in which the MCS
choice is based on just one SNR [3].

An important practical issue in these systems is the delay
between the time of estimation of the channel gains and the
time of data transmission. This delay ranges from milliseconds
to tens of milliseconds [2]. It degrades the throughput because
either the AMC scheme may overestimate or underestimate the
rate or a sub-optimal user may get scheduled. Characterizing
the effect of feedback delay on AMC over wideband channels
is the focus of this paper.

AMC over frequency-selective fading channels, in principle,
requires a cumbersome multi-dimensional lookup table to map
the vector of SNRs to the MCS. Hence, link quality metrics
(LQMs) such as exponential effective SNR mapping (EESM)
have been developed to simplify this problem [4]–[6]. EESM
maps the vector of subcarrier SNRs seen by the codeword into
an effective flat-fading SNR, which is interpreted to be the
equivalent SNR in an additive white Gaussian noise (AWGN)
channel for that MCS. Thus, EESM reduces the problem
of AMC over a frequency-selective channel to that over a
frequency-flat channel. If γi(t) denotes the SNR of the ith
subcarrier at time t, for 1 ≤ i ≤ Nsc, then the effective SNR
γ
(m)
eff (t) for MCS m is defined as

γ
(m)
eff (t) = −βm log

(
1

Nsc

Nsc∑
i=1

exp

(
−γi(t)

βm

))
, (1)

where βm > 0 is an MCS-dependent scaling parameter. Its ac-
curacy has been conclusively established in several prior works
[5], [6]. It has been widely used in system-level simulations of
LTE and WiMAX [7], [8] and to generate feedback to the base
station (BS) [9].

A. Related Literature

We first survey the simpler problem of characterizing the
effect of feedback delay in narrowband systems, which has been
widely studied in the literature. The effect of channel estimation
errors, feedback errors, and feedback delay on throughput is
analyzed in [10] for a single cell, multi-user system with a
greedy scheduler. However, subcarrier-level scheduling and
adaptation is assumed. Thus, the techniques for adaptation
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over narrowband fading channels apply here. Subcarrier-level
adaptation with feedback delays is also investigated in [11] for a
point-to-point, single user scenario and in [12] for a multi-user,
single cell scenario. In [13], the throughput of an OFDM system
with various feedback reduction schemes, frequency-domain
scheduling, and feedback delay is analyzed. A heterogeneous
feedback scheme with imperfect channel state information is
analyzed in [14]. However, both [13] and [14] use the narrow-
band rate adaptation model. The impact of feedback delays on
transmit beamforming in a fixed rate, narrowband system is
studied in [15].

As mentioned before, rate adaptation in wideband channels
is much more involved, and LQMs enable it to be systemati-
cally implemented and investigated. LQM-based link adapta-
tion without feedback delays is studied in [16], [17] and with
feedback delays in [4]. However, only Monte Carlo simulation
results are presented in [4], [16], [17]. The impact of the
coarseness of the channel quality feedback on the downlink
throughput of LTE is analyzed in [9]. In it, EESM-based
feedback is used. However, feedback delays are ignored. The
throughput of EESM-based AMC is analyzed in [18] for a
point-to-point system as well as for a muti-user, multi-cell sys-
tem with frequency-domain scheduling. Here again, feedback
delay is not considered.

B. Contributions

From the survey above, we see that the effect of feedback
delay for the practically important case in which a codeword,
whose MCS is adapted, is transmitted over multiple subcarriers
that see different, albeit correlated, gains has not been analyzed.
We address this by developing a novel, comprehensive analyt-
ical framework for the throughput of EESM-based AMC with
feedback delays.

We first consider the problem of wideband adaptation in a
point-to-point link with fading. A new challenge that we have to
address here is that with feedback delays, the joint or bivariate
distribution of the effective SNRs γ

(m1)
eff (t) and γ

(m2)
eff (t+ τ),

each of which is a non-linear mapping of subcarrier SNRs, is
needed. This is because the MCS m1 is decided at time t on the
basis of γ(1)

eff (t), . . . , γ
(L)
eff (t), where L is the number of MCSs

available to choose from, while the success of the transmission
depends on γ

(m1)
eff (t+ τ).

We propose modeling the joint distribution of the random
variables (RVs) γ

(m)
eff (t) and γ

(m)
eff (t+ τ) with a bivariate

gamma probability density function (PDF) [19]. To the best
of our knowledge, this is the first bivariate statistical charac-
terization of the time evolution of EESM. The choice of the
distribution is motivated by the fact that at high correlations, in
which the subcarrier gains are almost the same, it can be seen
from (1) that γ(m)

eff (t) ≈ γi(t), for any 1 ≤ i ≤ Nsc, at any time
t. However, as we shall see, the bivariate gamma distribution is
quite accurate even for the other extreme case of independent
subcarriers. We note that this is not a simple extension of [18],
[20] because no tractable, natural extension to the bivariate
case exists in the literature for the beta model of [18], and the
generalized extreme value (GEV) and Pearson models of [20].

While the lognormal model proposed in [9] can be extended,
we shall see that it is inaccurate.

We propose a new moment generating function (MGF)-
matching method [21] that is uniquely well-suited to EESM to
determine the parameters of the bivariate gamma distribution.
The proposed model is then used to obtain a novel expression
for the throughput with feedback delays. Our analysis covers
multiple antenna modes, it accounts for any general model for
correlation among the subcarriers, and is accurate.

We then generalize the model to analyze the downlink
throughput of a cellular system that consists of multiple cells
with multiple users per cell, uses frequency-domain schedul-
ing, faces feedback delays and co-channel interference, and
in which the links undergo both shadowing and fading. Here,
due to shadowing and interference, the subcarrier signal-to-
interference-plus-noise-ratios (SINRs) are no longer gamma
distributed. Therefore, we present a novel bivariate gamma mix-
ture model, which generalizes the above bivariate gamma
model. We then derive novel expressions for the cell throughput
with round robin (RR), greedy, and modified proportional fair
(MPF) schedulers, which cover a wide range of the throughput
versus fairness trade-off [10], [13], [22].

We note that this paper makes several advances over [9], [18],
which do not model feedback delays. As we saw above, the in-
troduction of feedback delays is not a simple extension because
it begets a much more challenging and involved analysis, and
leads to a different expression for the throughput. We also note
that both bivariate and bivariate mixture models developed in
this paper are significant extensions of the models developed
in [9] and [18]. Further, [9] assumes the same value of βm for
all the MCSs. However, for LTE, this assumption breaks down
because βm varies over a wide range of values from 1.0 for
QPSK with rate 0.08 code to 28.9 for 64-QAM with rate 0.93
code [23]. We do not make this assumption. Consequently, in
our model for wideband rate adaptation, even with EESM the
MCS has to be decided based on multiple effective SNRs, one
for each MCS. Another challenge is that these are correlated
RVs since they are obtained from the same vector of subcarrier
SNRs. When combined with feedback delays, it leads to an
analysis that is different from that in [18]. Our multi-cell, multi-
user model and analysis deviates from [18] even further as it
requires the adoption of a novel and more general bivariate
gamma mixture model.

C. Organization and Notation

The paper is organized as follows. Section II studies the
point-to-point OFDM link with fading. The multi-cell, multi-
user system with different schedulers is analyzed in Section III.
Simulation results are presented in Section IV, and are followed
by our conclusions in Section V.

We denote the transpose of a matrix A by AT . For a
complex number c, c∗ and |c| denote its complex conjugate and
absolute value, respectively. E[X], FX(x), and fX(x) denote
expectation, cumulative distribution function (CDF), and PDF,
respectively of the RV X . The MGF ΨX(z) of X is defined
as E[exp(−zX)]. For two RVs X and Y , the conditional PDF
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Fig. 1. System model for a point-to-point OFDM link with fading that shows
the underestimation and overestimation of MCSs due to feedback delay.

of Y given X = x is denoted by fY (y|x). The joint MGF
ΨX,Y (z1, z2) is defined as E[exp(−z1X − z2Y )].

II. POINT-TO-POINT LINK WITH FADING

We first consider a point-to-point OFDM link with Nt trans-
mit antennas, Nr receive antennas, and frequency-selective
fading. This is shown in Fig. 1. The transmitted codeword is
encoded across Nsc subcarriers. Based on the channel gains of
these subcarriers, the receiver selects an MCS and feeds it back
to the transmitter. For example, in LTE, one among 16 different
MCSs is fed back [2].

A. Channel Model

Let h(i)
kl (t) denote the complex channel gain between the kth

receive antenna and the lth transmit antenna of the ith subcar-
rier at time t. It is a circularly symmetric complex Gaussian
RV with unit variance. For the general uncorrelated scatterers
assumption [3], which motivates most channel models consid-
ered in the literature, it can be shown that the channel gains
of different subcarriers in an OFDM system are statistically
identical [3], [24]. The correlation between the subcarriers
depends on the multipath delay spread of the channel. Let τ
denote the delay between the times of channel estimation and
data transmission. Then, as per the Jakes’ fading model [3],
h
(i)
kl (t) and h

(i)
kl (t+ τ) are jointly Gaussian with correlation

coefficient ρ(τ) = J0(2πfdτ), where fd is the Doppler spread
and J0(·) is the zeroth-order Bessel function of the first kind
[25]. We shall refer to fdτ as the normalized delay. To focus
on the effect of feedback delays, the channel estimates at the
receiver are assumed to be perfect, as has also been assumed in
[4], [16], [17].

The complex channel gains on different transmit-receive
(Tx-Rx) antenna pairs are assumed to be identically and in-
dependently distributed [3], [15], [24]. This is justified in
a rich scattering environment when the antennas are co-
located, yet spaced sufficiently far apart [3], [24]. Thus, the
channel gain vector of the (k, l)th antenna pair at time t,

hkl(t) = [h
(1)
kl (t), h

(2)
kl (t), . . . , h

(Nsc)
kl (t)]

T
is a circularly sym-

metric complex Gaussian random vector with covariance matrix
C. Its (i, j)th element is Cij = E[h

(i)
kl (t)h

(j)∗

kl (t)].
Let σ2 denote the average SNR of a Tx-Rx link. The

subcarrier SNR γi(t) depends on the multiple antenna mode
used.1 For single-input-single-output (SISO), i.e., Nt = Nr =

1, it is γi(t) = σ2|h(i)
11 (t)|

2
. For single-input-multiple-output

(SIMO) with Nt = 1, Nr > 1 and maximal ratio combining,

it is γi(t) = σ2
∑Nr

k=1 |h
(i)
k1 (t)|

2
. Similarly, for multiple-input-

single-output (MISO) with Nt > 1, Nr = 1 and maximal ratio

transmission, it is γi(t) = σ2
∑Nt

l=1 |h
(i)
1l (t)|

2
. In each of these

cases, the subcarrier SNR can be written as γi(t) = aX
(i)
D (t),

where a is a constant and X
(i)
D (t) is a Chi-squared RV with D

degrees of freedom. Specifically, a = σ2

2 and D = 2 for SISO,

a = σ2

2 and D = 2Nr for SIMO, and a = σ2

2 and D = 2Nt

for MISO. For single-stream multiple-input-multiple-output
(MIMO), γi(t) = σ2ζi(t), where ζi(t) is the largest singular
value of the channel matrix Hi(t), whose (k, l)th element is
h
(i)
k,l(t). Using the Chi-squared approximation for ζi(t) pro-

posed in [26], we get a = σ2

2

(
Nt+Nr

NtNr+1

) 2
3

and D = 2NtNr.2

We note that the Chi-squared distribution is a special case
of the gamma distribution. Specifically, γi(t) = aX

(i)
D (t) is a

gamma distributed RV with shape parameter q = D
2 and scale

parameter p = 2a. Further, the joint distribution of γi(t) and
γj(t+ τ) is bivariate gamma since the complex channel gains
at times t and t+ τ are jointly Gaussian.

B. EESM-Based AMC

We focus on the practically relevant case of discrete rate
adaptation, in which there are L MCSs [2], [3]. Let rm denote
the rate of MCS m and, without loss of generality, 0 < r1 ≤
r2 ≤ · · · ≤ rL. The AMC scheme selects an MCS to max-
imize the throughput while ensuring that the BLER at any
instant is less than a target value BLERt [2], [4], [17]. Let
BLERAWGN(·,m) denote the BLER in an AWGN channel for
MCS m. Then, MCS m can be reliably supported on an AWGN
channel so long as the SNR at the time of transmission exceeds
Tm, where Tm is the SNR at which BLERAWGN(Tm,m) =
BLERt.

The EESM-based AMC proceeds as follows [4], [18]. It
chooses the highest rate MCS at time t if γ(L)

eff (t) ≥ TL. This
is because the effective SNR is the equivalent flat-fading SNR
and the inequality ensures that MCS L satisfies the BLER
constraint. Else, the AMC scheme moves to the next highest
MCS, and so on. If γ

(i)
eff (t) < Ti, for all i = 1, . . . , L, then

no data transmission takes place because the BLER constraint
cannot be satisfied. MCS 0 shall denote this scenario.

1Note that we ignore inter-carrier interference because we are interested in
channel variations over a time scale of milliseconds. This is at least one order
of magnitude larger than the OFDM symbol duration.

2To focus on the impact of feedback delays on wideband rate adaptation, we
do not model the outdated nature of the transmit beamforming weights [15],
which are used in MISO and single-stream MIMO. Note, however, that this
limitation does not apply to SIMO and open-loop MISO.
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C. Throughput Analysis: Preliminaries

Let mopt(t) ∈ {0, 1, . . . , L} denote the MCS selected at time
t. The transmission with this MCS, which occurs at time t+

τ , will be successful if γ(mopt(t))
eff (t+ τ) ≥ Tmopt(t). Thus, the

average throughput R(τ) as a function of τ is given by

R(τ) =
L∑

m=1

rm Pr
{
mopt(t)= m, γ

(m)
eff (t+ τ)≥Tm

}
. (2)

MCS m is selected if its effective SNR is greater than or equal
to Tm and the effective SNRs of all the higher rate MCSs are
less than their respective SNR thresholds. Thus,

Pr
{
mopt(t) = m, γ

(m)
eff (t+ τ) ≥ Tm

}
= P
(
γ
(m)
eff (t) ≥ Tm, γ

(m+1)
eff (t) < Tm+1,

. . . , γ
(L)
eff (t) < TL, γ

(m)
eff (t+ τ) ≥ Tm

)
. (3)

An (L−m+ 2)-dimensional joint distribution of the cor-
related RVs γ

(m)
eff (t), γ(m+1)

eff (t), . . . , γ
(L)
eff (t), and γ

(m)
eff (t+ τ)

is required to evaluate (3). However, no closed-form is known
even for the marginal (one-dimensional) PDF. These RVs are
correlated because they are obtained using different βm from
the same two vectors of subcarrier SNRs at times t and t+ τ .
We circumvent this problem by using the following approxima-
tion, which is derived in Appendix A:

Pr
{
mopt(t) = m, γ

(m)
eff (t+ τ) ≥ Tm

}
≈ P
(
γ
(m)
eff (t) ≥ Tm, γ

(m)
eff (t+ τ ≥ Tm

)
− P
(
γ
(m+1)
eff (t) ≥ Tm+1, γ

(m)
eff (t+ τ) ≥ Tm

)
. (4)

The accuracy of the approximation in (4) depends on how close
γ
(m)
eff (t) and γ

(m+1)
eff (t) are, which, in turn, depends on βm and

βm+1. Since the calibrated values of βm for adjacent MCSs are
close to each other [23], we can expect the approximation to
be accurate. Further, this approximation is provably exact for
narrowband fading.

D. Novel Bivariate Distribution for EESM Evolution in Time

We see from (4) that the joint distributions of γ
(m)
eff (t) and

γ
(m)
eff (t+ τ), as well as γ(m+1)

eff (t) and γ
(m)
eff (t+ τ) are needed.

We model the time evolution of EESM with the bivariate
gamma distribution [19], which was motivated in Section I-B.

1) Key Properties of Bivariate Gamma Distribution: Let U
and V be bivariate gamma RVs. Their joint PDF in terms of
four parameters q > 0, s > 0, p > 0, and 0 ≤ r ≤ sp is

fU,V (u, v) =
1

rΓ(q)
Iq−1

(
2r−1
√

uv(sp− r)
)[ uv

sp− r

] q−1
2

× exp

(
−pu+ sv

r

)
, u > 0, v > 0, (5)

where Γ(·) is the gamma function and Iq−1(·) is the (q − 1)th-
order modified Bessel function of first kind [25]. The joint CDF
is given by

FU,V (u, v) =
rq

Γ(q)

∞∑
k=0

(sp− r)kΓ(k + q)

k!(sp)k+q
Γinc

(
k + q, u

p

r

)

× Γinc

(
k + q, v

s

r

)
, u > 0, v > 0, (6)

where Γinc(q, a) =
1

Γ(q)

a∫
0

xq−1 exp(−x)dx is the incomplete

gamma function [25]. The RVs U and V are gamma distributed
with parameters q and s, and q and p, respectively. Their PDF
is given in [19]. The conditional CDF FV (v|u) is

FV (v|u) = exp

(
−u

sp− r

sr

) ∞∑
k=0

uk

k!

(
sp− r

sr

)k

× Γinc

(
k + q,

sv

r

)
, u > 0, v > 0. (7)

Lastly, the joint MGF ΨU,V (·, ·) of U and V is given by

ΨU,V (z1, z2) = (1 + sz1 + pz2 + rz1z2)
−q,

for sz1 + pz2 + rz1z2 > −1. (8)

2) Computing the Bivariate Gamma Parameters: Since we
are interested in the joint PDF of γ(m1)

eff (t) and γ
(m2)
eff (t+ τ), we

introduce subscripts m1 and m2 into the notations for the four
distribution parameters, and henceforth denote them as qm1,m2

,
sm1,m2

, pm1,m2
, and rm1,m2

. To express them in terms of a, D,

Nsc, and C, we propose matching the joint MGF of γ(m1)
eff (t)

and γ
(m2)
eff (t+ τ) with that of the bivariate gamma distribution

at four carefully chosen points as follows.

Let Ym(t)= 1
Nsc

∑Nsc

i=1 exp
(
−γi(t)

βm

)
. Then, Ψ

γ
(m)

eff
(t)
(z)=

E[(Ym(t))zβm ]. Using (8), we get the following relationships:

E [Ym1
(t)] =Ψ

γ
(m1)

eff
(t),γ

(m2)

eff
(t+τ)

(
β−1
m1

, 0
)

=(1 + sm1,m2
β−1
m1

)−qm1,m2 , (9)

E
[
Y 2
m1

(t)
]
=Ψ

γ
(m1)

eff
(t),γ

(m2)

eff
(t+τ)

(
2β−1

m1
, 0
)

=(1 + 2sm1,m2
β−1
m1

)−qm1,m2 , (10)

E [Ym2
(t)] =Ψ

γ
(m1)

eff
(t),γ

(m2)

eff
(t+τ)

(
0, β−1

m2

)
=(1 + pm1,m2

β−1
m2

)
−qm1,m2 , (11)

E [Ym1
(t)Ym2

(t+ τ)]

= Ψ
γ
(m1)

eff
(t),γ

(m2)

eff
(t+τ)

(
β−1
m1

, β−1
m2

)

=

[
1 +

sm1,m2

βm1

+
pm1,m2

βm2

+
rm1,m2

βm1
βm2

]−qm1,m2

. (12)

From (9) and (10), we obtain the following non-linear equation
involving sm1,m2

: 1 + 2β−1
m1

sm1,m2
= (1 + β−1

m1
sm1,m2

)
δ ,

where δ = log(E[Y 2
m1

(t)])/ log(E[Ym1
(t)]) > 1. There exists a

unique non-zero value of sm1,m2
that solves it and is computed
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numerically. Given sm1,m2
, the remaining parameters can be

written in closed-form as follows:3

qm1,m2
= − log (E [Ym1

(t)])

log(1 + β−1
m1

sm1,m2
)
, (13)

pm1,m2
=βm2

(E [Ym2
(t)])

− 1
qm1,m2 − βm2

, (14)

rm1,m2
=βm1

βm2
(E [Ym1

(t)Ym2
(t+ τ)])

− 1
qm1,m2

− βm1
pm1,m2

− βm2
sm1,m2

− βm1
βm2

. (15)

3) Moments of Ym1
(t) and Ym2

(t+ τ): Thus, all that re-
mains to be done is to compute the moments E[Ym1

(t)],
E[Ym2

(t)], E[Y 2
m1

(t)], and E[Ym1
(t)Ym2

(t+ τ)]. These are
given in closed-form below.

Result 1: The first two moments of Ym(t) for m = m1, m2,
when γi(t) = aX

(i)
D (t), are given by

E [Ym(t)] = (1 + 2aβ−1
m )−

D
2 , (16)

E
[
Y 2
m(t)
]
=

1

N2
sc

Nsc∑
i=1

Nsc∑
j=1

×
[
(1 + 2aβ−1

m )
2 − 4a2|Cij |2β−2

m

]−D
2

. (17)

The cross-correlation between Ym1
(t) and Ym2

(t+ τ) equals

E [Ym1
(t)Ym2

(t+ τ)]

=
1

N2
sc

Nsc∑
i=1

Nsc∑
j=1

[(
1 + 2aβ−1

m1

) (
1 + 2aβ−1

m2

)

− 4ρ(τ)a2|Cij |2β−1
m1

β−1
m2

]−D
2 . (18)

Proof: The proof is relegated to Appendix B. �

E. Empirical Verification of the Proposed Bivariate Model

For empirical verification, we consider independent subcar-
riers and correlated subcarriers like those in the standardized
typical urban (TU) and the rural area (RA) channels [27]. First,
we compare the empirical CDF curves with those obtained from
the proposed model, as has been done in the literature [21],
[24]. In our problem, the joint CDF plots are three-dimensional.
We, therefore, plot the conditional CDF of γ(m2)

eff (t+ τ) given

γ
(m1)
eff (t) for different values of γ(m1)

eff (t), and compare it with
the empirical conditional CDF.

Figs. 2 and 3 compare the conditional CDFs for independent
subcarriers and correlated subcarriers from the TU channel,
respectively. The bivariate lognormal parameters are obtained
by matching the joint MGF of γ(m1)

eff (t) and γ
(m2)
eff (t+ τ) with

that of the bivariate lognormal. As mentioned, corresponding
results for the beta [18], GEV, and Pearson [20] models cannot
be shown because no tractable bivariate extension is known for

3We observe from (9), (10), (11), and (12) that the ordering of the RVs
matters in determining the parameters. In case rm1,m2 < 0, we compute the

parameters of the ordered pair (γ(m2)
eff

(t+ τ), γ
(m1)
eff

(t)) instead.

Fig. 2. Comparison of the conditional CDFs of EESM with the pro-
posed bivariate gamma distribution for independent subcarriers (σ2 = 10 dB,
Nsc = 12, βm1 = βm2 = 5, D = 2, and fdτ = 0.1).

Fig. 3. Comparison of the conditional CDFs of EESM with the proposed
bivariate gamma distribution for the TU channel (σ2 = 10 dB, Nsc = 12,
βm1 = βm2 = 5, D = 4, and fdτ = 0.1).

them. Notice that the bivariate gamma model tracks the empir-
ical curves well over a wide range of values from 10−3 to 1.
While the proposed model is more accurate than the bivariate
lognormal model for smaller values of γ(m1)

eff (t), the reverse is

true for larger values of γ(m1)
eff (t). For the TU channel, however,

the bivariate gamma model is much more accurate than the
bivariate lognormal model in all regimes. The accuracy is even
better for the less dispersive RA channel; results for which are
not shown due to space constraints.

An alternate way to evaluate the efficacy is to compare the
Kulback-Leibler (KL) divergence of the joint PDF obtained
from the model and the empirical joint PDF [28] as shown
in Table I. The smaller the KL divergence, the better the
approximation. This is because the KL divergence is always
non-negative, and is zero if and only if the two distributions
are identical. Further, the KL divergence between continuous
distributions evaluated from their empirical distributions con-
verges almost surely [29]. However, we note that it is not a
true distance metric because it is not symmetrical and it does
not satisfy the triangle inequality [28]. We see that the KL
divergences of the two distributions are close to each other for
independent subcarriers, indicating a comparable performance.
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TABLE I
KL DIVERGENCES FOR BIVARIATE GAMMA AND BIVARIATE

LOGNORMAL DISTRIBUTIONS (σ2 = 10, Nsc = 12, AND D = 4)

However, for the TU and RA channels, the KL divergence of
the proposed model is lower by a factor of 4.60 and 5.78,
respectively, indicating a better approximation.

F. Average Throughput Analysis

Using the bivariate model for EESM developed above, we
now derive an expression for the average throughput.

Result 2: The average throughput as a function of feedback
delay is given by (21), shown at the bottom of the page,
where ξm1,m2 =

rm1,m2

sm1,m2
pm1m2

, for m1,m2 ∈ {m,m+ 1}
and TL+1 = ∞.

We note that the above expression is exact in a narrowband
fading channel since all the subcarrier gains are equal, and can
be obtained by setting Nsc = 1. In the absence of feedback
delays (τ = 0), the average throughput is given by

R(0) ≈
L∑

m=1

rm
[
Γinc(qm+1,m, Tm+1s

−1
m+1,m)

− Γinc(qm,m, Tms−1
m,m)
]
. (19)

III. MULTI-CELL, MULTI-USER SCENARIO WITH

FREQUENCY-DOMAIN SCHEDULING

We now focus on downlink transmission in a multi-cell,
multi-user system with co-channel interference and in which
all links undergo both shadowing and fading. There are K
users per cell. Full frequency reuse is assumed [2]. Multiple
users now vie for each resource block (RB), which consists
of Nsc subcarriers. Users estimate the channel gains on the
Nsc subcarriers, and uses the EESM-based AMC scheme to
select the MCS to be fed back to the BS. The frequency-domain
scheduler at the BS assigns users to RBs. The scheduled user is
served with the rate reported by it. Thus, the reported MCSs are
used for both scheduling and rate adaptation. The notation in
this section will be more elaborate as it needs to track the user
as well as the BS index. Let h(n,k,j)

uv (t) denote the channel gain

from transmit antenna v of BS j to receive antenna u of user k
of subcarrier n at time t.

We first develop the theory for a SISO system (u = 1 and
v = 1), and then extend it to include multi-antenna diversity.
Thus, the SINR γ

(n)
k (t) on the nth subcarrier, 1 ≤ n ≤ Nsc, for

the scheduled user, say k, at time t is given by

γ
(n)
k (t) =

PS

PN

α0k

∣∣∣h(n,k,0)
11 (t)

∣∣∣2∑M
j=1

PS

PN
αjk

∣∣∣h(n,k,j)
11 (t)

∣∣∣2 + 1
, (20)

where PS is the BS transmit power, PN is the noise power,
and M is the number of interfering BSs. Here,

√
α0kh

(n,k,0)
11 (t)

and
√
αjkh

(n,k,j)
11 (t) denote the complex channel gains at time

t from the serving BS 0 and interfering BS j, respectively. They
are assumed to be independent as the BSs are located far apart
[3], [24]. The model for the small-scale fading term h

(n,k,j)
11 (t)

is the same as in Section II-A. The lognormal RV αjk models
shadowing. Thus, in dB scale, αjk is a Gaussian RV with mean
μjk = −L0 − 10η log(djk/d0) and standard deviation σshad,
where L0 is the pathloss in dB at a reference distance d0
from the BS, djk is the distance between user k and BS j,
and η is the pathloss exponent.4 Notice that different users
see statistically different interferences. Let γ(k,m)

eff (t) denote the
effective SNR for MCS m and user k at time t and βk,m denote
the corresponding MCS-dependent parameter.

A. New Bivariate Gamma Mixture Model for EESM
Time Evolution

As in the point-to-point scenario, we first develop a tractable
and accurate bivariate model for the time variation of EESM.
With shadowing and co-channel interference, the subcarrier
SINR γ

(n)
k (t) in (20) is no longer gamma distributed. Conse-

quently, the bivariate gamma model proposed in Section II-D is
no longer suitable and a more general model is required.

Consider the interference plus noise term in (20), which
we denote by Ω

(n)
k (t) =

∑M
j=1(PS/PN )αjk|h(n,k,j)

11 (t)|2 + 1.
Using the result that the sum of Rayleigh-lognormal RVs is well
approximated by a lognormal [21], we approximate Ω

(n)
k (t)

with a lognormal RV. Further, for tractability, we ignore its vari-
ation with time and frequency. This is partially justified because

4Time variation in shadowing is ignored because it is several orders of
magnitude slower than in small-scale fading.

R(τ) ≈
L∑

m=1

rm

{ ∞∑
k=0

[
(ξm,m)qm,m(1− ξm,m)kΓ(k + qm,m)

k!Γ(qm,m)
Γinc

(
k + qm,m,

Tmpm,m

rm,m

)
Γinc

(
k + qm,m,

Tmsm,m

rm,m

)

− (ξm+1,m)qm+1,m(1− ξm+1,m)kΓ(k + qm+1,m)

kΓ (qm+1,m)
Γinc

(
k + qm+1,m,

Tm+1pm+1,m

rm+1,m

)

× Γinc

(
k + qm+1,m,

Tmsm+1,m

rm+1,m

)]
+ Γinc

(
qm+1,m,

Tm+1

sm+1,m

)
− Γinc

(
qm,m,

Tm

sm,m

)}
(21)
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Ω
(n)
k (t) is a sum of M independent RVs, which averages out

the time-frequency variations due to small-scale fading. Thus,
Ω

(n)
k (t) ≈ αΩk

, where αΩk
is a lognormal RV, whose dB mean

μΩk
and dB variance σ2

Ωk
are obtained by matching the MGF of

Ω
(n)
k (t) with that of the lognormal distribution. We shall verify

its accuracy in Section IV-B. The MGF of Ω(n)
k (t) is derived in

Appendix C and is given by

Ψ
Ω

(n)

k
(t)
(z) ≈ e−z

π
M
2

M∏
j=1

[
NGH∑
i=1

wi

1 + z PS

PN
eμjk+

√
2σshadλi

]
,

(22)

for z ≥ 0. Here, wi, λi, and NGH are the weights, abscissas,
and Gauss-Hermite integration order, respectively [30].

Therefore, the SINR of subcarrier n in (20) can be written
as γ

(n)
k (t) = (PS/PN )ϕkX

(n,k)
2 (t), where ϕk is a lognormal

RV with dB mean μϕk
= μ0k − μΩk

and dB variance σ2
ϕk

=

σ2
shad + σ2

Ωk
, and X

(n,k)
2 (t) = |h(n,k,0)

11 (t)|2 is a Chi-squared
RV with two degrees of freedom. For the simpler single-cell
scenario [18], [24], in which there is no co-channel interference,
the dB mean and dB variance of ϕk simplify to μ0k and σ2

shad,
respectively.

The bivariate PDF of the RVs γ(k,m1)
eff (t) and γ

(k,m2)
eff (t+ τ)

can be obtained by averaging its PDF conditioned on ϕk, i.e.,
f
γ
(k,m1)

eff
(t),γ

(k,m2)

eff
(t+τ)

(x, y|ϕk = α). It is given by

f
γ
(k,m1)

eff
(t),γ

(k,m2)

eff
(t+τ)

(x, y)

=

∞∫
0

f
γ
(k,m1)

eff
(t),γ

(k,m2)

eff
(t+τ)

(x, y|ϕk = α)

× 1√
2πσϕk

α
e

−(log(α)−μϕk)
2

2σ2
ϕk dα. (23)

Using Gauss-Hermite quadrature [30] followed by scaling the
resulting expression so that the PDF integrates to 1, we get

f
γ
(k,m1)

eff
(t),γ

(k,m2)

eff
(t+τ)

(x, y)

=

NGH∑
i=1

w̃ifγ(k,m1)

eff
(t),γ

(k,m2)

eff
(t+τ)

(
x, y|ϕk = �(k,i)

)
, (24)

where w̃i = wi/
∑NGH

j=1 wj and �(k,i) = eμϕk
+
√
2σϕk

λi .

Note that, given ϕk = �(k,i), for 1 ≤ i ≤ NGH and 1 ≤
k ≤ K, the subcarrier SINR is a scaled Chi-squared RV
of the form γ

(n,i)
k (t) = (PS/PN )�(k,i)X

(n,k)
2 (t), for 1 ≤

n ≤ Nsc. Thus, from Section II-D, the conditional PDF
f
γ
(k,m1)

eff
(t),γ

(k,m2)

eff
(t+τ)

(x, y|ϕk = �(k,i)) can be accurately ap-

proximated by the bivariate gamma distribution. Let q(k,i)m1,m2 ,

s
(k,i)
m1,m2 , p(k,i)m1,m2 , and r

(k,i)
m1,m2 denote its distribution parameters.

Note that the notation for these parameters has been updated
to track the user (k) and the Gauss-quadrature term (i). These
are obtained by matching the joint MGF of γ

(k,m1)
eff (t) and

γ
(k,m2)
eff (t+ τ) conditioned on ϕk = �(k,i) at four points with

Fig. 4. Comparison of the conditional CDFs of EESM with the proposed
bivariate gamma mixture distribution in the TU channel (Nsc = 12, βm1 =
βm2 = 5, and fdτ = 0.1).

the joint MGF of the bivariate gamma distribution, as in (9),
(10), (11), and (12).

Putting all the above steps together, we get

f
γ
(k,m1)

eff
(t),γ

(k,m2)

eff
(t+τ)

(x, y)

=

NGH∑
i=1

w̃i

r
(k,i)
m1,m2Γ(q

(k,i)
m1,m2)

exp

(
−xp

(k,i)
m1,m2 + ys

(k,i)
m1,m2

r
(k,i)
m1,m2

)

× I
q
(k,i)
m1,m2

−1

⎛
⎜⎝2
√√√√xy

(
s
(k,i)
m1,m2p

(k,i)
m1,m2 − r

(k,i)
m1,m2

)
r
(k,i)
m1,m2

⎞
⎟⎠

×
[

xy

s
(k,i)
m1,m2p

(k,i)
m1,m2 − r

(k,i)
m1,m2

] q
(k,i)
m1,m2

−1

2

, x, y > 0. (25)

Notice that (25) is a weighted sum of bivariate gamma distri-
butions. This approach generalizes the bivariate gamma model
of the previous section. It can be extended to SIMO and MISO
by replacing X

(n,k)
2 (t) with a Chi-squared RV with D degrees

of freedom X
(n,k)
D (t). For single-stream MIMO, X(n,k)

2 (t) is

replaced with
(

Nt+Nr

NtNr+1

) 2
3

X
(n,k)
D (t) (cf. Section II-A). While

the gamma mixture distribution has been used in [31], the
novelty in our work lies in developing the mixture approach
for modeling—for the first time—the time-evolution of EESM
and showing that it works well.

B. Empirical Verification of the Bivariate Mixture Model

As in Section II-D, we plot the conditional CDFs to evaluate
the accuracy of the proposed model. We use PS

PN
= 10, μϕk

=
0, σϕk

= 8 dB, and the TU channel. Fig. 4 plots the empir-
ical conditional CDFs and those from the proposed mixture
distribution. The conditional CDFs of the bivariate lognormal
distribution are also plotted for benchmarking. We see that the
proposed model, while not perfect, does track the empirical
conditional CDFs well, and is better than the bivariate lognor-
mal distribution.
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C. Cell Throughput Analysis With Different Schedulers

We now analyze cell throughput per RB, which is the sum-
throughput of all the users in the reference cell 0 with feedback
delays. This is done for the following three different frequency-
domain schedulers, which cover a wide range of the trade-off
between throughput and fairness:

1) RR scheduler [13]: It schedules the users in a periodic
manner for each RB. Thus, channel quality feedback is
used for rate adaptation, but not for scheduling.

2) Greedy scheduler [10]: For each RB, it assigns the user
that reported the highest rate among all the users to it.
In case multiple users report the highest rate, then one
among them is chosen with equal probability. While this
scheduler maximizes throughput, it is unfair as users
closer to the BS get scheduled more often.

3) MPF scheduler: It selects the user with the highest ratio
of rate reported to its fading-averaged value [22]. It has a
throughput-fairness trade-off similar to the PF scheduler
proposed in [32], and is often studied as it is tractable [9],
[18], [22].

Let Rk(t) denote the rate reported by user k and St denote
the scheduled user, at time t. The cell throughput C(τ) is

C(τ) =

K∑
k=1

L∑
m=1

rmP
(
Rk(t) = rm, γ

(k,m)
eff (t+ τ) ≥ Tm

)

× P
(
St = k|Rk(t) = rm, γ

(k,m)
eff (t+ τ) ≥ Tm

)
. (26)

Note that St depends only on R1(t), . . . , RK(t), which are
independent RVs. Thus, conditioned on the rate reported at time
t by a user, its effective SINR at time t+ τ is independent of
the scheduling decision. Thus, (26) simplifies to

C(τ) =

K∑
k=1

L∑
m=1

rmP
(
Rk(t) = rm, γ

(k,m)
eff (t+ τ) ≥ Tm

)

× P (St = k|Rk(t) = rm) . (27)

Here, P (Rk(t) = rm, γ
(k,m)
eff (t+ τ) ≥ Tm) is the probability

of a successful transmission by user k with MCS m for a

feedback delay of τ . Its expression in terms of the bivariate
CDFs of γ(m)

eff (t) and γ
(m)
eff (t+ τ), and γ

(m+1)
eff (t) and γ

(m)
eff (t+

τ) is given in (4). Using (25) the expression for P (Rk(t) =

rm, γ
(k,m)
eff (t+ τ) ≥ Tm) is given by (30), shown at the bottom

of page, where ξ
(k,i)
m1,m2 = r

(k,i)
m1,m2(s

(k,i)
m1,m2p

(k,i)
m1,m2)

−1.
We now evaluate P (St = k|Rk(t) = rm) for each scheduler,

which together with (30) yields the expression for C(τ).
Result 3: The expression for the conditional probability

P (St = k|Rk(t) = rm) is as follows:
RR scheduler: P (St = k|Rk(t) = rm) = 1/K.
Greedy scheduler: It is given by

P (St = k|Rk(t) = rm)

=

K−1∑
v=1

1

v + 1

K∑
n1=1
n1 �=k

· · ·
K∑

nv=nv−1+1

nv �=k

∏
g∈{n1,...,nv}

×
[
NGH∑
i=1

w̃i

{
Γinc

(
q
(g,i)
m+1,m,

Tm+1

s
(g,i)
m+1,m

)

−Γinc

(
q(g,i)m,m,

Tm

s
(g,i)
m,m

)}]

×
K∏

h=1
h �∈{k,n1...,nv}

[
NGH∑
i=1

w̃iΓinc

(
q(h,i)m,m,

Tm

s
(h,i)
m,m

)]

+

K∏
g=1
g �=k

[
NGH∑
i=1

w̃iΓinc

(
q(g,i)m,m,

Tm

s
(g,i)
m,m

)]
. (28)

MPF scheduler: Let mgk denote the index of the highest rate
that is strictly less than rmE[Rg(t)]/E[Rk(t)]. Then,

P (St = k|Rk(t) = rm)

=
K∏

g=1
g �=k

[
NGH∑
i=1

w̃iΓinc

(
q
(g,i)
mgk+1,mgk+1,

Tmgk+1

s
(g,i)
mgk+1,mgk+1

)]
.

(29)

Proof: The proof is relegated to Appendix D.

P
(
Rk(t) = rm, γ

(k,m)
eff (t+ τ) ≥ Tm

)

≈
NGH∑
i=1

w̃i

∞∑
j=0

⎧⎪⎨
⎪⎩
(
1− ξ

(k,i)
m,m

)j (
ξ
(k,i)
m,m

)q(k,i)
m,m

Γ
(
j + q

(k,i)
m,m

)
j!Γ
(
q
(k,i)
m,m

) Γinc

(
j + q(k,i)m,m,

Tmp
(k,i)
m,m

r
(k,i)
m,m

)
Γinc

(
j + q(k,i)m,m,

Tms
(k,i)
m,m

r
(k,i)
m,m

)

−

(
1− ξ

(k,i)
m+1,m

)j (
ξ
(k,i)
m+1,m

)q(k,i)
m+1,m

Γ
(
j + q

(k,i)
m+1,m

)
j!Γ
(
q
(k,i)
m+1,m

) Γinc

(
j + q

(k,i)
m+1,m,

Tm+1p
(k,i)
m+1,m

r
(k,i)
m+1,m

)

× Γinc

(
j + q

(k,i)
m+1,m,

Tms
(k,i)
m+1,m

r
(k,i)
m+1,m

)⎫⎪⎬
⎪⎭+

NGH∑
i=1

w̃i

[
Γinc

(
q
(k,i)
m+1,m,

Tm+1

s
(k,i)
m+1,m

)
−Γinc

(
q(k,i)m,m,

Tm

s
(k,i)
m,m

)]
(30)
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Fig. 5. Independent subcarriers: Average throughput as a function of normal-
ized delay for different average SNRs (Nsc = 24 and D = 2 (SISO)).

Fig. 6. RA channel: Average throughput as a function of normalized delay for
different per-link average SNRs (Nsc = 24 and D = 2 (SISO)).

IV. NUMERICAL RESULTS

We present Monte Carlo simulation results that average over
4× 104 samples to evaluate the accuracy of the throughput
analysis and investigate the effects of different system param-
eters. We use Nsc = 24 subcarriers and BLERt = 0.1 [2], [4].
The MCSs specified in the LTE standard are used for AMC.
They are given in [23, Tbl. I] along with the βm values and
SNR thresholds. We have found that NGH = 8 is sufficient to
get results that are accurate up to three orders of magnitude. The
number of terms used to evaluate the infinite series in (21) and
(30) depends on fdτ and the correlation between subcarriers.5

We first show results for the point-to-point scenario and then
for the multi-cell, multi-user scenario.

A. Point-to-Point Scenario

The average throughput as a function of fdτ for different
Tx-Rx link average SNRs σ2 and D = 2 (SISO) is shown
in Fig. 5 for independent subcarriers and in Fig. 6 for the

5For example, for fdτ = 0.1, 20 and 100 terms are sufficient for correlated
and independent subcarriers, respectively. The number of terms increases as
fdτ decreases because the subcarrier SNR is more correlated over time.

Fig. 7. TU channel: Average throughput as a function of normalized delay for
different per-link average SNRs (Nsc = 24 and D = 4 (1 × 2 SIMO)).

Fig. 8. Effect of number of subcarriers on average throughput as a function of
normalized delay (σ2 = 10 dB).

RA channel. Notice the good match between the analysis and
the simulation results in both figures. As fdτ increases, the
average throughput decreases. For independent subcarriers, the
percentage drops are 32%, 22%, and 27% for σ2 = 5 dB,
10 dB, and 20 dB, respectively, when fdτ increases from 0 to
0.3. The corresponding numbers for the RA channel are 59%,
57%, and 54%. Thus, the drop in the throughput with feedback
delay is greater when the subcarriers are more correlated.

The average throughput versus fdτ for the TU channel and
D = 4 (1 × 2 SIMO or 2 × 1 MISO) is shown in Fig. 7.
We again see a good match between analysis and simulations.
Here, the percentage reductions in throughput are 48%, 48%,
and 25%, respectively, for σ2 = 5 dB, 10 dB, and 20 dB. These
reductions turn out to be lower than those for D = 2. It is a
consequence of the spatial diversity achieved by using multiple
antennas at the transmitter/receiver.

We now study the effect of the number of subcarriers and
fdτ on the throughput in Fig. 8. We consider the independent
subcarrier scenario with Nsc = 1, 12, and 24 since this was the
more challenging case for the proposed bivariate EESM model.
We see that as the feedback delay increases, the throughput
decreases more rapidly for Nsc = 1 (narrowband case) than
for Nsc = 24. This is a consequence of the frequency diversity
achieved by transmitting over multiple subcarriers.
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Fig. 9. Independent subcarriers: Cell throughput as a function of normal-
ized delay for different schedulers with and without co-channel interference
(Cell corner SNR = 5 dB, K = 10, Nsc = 24, and D = 2 (SISO)).

Fig. 10. RA channel: Cell throughput as a function of normalized delay
for different schedulers with and without co-channel interference (Cell corner
SNR = 5 dB, K = 10, Nsc = 24, and D = 2 (SISO)).

B. Multi-Cell, Multi-User Scenario

We consider a hexagonal cellular layout with M = 6 first-
tier BSs as the co-channel interfering cells. The cell radius is
R = 10d0 and the number of users in a cell is K = 10. The kth
user is located at a distance of Rk/K from the BS and at an
azimuth of 2πk/K. Such a user placement makes the channels
at different locations in the cell from the serving and interfering
BSs statistically heterogeneous. We set Nsc = 24, σshad =
8 dB, η = 3.7, and PS/PN = 42 dB, which corresponds to a
cell corner SNR of 5 dB.

Figs. 9 and 10 plot the cell throughput against fdτ for
independent subcarriers and for the RA channel, respectively.
Notice the good match between the analysis and the simulation
results in both figures. This verifies the accuracy of the pro-
posed mixture model as well as the cell throughput analysis. For
independent subcarriers with greedy, RR, and MPF schedulers,
the cell throughput respectively decreases by 14%, 20%, and
31% in the single-cell scenario, and by 18%, 24%, and 33%
in the multi-cell scenario, when fdτ increases from 0 to 0.3.
Similar trends arise in the RA channel as well. We see that
for all the schedulers, the drop in throughput is higher in the
presence of co-channel interference.

The greedy scheduler has the least drop in throughput be-
cause it schedules users closer to the BS, which often report
the higher rate MCSs. This minimizes the loss due to under-
estimation or overestimation of the MCSs. The RR scheduler’s
throughput is also relatively less sensitive to feedback delays
because it does not use channel state information for schedul-
ing. The MPF scheduler suffers the most for the following
reason. It typically schedules a user when its reported rate
is much higher than its fading-averaged value. However, the
channel gain is most likely to fall after these time instances [24],
which increases the odds of an outage.

V. CONCLUSION

We presented a general analytical framework to characterize
the impact of feedback delay on EESM-based wideband link
adaptation in OFDM systems that operate over frequency-
selective channels. In the process, we also developed an accu-
rate statistical model for the time evolution of effective SNR.
We proposed a novel bivariate gamma distribution for it in a
point-to-point scenario and generalized it to a novel bivariate
gamma mixture distribution in a multi-cell, multi-user scenario.
These models apply to different multiple antenna diversity
modes and different schedulers.

We saw that the throughput was more sensitive to feedback
delays for less dispersive multipath channels and for lower
diversity multiple antenna modes. Further, the cell throughput
degradation due to feedback delays depended on the scheduler.
The MPF scheduler suffered the most degradation as the odds
of an outage were higher for it. An interesting avenue for
future work is considering power adaptation in addition to rate
adaptation and scheduling to maximize the throughput or the
energy efficiency of the system.

APPENDIX A
PROBABILITY OF SUCCESSFUL TRANSMISSION

WITH MCS m

We simplify the expression for the probability of successful
transmission with MCS m in (3) by dropping some of the events
and, thus, replacing it with its upper bound:

P (mopt(t) = m) ≈ P
(
γ
(m)
eff (t) ≥ Tm, γ

(m+1)
eff (t) < Tm+1,

γ
(m)
eff (t+ τ) ≥ Tm

)
. (31)

Notice that the expression in (31) still requires the joint distri-
bution of γ(m)

eff (t), γ(m+1)
eff (t), and γ

(m)
eff (t+ τ), whose closed-

form is unknown. We circumvent this challenge as follows.
Using the law of total probability, we get

P
(
γ
(m)
eff (t) ≥ Tm, γ

(m+1)
eff (t) < Tm+1, γ

(m)
eff (t+ τ) ≥ Tm

)
= P
(
γ
(m)
eff (t) ≥ Tm, γ

(m)
eff (t+ τ) ≥ Tm

)
− P
(
γ
(m)
eff (t) ≥ Tm, γ

(m+1)
eff (t)

≥ Tm+1, γ
(m)
eff (t+ τ) ≥ Tm

)
. (32)
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Then, the probability P (γ
(m)
eff (t) ≥ Tm, γ

(m+1)
eff (t) ≥ Tm+1,

γ
(m)
eff (t+ τ) ≥ Tm) in (32) is replaced with the upper bound

P (γ
(m+1)
eff (t) ≥ Tm+1, γ

(m)
eff (t+ τ) ≥ Tm). The resulting ex-

pression is then substituted in (31) to yield (4).

APPENDIX B
BRIEF DERIVATION OF MOMENTS OF

Ym1
(t) AND Ym2

(t+ τ)

The means of Ym1
(t) and Ym2

(t+ τ) are derived in [18],
and are not shown here. Here, we derive the cross-correlation
between Ym1

(t) and Ym2
(t+ τ) and the second moment. The

cross-correlation is given by

E [Ym1
(t)Ym2

(t+ τ)]

=
1

N2
sc

Nsc∑
i=1

Nsc∑
j=1

E

[
e

(
− γi(t)

βm1
− γj(t+τ)

βm2

)]
, (33)

=
1

N2
sc

Nsc∑
i=1

Nsc∑
j=1

Ψγi(t),γj(t+τ)(β
−1
m1

, β−1
m2

). (34)

The joint MGF of γi(t) and γj(t+ τ) is given by (8) with q =
D/2, s = 2a, p = 2a, and r = 4a2(1− ρ(τ)|Cij |2), which
when substituted in (34) yields (18). Substituting τ = 0 in (18)
yields the expression for the second moment in (17).

APPENDIX C
MGF OF Ω

(n)
k (t)

The MGF Ψ
Ω

(n)

k
(t)
(z) of Ω(n)

k (t) is given by Ω
(n)
k (t)(z) =

E

[
exp
(
−z
{∑M

j=1
PS

PN
αjk|h(n,k,j)

11 (t)|2 + 1
})]

. Since the

channel gains of interfering links from different BSs are in-
dependent, we get Ψ

Ω
(n)

k
(t)
(z) = exp(−z)

∏M
j=1 Ψj(z), where

Ψj(z) = E

[
exp

(
−z PS

PN
αjk

∣∣∣h(n,k,j)
11 (t)

∣∣∣2)] and is evaluated

as follows. Averaging over the lognormal RV αjk, we get

Ψj(z) =

∫ ∞

0

E

[
e
−z

PS
PN

α
∣∣h(n,k,j)

11 (t)
∣∣2] e− (log(α)−μjk)

2

2σ2
shad

√
2πσshadα

dα.

(35)

The RV |h(n,k,j)
11 (t)|

2
is exponentially distributed. Therefore,

E

[
exp

(
−z PS

PN
α
∣∣∣h(n,k,j)

11 (t)
∣∣∣2)] = (1 + z PS

PN
α
)−1

. Using

the variable substitution ω =
log(α)−μjk√

2σshad
in (35) followed by

Gauss-Hermite quadrature, we get

Ψj(z) ≈
NGH∑
i=1

wi√
π

(
1 + z

PS

PN
eμjk+

√
2σshadλi

)−1

. (36)

Substituting (36) in Ψ
Ω

(n)

k
(t)
(z) yields (22).

APPENDIX D
EVALUATING P (St = k|Rk(t) = rm)

1) RR Scheduler: Since the users are scheduled periodically,
the selected user does not depend on Rk(t). Thus, P (St =
k|Rk(t) = rm) = P (St = k) = 1/K.

2) Greedy Scheduler: Let {RΛ(t) = rm} denote the event
that all the users in the set Λ(t) report rate rm at time t. Let
|Λ(t)| denote the cardinality of the set Λ(t), and let Λc(t)
denote its complement. If v other users along with user k
report the same highest rate, for 0 ≤ v ≤ K − 1, then user k
is selected with probability 1/(v + 1). From the law of total
probability, we get

P (St = k|Rk(t) = rm)

=
K−1∑
v=1

1

v + 1

∑
Λ(t)⊂{1,...,K}\{k}

|Λ(t)|=v

× P
(
RΛ(t) = rm, RΛc(t)\{k} < rm|Rk(t) = rm

)
+ P (Rg(t) < Rk(t), ∀g 
= k|Rk(t) = rm) . (37)

Since the rates reported by the users are independent, we get

P (St = k|Rk(t) = rm)

=
K−1∑
v=1

1

v + 1

K∑
n1=1
n1 �=k

· · ·
K∑

nv=nv−1+1

nv �=k

∏
g∈{n1,...,nv}

P (Rg(t) = rm)

×
K∏

h=1
h �∈{k,n1,...,nv}

P (Rh(t)< rm)+

K∏
g=1
g �=k

P (Rg(t)< rm) .

(38)

Using the bivariate gamma mixture model for EESM in (25),
the probability that user k reports rate rm is given by

P (Rk(t) = rm)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑NGH

i=1 w̃iΓinc

(
q
(k,i)
1,1 , T1

s
(k,i)
1,1

)
,m = 0,

∑NGH

i=1 w̃i

[
Γinc

(
q
(k,i)
m+1,m, Tm+1

s
(k,i)
m+1,m

)

−Γinc

(
q
(k,i)
m,m, Tm

s
(k,i)
m,m

)]
, 1 ≤ m ≤ L.

(39)

Substituting (39) in (38) yields the desired expression in (28).
3) MPF Scheduler: User k is scheduled if it has the highest

ratio of the rate reported to its average rate. Since this ratio is a
real number, ties between users occur with zero probability and
need not be considered. Thus,

P (St = k|Rk(t) = rm)

= P

(
Rg(t)

ERg(t)
<

Rk(t)

ERk(t)
, ∀g 
= k|Rk(t) = rm

)
. (40)
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Since the rates reported by the users are independent, we
get P (St = k|Rk(t) = rm) =

∏K
g=1
g �=k

P (Rg(t) < rmgk
), where

mgk is defined in the result statement. Evaluating these proba-
bilities using (39) yields the desired expression in (29).
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