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Best-M Feedback in OFDM: Base-Station-Side
Estimation and System Implications

Jobin Francis, Neelesh B. Mehta, Senior Member, IEEE, and S. N. Ananya

Abstract—Reduced feedback schemes play a critical role in
orthogonal frequency division multiplexing-based cellular systems
because they facilitate scheduling and rate adaptation by the base
station (BS) while reducing the number of subchannels for which
channel state information is fed back by the users. We address the
problem of reliable transmission even on subchannels that are fed
back by a few users due to feedback constraints. For the practi-
cally relevant best-M feedback scheme, in which each user reports
only its M strongest subchannels to the BS, we derive a nonlinear
constrained minimum mean square error estimator that enables
the BS to estimate the signal-to-noise-ratios of all the subchannels
of every user. We then propose two lower computational com-
plexity approaches that incur a negligible loss in performance.
The novelty of these approaches lies in their exploitation of the
structure of the best-M feedback information and the correlation
among subchannel gains. Applications to general channel models
and to quantized feedback are also shown. In terms of system-
level impact, the proposed approaches improve the cell throughput
compared to several conventional approaches – without requir-
ing any additional feedback – for uncorrelated and correlated
subchannels, and for various schedulers.

Index Terms—Best-M feedback, Estimation, Mean square error,
OFDM, Rate adaptation, Scheduling.

I. INTRODUCTION

T ECHNIQUES such as channel-aware scheduling and rate
adaptation have enabled orthogonal frequency division

multiplexing (OFDM)-based cellular systems to offer high data
rates to many users [1]. In these systems, several contiguous
subcarriers are grouped into subchannels, with the bandwidth of
a subchannel typically being less than the coherence bandwidth
of the channel. For each subchannel, the base station (BS) deter-
mines the user to transmit to and the corresponding rate. For
example, in the Long Term Evolution (LTE) standard, twelve
subcarriers are grouped together into a physical resource block
(PRB) of bandwidth 180 kHz [2], which is the basic unit of
resource allocation.

In order to implement user scheduling and rate adaptation
on the downlink, the BS ideally needs to know the signal-to-
noise ratios (SNRs) of all the users for all the subchannels.
This channel state information (CSI) needs to be fed back
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by the users to the BS in frequency-division duplexing sys-
tems since the uplink and downlink channels are not reciprocal.
Feedback is also necessary in time-division duplexing systems
when the uplink and downlink interferences or the transmit and
receive radio frequency chains are not symmetric. Such a large
feedback overhead, which increases as the number of users or
subchannels increases, lowers the overall spectral efficiency of
the system and can overwhelm the uplink.

In order to markedly reduce the feedback overhead, several
schemes have been proposed in the OFDM literature. They
either restrict the number of subchannel gains that are fed back
by a user or the number of users that feed back CSI or both.
We first briefly survey these schemes, their limitations, and how
they have been addressed. We shall say that a user has reported
a subchannel when it has fed back CSI about it.

A. Literature on Limited Feedback Schemes

In the threshold-based feedback scheme in [3], a user reports
a subchannel only if the subchannel’s SNR exceeds a thresh-
old. In [4], only one bit is fed back for a subchannel to indicate
whether its SNR is above the threshold or not. Another practi-
cally important scheme is the best-M scheme [5]–[9]. In it, each
user reports the CSI of its M largest subchannels. Typically, M
is much smaller than the number of subchannels in order to sig-
nificantly reduce the feedback overhead [10], [11]. In [12], the
best-M scheme is combined with a feedback scheme in which
a user feeds back the CSI of a subchannel only if the through-
put achievable on it exceeds a threshold. In [13], subcarriers are
clustered into groups and only one bit is reported for a group
if all its subcarrier SNRs exceed a pre-specified threshold.
Subcarrier clustering for multiple antenna systems is studied in
[14]. A contention-based random access protocol is instead pro-
posed in [15] to limit the number of users that feed back CSI.
Subcarrier clustering and a threshold-based contention scheme
are considered together in [13]. In [16], the users adjust their
feedback depending on the number of subchannels allocated to
them in the past.

B. Shortcomings of Limited Feedback Schemes and Solutions

Reducing the feedback overhead increases the odds that
some of the subchannels are not reported by any of the users. In
[4]–[6], [8], [9], [13], [17], when no user reports a subchannel,
the BS does not transmit data on that subchannel as it does not
know the gain of that subchannel for any user. This reduces
the spectral efficiency. Such a scenario can arise even in the
contention-based scheme of [15] if none of the users success-
fully transmit during the contention period. To address this
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shortcoming, in [3], the BS requests feedback from all the users
when no user reports a subchannel. However, this increases the
feedback delay and entails an additional signaling overhead.
This problem is partially addressed in [18] using a technique
called Data method. Instead of no transmission, it assigns a
subchannel not reported by any user to the user selected for
an adjacent subchannel, but transmits at a rate lower than that
for the adjacent subchannel.

The second problem is that the approaches in [4]–[6], [8],
[9], [13], [17] only select a user for a subchannel from among
those that reported it. This limits the ability of the BS to exploit
multi-user diversity when few users report a subchannel.

C. Focus and Contributions

In this paper, we address the relatively less studied prob-
lem of transmitting reliably on subchannels regardless of the
number of users that report them. Specifically, for the best-
M scheme, we develop a novel minimum mean square error
(MMSE) estimator that enables the BS to estimate the SNRs
of the unreported subchannels. It improves the effectiveness of
rate adaptation and scheduling at the BS. Our approach incorpo-
rates the CSI fed back by the best-M scheme and the correlation
across subchannels, which can be significant even in multipath
channels that are considered dispersive [9], to methodically
estimate and transmit on unreported subchannels. This is rele-
vant for fourth generation cellular standards such as LTE, which
employ a variant of the best-M scheme [2].

We make the following specific contributions:
• Closed-Form MMSE Estimator: We first derive in closed-

form the MMSE estimator for the SNR of an unreported
subchannel, when the subchannel gains are independent.
We then generalize our approach to correlated subchan-
nel gains for the exponential correlation model [19]–[21].
The derivation of the estimator exploits the conditional
independence of the subchannel SNRs, which is referred
to as the Markov property in [21]. It enables the estima-
tor to be written in terms of at most three of the reported
SNRs instead of all M of them.

• Lower Computational Complexity Techniques: We
develop two approaches to significantly reduce the
computational complexity of the above estimator:
1) Windowing Approach: This approach exploits the

exponentially decaying nature of the subchannel cor-
relation, and neglects the correlation between sub-
channels that are separated by at least Nw subchan-
nels. Here, Nw is a parameter that trades off between
computational complexity and accuracy. Only an
(Nw + 1)-dimensional joint PDF, instead of an N -
dimensional joint PDF, is needed to compute the
estimates.

2) Nearest Reported Subchannel Reduction (NRSR)
Approach: In it, the estimation problem is reduced
to one consisting of only two correlated subchan-
nels, namely, the unreported subchannel and the
reported subchannel nearest to it. As we show, this
incurs a negligible degradation in mean square error

(MSE) compared to the MMSE estimator even at
high correlations.

• Extension to Arbitrary Subchannel Correlation Models:
Obtaining the MMSE estimator for an arbitrary subchan-
nel correlation model is, in general, intractable because
the joint PDF of the subchannel SNRs involves mul-
tiple integrals [19]. However, we show that the NRSR
approach is applicable to any channel power delay pro-
file (PDP). Results are shown for the widely used typical
urban (TU) and rural area (RA) channels [2].

• System Impact and Benchmarking: We then study the
system-level cell throughput implications of the proposed
estimators, which enable the BS to determine the transmit
rate for unreported subchannels. This allows the sched-
uler at the BS to possibly assign a subchannel to a user
who could not report the subchannel due to feedback con-
straints. For three frequency-domain schedulers, which
span a wide range of the trade-off between cell throughput
and fairness, the proposed approaches improve the cell
throughput compared to the approaches pursued in [5],
[6], [8], [18]. Notably, these gains are obtained without
any additional feedback.

• Quantized Feedback: We also extend the NRSR approach
to handle quantized feedback, which is used in practice,
and show that it incurs a negligible loss in cell throughput.

D. Differences With Conventional OFDM Channel Estimation
and Related Works

We note that our problem is different from the classical prob-
lem of estimating the subchannel gains in an OFDM system
using pilots transmitted by the BS in some pre-specified sub-
channels [22]. There, the MMSE estimator of the subchannel
gain is a linear function of the signals received on the pilot
subchannels since the complex baseband subchannel gains are
jointly Gaussian. However, in our problem, the MMSE estima-
tor turns out to be a non-linear function of the observations. The
analytical techniques that lead to it are also quite different. An
approach with a motivation similar to ours is studied in [23],
where the transmission parameters are optimized to maximize
the throughput when temporal subsampling is used to reduce
the feedback. Since the limited feedback scheme in [23] is dif-
ferent from ours, the modeling and analysis in it are different
as well.

E. Organization and Notation

The paper is organized as follows. The system model is
discussed in Section II. The MMSE estimator is derived in
Section III. The system throughput implications are presented
in Section IV. Our conclusions follow in Section V.

Notations: The probability of an event A is denoted
by P [A]. The PDF of a random variable (RV) X is
denoted by fX (·), and the conditional PDF of RV X given
Y = y by fX (·|Y = y). Expectation with respect to X is
denoted by EX [·] and the expectation conditioned on an
event A by EX [·|A]. The subscript is dropped when obvi-
ous from context. The notation p (X = x, A) is defined



3618 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 5, MAY 2016

Fig. 1. Illustration of best-M feedback by K = 3 users and estimation at the
BS (N = 4 and M = 1). Cross marks (×) denote the subchannels that are fed
back.

as lim�x→0 P [x < X ≤ x + �x, A] /�x . Further, |c| and c∗
denote the absolute value and the complex conjugate of c,
respectively. The complement of a set A is denoted by Ac.

II. SYSTEM MODEL

Consider a cell with K users. The system bandwidth is
divided into N orthogonal subchannels. The BS and the users
are equipped with a single antenna. We focus on the single
antenna case since BS-side estimation for the best-M scheme
is novel and challenging even for this case. The system model
is illustrated in Fig. 1.

A. Channel Model

For subchannel n, let Hk,n denote the complex baseband
channel gain from the BS to user k. We assume Rayleigh fad-
ing. Thus, Hk,n is a circularly symmetric complex Gaussian
RV with zero mean and variance 2σ 2

k . The subchannel SNRs
are statistically identical but correlated, which follows from
the uncorrelated scatterers assumption that is prevalent in
most channel models [1]. Therefore, γk,n = |Hk,n|2, for 1 ≤
n ≤ N , are exponential RVs with mean 2σ 2

k , which cap-
tures the effect of thermal noise and inter-cell interference.
Let �k = [γk,1, . . . , γk,N ]. The subchannel gains are assumed
to be independent across the users because the users are
located sufficiently far apart from each other. However, they
need not be statistically identical since the users are at dif-
ferent distances from the BS or their noise variances are
different.

We assume the exponential correlation model for the sub-
channel baseband gains [21]. As per this model, the covari-

ance between Hk,n and Hk,m is given by E

[
Hk,n H∗

k,m

]
=

2σ 2
k ρ|n−m|, where ρ is the correlation coefficient. This corre-

lation model is often used in the literature [19]–[21] because it
is tractable and it captures the decrease in correlation between
the subchannels as their separation increases. Subsequently, in
Section III-D, we propose an approach that can accommodate
any correlation model.

The joint PDF of N correlated subchannel SNRs �k of a user
k is given by [21]

f�k (x1, . . . , xN )

=
exp

(
− 1

2σ 2
k (1−ρ2)

[
x1 + xN + (1 + ρ2)

∑N−1
i=2 xi

])
2N σ 2N

k (1 − ρ2)N−1

×
∞∑

n=0

δ2n

4n

∑
0≤l1≤···≤lN−1≤n
l1+l2+···+lN−1=n

xl1
1 xl1+l2

2 . . . xlN−2+lN−1
N−1 xlN−1

N

(l1!l2! . . . lN−1!)2
,

for xi ≥ 0, i = 1, . . . , N , (1)

where δ=ρ/(σ 2(1 − ρ2)). For ρ = 0, the subchannel
SNRs are mutually independent. For ρ > 0, the subchan-
nel SNRs exhibit the following Markov property [21],
which we shall exploit in this paper. Let �

− j
k = [γk,1, . . . ,

γk, j−1, γk, j+1, . . . , γk,N ]. Conditioned on γk, j , for 1 < j < N ,

the joint PDF of �
− j
k factors as follows:

f
�

− j
k

(x1, . . . , x j−1, x j+1, . . . , xN |γk, j = x j )

= fγk,1,...,γk, j−1(x1, . . . , x j−1|γk, j = x j )

× fγk, j+1,...,γk,N (x j+1, . . . , xN |γk, j = x j ). (2)

The statistical parameters σ and ρ are assumed to be known
at the BS. The BS can either obtain them from the users via
infrequent feedback, since these are slowly varying quantities,
or can learn them from the uplink channel measurements by
exploiting statistical reciprocity because the fading distribu-
tions of the uplink and downlink channels are the same.

B. Best-M Feedback Scheme

In it, each user orders its subchannels according to their
SNRs. For a user k, the ordered subchannel SNRs are denoted
as γk,i1 ≥ γk,i2 ≥ · · · ≥ γk,iN , where ir indexes the subchan-
nel with the r th largest SNR. The users are assumed to know
their subchannel SNRs without error [3]–[7], [13]. In LTE, for
example, these are obtained using the common and dedicated
pilots that are periodically transmitted by the BS. User k then
feeds back its M largest subchannel SNRs, γk,i1 , . . . , γk,iM ,
along with their subchannel indices i1, . . . , iM to the BS [5],
[9], [17]. Extension to quantized feedback is investigated in
Section III-E.

C. Simplifications and Discussion

We note that while LTE motivates several aspects of the
model studied in this paper, not all aspects of LTE are modeled.
For example, acknowledgement (ACK), no ACK (NACK) feed-
back, hybrid automatic repeat request (HARQ), outer loop link
adaptation, wideband channel quality feedback [24], and ensur-
ing that same modulation and coding scheme (MCS) is used
on all the PRBs allocated to a scheduled user are not mod-
eled. Such simplifications are necessary in order to arrive at a
tractable and analytically insightful model and have also been
made in [6], [7], [9], [17], [23].
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III. MMSE ESTIMATOR AT BS FOR BEST-M FEEDBACK

In this section, we develop an MMSE estimator for the
SNR of an unreported subchannel for any given user. For ease
of exposition, we shall drop the user index from the sub-
scripts in this section. Consequently, let IM = {i1, i2, . . . , iM }
denote the set of indices of the reported subchannels, and the
reported SNRs are γi1 = xi1 , . . . , γiM = xiM . Given these, the
MMSE estimator γ̂ j of the SNR of an unreported subchannel
j ∈ Ic

M can be shown from first principles to be the following
conditional mean [25]:

γ̂ j = E
[
γ j |γu = xu,∀u ∈ IM ; γv < xiM ,∀v ∈ Ic

M

]
. (3)

We shall refer to it as the constrained MMSE (CMMSE) esti-
mator. It incorporates the ordering information, which is that
γ j is less than the lowest reported SNR xiM , and the correla-
tion information, which is obtained from the conditioning on
the SNRs of other correlated subchannels.

Using the theorem of expectation, we get

γ̂ j =
∫ ∞

0
y fγ j

(
y|γu = xu,∀u ∈ IM ; γv < xiM ,∀v ∈ Ic

M

)
dy,

(4)
where fγ j

(
y|γu = xu,∀u ∈ IM ; γv < xiM ,∀v ∈ Ic

M

)
is the

PDF of the unreported subchannel SNR γ j conditioned on the
reported subchannel SNRs and their indices, and the fact that
the SNRs of the unreported subchannels are less than xiM .
Using Bayes’ rule, we get

γ̂ j =
∫∞

0 yp
(
γ j = y, γu = xu,∀u ∈ IM , γv < xiM ,∀v∈ Ic

M

)
dy

p
(
γu = xu,∀u ∈ IM , γv < xiM ,∀v∈ Ic

M

) .

(5)
We now derive the CMMSE estimator in closed-form.

A. Independent Subchannel Gains

To build intuition, we first study the scenario in which the
subchannel gains are independent.

Result 1: The CMMSE estimator γ̂ j of subchannel j ∈ Ic
M ,

given the set of reported indices IM and the corresponding
SNRs γi1 = xi1 , . . . , γiM = xiM , is given by

γ̂ j =2σ 2 − xiM

exp
(

xiM
2σ 2

)
− 1

. (6)

Proof: Since the subchannel SNRs are independent, the
joint probability terms in (5) factor as

γ̂ j =
∫∞

0 yp
(
γ j = y, γ j < xiM

) [∏
u∈IM

p (γu = xu)
]

dy

p
(
γ j < xiM

) [∏
u∈IM

p (γu = xu)
]

×
∏

v∈Ic
M , v 	= j p

(
γv < xiM

)∏
v∈Ic

M , v 	= j p
(
γv < xiM

) . (7)

Canceling common terms, we get

γ̂ j =
∫∞

0 yp
(
γ j = y, γ j < xiM

)
dy

p
(
γ j < xiM

) . (8)

Since subchannel SNR γ j is an exponential RV with mean
2σ 2, p

(
γ j < xiM

)
and

∫∞
0 yp

(
γ j = y, γ j < xiM

)
dy evaluate

to 1 − exp(−xiM /(2σ 2)) and 2σ 2(1 − exp(−xiM /(2σ 2))) −
xiM exp(−xiM /(2σ 2)), respectively. Substituting these in (8)
yields (6). �

As shown in Appendix B, the MSE of the above estimator
for an unreported subchannel j is given in closed-form as

MSE=4σ 4
(

1 + N�(M, N )

N − M
− N (N − 1)� (M, N − 1)

(N − M)(N − M − 1)

)
,

(9)

where �(i, j) = 	(1)(i) − 	(1)( j) +
(∑ j−1

l=i l−1
)2

and

	(1)(·) is the trigamma function [26, Table 6.1].
Observations: Notice that γ̂ j depends only on the lowest

reported SNR and is a non-linear function of it. Further, it does
not depend on N and j . Thus, the SNR estimate is the same for
all the unreported subchannels. This behavior is unlike conven-
tional OFDM estimation in which the estimator is not a function
of any other subchannel gain when the subchannel gains are
independent. Further, the ratio MSE/(4σ 4) is independent of
the average subchannel SNR 2σ 2.

B. Correlated Subchannel Gains

For a subchannel j , let jl = argmini∈IM ,i< j { j − i} and jh =
argmini∈IM ,i> j {i − j} denote the indices of the reported sub-
channels that are nearest to it and are respectively lower and
higher than j . If subchannel j does not have a lower reported
index, then we define jl = 0 and its SNR as x jl = 0. Similarly,
if subchannel j does not have a higher reported index, then
jh = N + 1 and x jh = 0. The following is a key result for the
CMMSE estimator.

Result 2: The CMMSE estimator γ̂ j of subchannel j ∈ Ic
M ,

given the set of reported indices IM and the corresponding
SNRs γi1 = xi1 , . . . , γiM = xiM , is given in closed-form as

γ̂ j = A j

B j
, (10)

where

A j =
∞∑

n=0

δ2n

4n

∑
0≤q jl ,...,q jh−1≤n
q jl +...+q jh−1=n

x
q jl
jl

x
q jh−1

jh
�inc

(
η j xiM , q j−1+q j +2

)
η j

[∏ jh−1
r= jl

(qr !)2 η
qr−1+qr +1
r

]

×
jh−1∏

r= jl+1,r 	= j

�inc
(
ηr xiM , qr−1+qr +1

)
, (11)

B j =
∞∑

n=0

δ2n

4n

∑
0≤q jl ,...,q jh−1≤n
q jl +...+q jh−1=n

x
q jl
jl

x
q jh−1

jh

η j

[∏ jh−1
r= jl

(qr !)2 η
qr−1+qr +1
r

]

×
jh−1∏

r= jl+1

�inc
(
ηr xiM , qr−1+qr +1

)
, (12)

�inc (x, a) = ∫ x
0 ta−1e−t dt = (a − 1)!

[
1 − e−x ∑a−1

k=0 xk/k!
]

is the incomplete gamma function [26, Table 6.5] for
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integer a. Here, ηr =1/(2σ 2(1 − ρ2)), for r = 1, N , and
ηr =(1 + ρ2)/(2σ 2(1 − ρ2)), for r = 2, . . . , N − 1.

Proof: The proof is relegated to Appendix A. �
Discussion: We note that the expressions for A j and B j

only involve the SNRs x jl , x jh , and xiM . Also, the inner sum-
mation is only over jh − jl variables q jl , . . . , q jh−1. This is
unlike (1) in which the inner summation is over N − 1 vari-
ables. This is an outcome of our exploitation of the Markov
property of the exponential correlation model. Consequently,
for the nth term in the infinite series, the number of terms in the
inner summation decreases from (n + N − 2)!/(n!(N − 2)!) to
(n + jh − jl − 1)!/ (n!( jh − jl − 1)!). Finally, the estimator γ̂ j

is a non-linear function of x jl , x jh , and xiM . The result above
serves as a novel and fundamental theoretical benchmark to
evaluate the efficacy of the reduced complexity approaches that
we propose next.

C. Reducing Computational Complexity of CMMSE Estimator

Despite the fact that the CMMSE estimator in (10) is
in closed-form and the Markov property of the subchannel
SNRs helps to simplify it, it is still computationally inten-
sive for two reasons. First, both the numerator in (11) and
the denominator in (12) involve evaluating an infinite series.
Further, the presence of the (1 − ρ2) term in the denomi-
nator in δ and ηr results in a slower decay of the infinite
series for larger ρ. Second, for the nth term in the infinite
series, (n + jh − jl − 1)!/ (n!( jh − jl − 1)!) terms need to be
evaluated. Since this is exponential in n and ( jh − jl), the com-
putational complexity becomes prohibitively high for larger N .
To address this, we present two approaches.

1) Windowing Approach: In it, the correlation between sub-
channels that are at least Nw subchannels apart is neglected.
This is motivated by the fact that the correlation between the
subchannels decays exponentially as their separation increases.
The parameter Nw trades off between accuracy and com-
putational complexity. The windowing approach is detailed
below.

Consider an unreported subchannel j . As before, let jl and
jh denote the reported subchannels that are respectively lower
and higher than j and nearest to j . Their SNRs are denoted by
x jl and x jh , respectively. The following four different cases can
occur:

i) jh − jl ≤ Nw + 1: This implies that j − jl ≤ Nw and
jh − j ≤ Nw. In this case, the SNR estimate is exactly
given by (10) because of the Markov property. Since
jh − jl ≤ Nw + 1, the estimate is not computationally
intensive.

ii) j − jl ≤ Nw and jh − j > Nw: Here, the CSI of all
the reported subchannels with indices jh and above is
neglected in computing γ̂ j . This is equivalent to the
scenario where there are no reported subchannels with
indices higher than j and there are Nw subchannels in
total. The SNR estimate is then computed using (10) with
jh replaced by j ′h = jl + Nw + 1 and x jh replaced by
x ′

jh
= 0. Doing so reduces the number of variables to be

summed over in the inner summations in (11) and (12) to
Nw + 1.

iii) jh − j ≤ Nw and j − jl > Nw: This case is similar to
the previous one except that the SNR estimate is com-
puted with j ′l = jh − Nw − 1 and x ′

jl
= 0 instead of jl

and x jl , respectively. Doing so significantly reduces the
complexity just as in the previous case.

iv) j − jl > Nw and jh − j > Nw: Here, the SNR estimate
in (6) is used because subchannel j does not lie within
Nw subchannels of either jl or jh . It corresponds to the
independent subchannel gains scenario, for which the
CMMSE estimator takes a simple form.1

2) NRSR Approach: In this approach, the estimator uses the
ordering information of the best-M scheme, but ignores the cor-
relation with subchannels other than the nearest reported sub-
channel. Doing so reduces the N subchannel problem to a two
subchannel problem consisting of an unreported subchannel
and its nearest reported subchannel.

Let jn and x jn denote the index of the reported subchannel
nearest to subchannel j and its SNR, respectively. Formally,
jn = argmini∈IM

{|i − j |}. Further, let ω j = ρ| j− jn | denote the
correlation coefficient between subchannels j and jn . Then, the
SNR estimate γ̃ j using the NRSR approach is given by

γ̃ j = E
[
γ j |γ jn = x jn , γ j < xiM

]
, (13)

and has the following closed-form expression.
Result 3: The SNR estimate γ̃ j of subchannel j in the NRSR

approach, given the set of reported indices IM and the reported
SNRs xi1 , . . . , xiM , is given by

γ̃ j =
∑∞

l=0
λ2l

j xl
jn

4l (l!)2μl+2
j

�inc
(
μ j xiM , l + 2

)
∑∞

l=0
λ2l

j xl
jn

4l (l!)2μl+1
j

�inc
(
μ j xiM , l + 1

) , (14)

where λ j = ω j/(σ
2(1 − ω2

j )) and μ j = 1/(2σ 2(1 − ω2
j )).

Proof: The proof is relegated to Appendix C. �
Discussion: Note that the estimator above still accounts

for the fact that γ j is lower than the lowest reported SNR
xiM . For the nth term in the infinite series in the numerator
and denominator of (14), only one term needs to be com-
puted unlike (n + jh − jl − 1)!/ (n!( jh − jl − 1)!) terms in the
CMMSE estimator in (10). Since the incomplete gamma func-
tion can be written in a closed-form that involves elementary
functions such as exponentials and polynomials, it can be read-
ily evaluated. Also, it satisfies the recursion: �inc (x, a) = (a −
1)�inc (x, a − 1) − e−x xa−1. It can be used to reduce complex-
ity since �inc(μ j xiM , l + 1) in the denominator of the l th term
in the series can be used to compute �inc(μ j xiM , l + 2) in the
numerator and the denominator of the l th and (l + 1)th terms,
respectively.

D. Extension to General Subchannel Correlations

The NRSR approach can be extended to any other channel
model as shown below. Let (τl , Pl), for l = 1, 2, . . . , L , denote

1Cases ii and iii reduce to Case iv for jl = 0 and jh = N + 1, respectively.
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the PDP of an L-tap channel, where τl and Pl are the delay and
power of the l th tap, respectively [1]. Then, the absolute value
θm,n of the correlation coefficient between subchannels m and
n is given by [1]

θm,n =
∣∣∣∑L

l=1 Pl exp
(
− 2π iτl Fs Nc(m−n)

Nfft

)∣∣∣∑L
l=1 Pl

, (15)

where Fs is the sampling frequency, Nfft is the order of the fast
Fourier transform, Nc is the number of contiguous subcarriers
in a subchannel, and i = √−1.

For an unreported subchannel j , the correlation coefficient
with respect to its nearest reported subchannel jn can then
be computed using (15) with m = j and n = jn . Thus, ω j =
θ j, jn . Given ω j , the SNR estimate γ̃ j for subchannel j can be
computed using (14).

E. Extension to Quantized Feedback

We now study the practical scenario in which the SNRs fed
back by the best-M scheme are quantized. In such a case, the
maximum rate MCSs that can be reliably supported on each of
the subchannels with the M largest SNRs and their subchan-
nel indices are reported to the BS [6], [8]. The MCS is selected
from a pre-specified set of S MCSs with rates 0 = R1 < R2 <

· · · < RS . An MCS s with rate Rs has an associated rate adap-
tation threshold, denoted by Ts , such that MCS s is selected
on a subchannel n if γn ∈ [Ts, Ts+1) [1]. Here, T1 = 0 and
TS+1 = ∞.

Let Zn denote the rate of the MCS reported on subchannel
n. Then, the MMSE estimator γ̂ j for the SNR of an unreported
subchannel j , given Zi1 = Rs1 , . . . , ZiM = RsM , is

γ̂ j = E
[
γ j |Zu = Rsu ,∀u ∈ IM ; γv <γiM ,∀v ∈ Ic

M

]
,

= E
[
γ j |Tsu ≤γu < Tsu+1,∀u ∈ IM ; γv <γiM ,∀v ∈ Ic

M

]
.

(16)

Computing (16) is even more challenging than computing
(3). Therefore, we extend the NRSR approach to handle this
scenario. As in Section III-C2, the SNR estimate γ̃ j using the
NRSR approach with quantized feedback is given by

γ̃ j = E
[
γ j
∣∣Ts jn

≤ γ jn < Ts jn +1,

TsiM
≤ γiM < TsiM +1, γ j < γiM

]
,

≈ E

[
γ j |Ts jn

≤ γ jn < Ts jn
, γ j < TsiM

]
, (17)

=
∑∞

l=0
λ2l

j xl
jn

4l (l!)2μl+2
j

�inc

(
μ j TsiM

, l + 2
)

∑∞
l=0

λ2l
j xl

jn

4l (l!)2μl+1
j

�inc

(
μ j TsiM

, l + 1
) . (18)

The approximation in (17) conservatively replaces γiM with
the lower threshold TsiM

. Doing so ensures that only the joint
distribution of γ j and γ jn is needed to evaluate (17). The
steps involved in arriving at (18) are similar to those given in
Appendix C, except that xiM is replaced by TsiM

.

Fig. 2. Normalized RMSE (RMSE/(2σ 2)) as a function of correlation coeffi-
cient ρ for different approaches (N = 10 and σ 2 = 4.5 dB).

IV. MSE, SYSTEM IMPACT, AND BENCHMARKING

We now present Monte Carlo simulation results to evaluate
the performance of the proposed BS-side estimators. Since the
CMMSE estimator approach need not be throughput-optimal,
in addition to MSE, we also evaluate system-level performance
measures such as cell throughput to present a more compre-
hensive evaluation. This incorporates important aspects such as
the frequency-domain scheduler, discrete rate adaptation, and
the impact of estimation errors. We employ the windowing
approach described in Section III-C1 with Nw = 3. Increasing
Nw further makes a negligible difference for ρ < 0.9. We have
found that 25 terms of the infinite series in (11) and (12) for
ρ = 0.5 and 65 terms for ρ = 0.75 are sufficient to ensure
numerical accuracy.

A. MSE

Fig. 2 plots the square root MSE (RMSE) divided by 2σ 2,
which we shall refer to as the normalized RMSE, for the unre-
ported subchannels as a function of ρ for the CMMSE estimator
and the NRSR approach. The division by 2σ 2 ensures that
the normalized RMSE is not a function of 2σ 2 (for example,
see (9)). To better understand the role of the CSI fed back in
improving the accuracy of the estimate, we also show the nor-
malized RMSE for the mean-as-estimate (ME) approach, which
ignores the fed back CSI and, thus, sets the SNR estimate of an
unreported subchannel as E

[
γ j
] = 2σ 2.

Even when the subchannel gains are uncorrelated (ρ = 0),
we see that the CMMSE estimator lowers the RMSE by 6.3%,
20%, and 36.4% compared to the ME approach for M = 1, 2,
and 3, respectively. Note that the CMMSE estimator estimates
N − M subchannel SNRs from just M reported subchannel
SNRs. For example, for M = 1, it estimates 9 subchannel
SNRs from just 1 reported subchannel SNR. The RMSE of
the CMMSE estimator decreases rapidly as M increases and
decreases towards zero as ρ increases. On the other hand, the
normalized RMSE of the ME approach increases to unity as
ρ increases. This demonstrates the benefits of taking the CSI
fed back by the best-M scheme into account. The RMSE of
the NRSR approach is within 2% of that of the CMMSE esti-
mator, which verifies its efficacy. The results for the CMMSE
estimator are not shown for ρ > 0.9 because the number of
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terms required to compute it accurately becomes prohibitively
large. However, the NRSR approach does not face such a limita-
tion. Note that the RMSE of the CMMSE estimator marginally
exceeds that of the NRSR approach at ρ = 0.9 because using
Nw = 3 makes the CMMSE estimate sub-optimal at such a
large correlation.

B. System Impact Evaluation and Benchmarking

We now evaluate the impact of using the proposed CMMSE
estimator on the cell throughput, which accounts for both rate
adaptation and scheduling based on the estimates obtained. It
also captures the impact of imperfect estimates. Now, for rate
adaptation and scheduling, the BS can use not just the reported
subchannel SNRs but also the estimates of the SNRs of the
unreported subchannels for each user.

1) Rate Adaptation: We investigate discrete rate adapta-
tion, since it is always used in standards such as LTE [2]. As
mentioned in Section III-E, there are S available MCSs and
S + 1 rate adaptation thresholds. Let rk,n denote the rate
assigned to subchannel n of user k. With perfect CSI,
the rate adaptation scheme assigns rate rk,n = Rs if γk,n ∈
[Ts, Ts+1) [1].

Due to estimation errors, the SNR estimate γ̂k,n for an unre-
ported subchannel n of user k can be different from the actual
SNR γk,n . If γ̂k,n > γk,n , then the transmit rate on subchannel
n can be higher than the rate that can be supported reliably. In
such a case, the user cannot decode the transmitted packet and
the throughput is zero. On the other hand, if γ̂k,n < γk,n , then
the rate chosen can be reliably decoded.

Rate Backoff Technique [27]: To address the above mismatch
in the throughput penalty for underestimating and overestimat-
ing the SNR, a rate backoff technique is used. In it, a rate lower
than that indicated by the rate adaptation scheme is assigned
to an unreported subchannel. The decrement in rate is deter-
mined by the rate backoff. For example, with one-rate backoff,
a one level lower MCS s − 1 is assigned to subchannel n if
γ̂k,n ∈ [Ts, Ts+1), i.e., rk,n = Rs−1.

2) Frequency-Domain Scheduling: The user assigned to a
subchannel depends on the scheduler employed by the BS.
We consider the following three frequency-domain schedulers,
which cover a wide range of the trade-off between cell through-
put and fairness [3], [5], [6], [28], [29]:

• Greedy Scheduler: On subchannel n, it schedules the user
with the largest assigned rate for that subchannel. Let k∗

n
denote the user scheduled on subchannel n. Then,

k∗
n = argmax

1≤k≤K
rk,n . (19)

If multiple users have the same highest rate, then one
among them is chosen with uniform probability.

• Round Robin (RR) Scheduler: It schedules users in a pre-
determined, periodic manner for any subchannel. While it
is time-fair, it does not exploit multi-user diversity.

• Proportional Fair (PF) Scheduler [28], [29]: On sub-
channel n, it schedules the user with the highest PF metric
for that subchannel. The PF metric of a user for any sub-
channel is defined as the ratio of the assigned rate to the

throughput received by the user so far on that subchannel.
Let k∗

n denote the user scheduled on subchannel n. Then,
at time t ,

k∗
n = argmax

1≤k≤K

rk,n

Rk,n(t − 1)
, (20)

where Rk,n(t − 1) is the throughput received by user k on
subchannel n until time t − 1. This scheduler achieves a
trade-off between cell throughput and user fairness.

3) Data Reception Model: We consider an outage based
model in which an outage can occur in two ways. First, a trans-
mission outage occurs when the BS does not transmit any data
due to the lack of CSI.2 Second, a channel outage occurs when
the subchannel SNR is below the threshold Ts if MCS s is cho-
sen for transmission to the scheduled user. In such a case, this
transmission does not contribute to the cell throughput. This
model is physically justified because of the waterfall nature of
the packet error rate curves, and is often used in system-level
performance analyses [6], [9], [17]. Channel outages capture
the impact of estimation errors on the cell throughput.

4) Performance Benchmarking: We benchmark the pro-
posed approaches against the following:

• Conventional Approach [5], [6], [8], [13], [17]: In this
widely used approach, the BS does not transmit on
subchannels that were not reported by any user. Here,
transmission outages can occur but not channel outages.

• ME Approach: As discussed in Section IV-A, this esti-
mator ignores the CSI fed back by the best-M scheme.
Therefore, the unreported subchannel SNRs are set to
be equal to their mean value E

[
γk,n

] = 2σ 2
k . Here, only

channel outages can occur.
• Data Method [18]: A subchannel that is not reported by

any user is assigned to the user selected for its adjacent
subchannel. Its MCS is one level lower than that assigned
to the adjacent subchannel. If the adjacent subchan-
nels are unassigned, then a transmission outage occurs.
Channel outages can also occur on this subchannel.

• Full CSI: The BS is assumed to know the SNRs of all
subchannels for all users. While unrealistic, it provides
an upper limit on the achievable cell throughput.

The Monte Carlo simulation results are obtained by aver-
aging over 5, 000 channel realizations. The S = 16 rates are
as specified in LTE [2, Table 10.1]. These range from R2 =
0.15 bits/symbol to R16 = 5.55 bits/symbol. The rate adap-
tation thresholds are calculated using the formula [30]: Tl =
(2Rl − 1)/ζ , where ζ = 0.398 accounts for the coding loss of
a practical code. We set K = N = 10. We focus on the single-
cell scenario, as has been done in [5]–[8], [13], [17]. To gain
insights, we first consider the case in which the users see sta-
tistically identical channels. The PF and greedy schedulers are
identical in this case. Thereafter, we show results when the
users see statistically non-identical channels.

Fig. 3 plots the cell throughputs of the various approaches for
the greedy scheduler as a function of ρ for M = 1. We see that
one-rate backoff maximizes the cell throughput for ρ ≤ 0.9,

2Instances when the BS decides not to transmit data because the scheduled
user cannot support any non-zero-rate MCS are not considered as outages.
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Fig. 3. Greedy scheduler for M = 1 and statistically identical users: Zoomed-
in view of cell throughput as a function of correlation coefficient ρ for different
approaches (K = 10, N = 10, and σ 2 = 4.5 dB).

Fig. 4. Outage probability as a function of the number of users for the different
approaches (greedy scheduler, statistically identical users, M = 1, N = 10, and
σ 2 = 4.5 dB).

while zero-rate backoff is optimal for ρ > 0.9. This is because
the estimation accuracy increases as ρ increases, thus, avoiding
the need for rate backoff. Two-rate backoff is suboptimal for all
ρ because of its overly conservative choice of MCS. Notice that
the CMMSE estimator approach achieves a higher cell through-
put compared to the other approaches for all ρ. At ρ = 0, the
CMMSE estimator approach with one-rate backoff improves
the cell throughput by 2.3%, 8.3%, and 14.2% compared to
the ME approach, Data method, and conventional approach,
respectively. Thus, exploiting the ordering information given by
the best-M scheme itself yields gains. At ρ = 0.75, the corre-
sponding gains are 11.8%, 5.9%, and 26.1%. In general, the
gains increase as the average SNR increases; the figure for this
is not shown to save space.

We see that the cell throughputs of the ME and conven-
tional approaches decrease as ρ increases. This is because of
the decrease in frequency diversity since the subchannel gains
are likely to be more alike. For the Data method, the choice of
rate based on the adjacent subchannel becomes more accurate
as subchannel correlation increases. Hence, its cell throughput
increases as ρ increases from 0 to 0.9. However, for lower ρ, its
cell throughput is lower than even the simpler ME approach.

Fig. 4 plots the outage probability of the various approaches
as a function of the number of users for M = 1. We see that the
CMMSE estimator approach with one-rate backoff has a lower
outage probability than the conventional approach and the Data
method for ρ = 0 and 0.9. Further, the outage probability is
lower for ρ = 0.9 compared to ρ = 0. This is because the SNR

Fig. 5. RR scheduler for M = 3 with statistically identical users: Cell
throughput as a function of correlation coefficient ρ for different approaches
(K = 10, N = 10, and σ 2 = 4.5 dB).

Fig. 6. Greedy scheduler with statistically identical users: Zoomed-in view of
cell throughput as a function of ρ for unquantized SNR feedback and quantized
feedback from users (K = 10, N = 10, and σ 2 = 4.5 dB).

estimates become more accurate as ρ increases, which lowers
the odds that an incorrect MCS gets chosen for transmission.

Fig. 5 plots the cell throughput for the RR scheduler and
M = 3. Results for M = 1 and 2 are not shown to avoid clutter.
We see that zero-rate backoff is optimal for all values of ρ. Here
again, we see that the CMMSE estimator approach achieves a
higher cell throughput compared to the other approaches. At
ρ = 0, the gains over the ME approach, Data method, and con-
ventional approach are 18.2%, 40.3%, and 58.0%. Further, the
ME approach outperforms the Data method for all values of ρ.

We now comment on the special case of ρ = 1. Here, the sub-
channel gains are equal with probability 1. Hence, the CMMSE
estimates are perfect and the MSE is zero. Therefore, zero-rate
backoff is optimal. Non-zero-rate backoff results in a loss in
cell throughput, as we saw in Figs. 3 and 5.

Efficacy of NRSR Approach: Fig. 6 plots the cell throughputs
of the CMMSE estimator approach and the NRSR approach
with unquantized and quantized feedback for different values of
ρ and M . The results are shown for one-rate backoff as it was
seen to be optimal for ρ ≤ 0.9. The results for zero-rate back-
off are skipped to avoid clutter. With unquantized feedback, the
cell throughput of the NRSR approach is indistinguishable from
that of the CMMSE estimator approach for ρ ≤ 0.75. Even at
ρ = 0.9, the loss in cell throughput is just 1%, 0.8%, and 0.5%
for M = 1, 2, and 3, respectively. The loss at high correlations
occurs because ignoring the correlations among multiple sub-
channels is sub-optimal. Even with quantized feedback, the cell
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TABLE I
CELL THROUGHPUT (BITS/SYMBOL) OF DIFFERENT APPROACHES FOR

THE GREEDY SCHEDULER

throughput achieved by the NRSR approach is very close to that
of the CMMSE estimator approach. For example, at ρ = 0.9,
the loss in throughput is just 1.8%, 0.8%, and 0.5% for M = 1,
2, and 3, respectively.

For the CMMSE estimator approach, the cell throughput
increases as ρ increases for M = 1, while it decreases as ρ

increases for M ≥ 2. This behavior is a consequence of the
following two effects, which counteract each other. First, as ρ

increases to 1, the frequency diversity gain due to ordering of
the subchannel SNRs is lost, which lowers the cell throughput.
Second, as ρ increases, the outage probability of transmissions
on unreported subchannels decreases, which improves the cell
throughput. The behavior of the cell throughput with ρ and M
depends on which of these two effects dominates.

5) Application to General Channel Models: We now evalu-
ate the effectiveness of the NRSR approach for general channel
models, which need not follow the exponential correlation
structure. We set Nfft = 512, Fs = 7.68 MHz, and Nc = 12.
The cell throughputs of the various approaches for the TU
and RA channels [2] are compared in Table I. We see that
the NRSR approach with one-rate backoff achieves a higher
cell throughput than all the benchmark schemes for all M . The
cell throughput with the RA channel is lower than that of the
TU channel. However, the relative gains over the benchmark
schemes are higher for the less dispersive RA channel.

6) Users With Statistically Non–identical Channels: To
model the scenario in which the subchannel gains of different
users are statistically non-identical, we set the average SNR of
user k as 2σ 2

k = 2σ 2αk−1, for k = 1, . . . , K , where α > 1 [17].
Hence, the subchannel gains of different users become more
statistically non-identical as α increases. Fig. 7 plots the cell
throughput results for the PF scheduler for M = 1. Results for
M = 2 and 3, and for the other schedulers are not shown to
avoid clutter. We see that two-rate backoff is marginally better
than one-rate backoff for ρ ≤ 0.9 and zero-rate backoff is opti-
mal for ρ > 0.9. As before, the CMMSE estimator approach
with a suitably chosen rate backoff improves the cell throughput
compared to the other approaches. For example, at ρ = 0.75,
the gains over the ME approach, Data method, and conventional
approach are 21.5%, 7.8%, and 34.9%, respectively. The other
trends, such as the behavior of the cell throughput as a function
of ρ and M , are similar to those for the greedy scheduler.
Among the three schedulers, the greedy scheduler, as expected,

Fig. 7. PF scheduler for M = 1 with statistically non-identical users: Zoomed-
in view of cell throughput as a function of correlation coefficient ρ for different
approaches (K = 10, N = 10, α = 1.4, and σ 2 = 4.5 dB).

is the most unfair while the RR scheduler is the most fair. The
fairness results are not shown due to space constraints.

V. CONCLUSIONS

We proposed a novel constrained estimator in which the BS
used the ordered feedback generated by the best-M scheme and
the subchannel correlation to estimate the SNRs of the unre-
ported subchannels for each user. The BS then utilized these
constrained MMSE estimates for scheduling and rate adapta-
tion. Compared to conventional channel estimation based on
pilots, the CMMSE estimator was non-linear and its deriva-
tion, which was based on order statistics, quite different. We
also proposed the windowing and NRSR approaches, which
reduced the computational complexity while incurring a neg-
ligible performance loss. Another advantage of the NRSR
approach was its applicability to general channels models and
to quantized feedback. Unlike the ME approach, whose RMSE
increased as the subchannel correlation increased, the RMSE of
the proposed estimators decreased to zero. In terms of system
impact, we saw that the proposed estimators improved the cell
throughput for the greedy, RR, and PF schedulers and for both
uncorrelated and correlated subchannels – without any addi-
tional feedback. An avenue for future work is to obtain BS-side
estimators incorporating wideband CSI as well.

APPENDIX

A. Derivation of CMMSE Estimator

Let J j = { jl + 1, . . . , jh − 1} denote the set of unreported
subchannels lying between the reported subchannels jl and
jh . Thus, j ∈ J j . Using the Markov property, the conditional
expectation in (3) reduces to

γ̂ j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
[
γ j |γ jl = x jl , γ jh = x jh , γr < xiM ,∀r ∈ J j

]
,

if jl ≥ 1, jh ≤ N ,

E
[
γ j |γ jh = x jh , γr < xiM ,∀r ∈ J j

]
,

if jl = 0, jh ≤ N ,

E
[
γ j |γ jl = x jl , γr < xiM ,∀r ∈ J j

]
,

if jl ≥ 1, jh = N + 1.

(21a)

(21b)

(21c)
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We consider the three cases one by one.
1) When jl ≥ 1 and jh ≤ N: The conditional mean in (21a)

can be written as

γ̂ j =
∫ xiM

0 · · ·∫ xiM
0 z j fγ jl ,...,γ jh

(
x jl , z, x jh

)
dz∫ xiM

0 fγ jl ,...,γ jh

(
x jl , z, x jh

)
dz

, (22)

where z = [z jl+1, . . . , z jh−1]. Since γ jl , . . . , γ jh are jointly
exponentially correlated RVs, their joint PDF is given by [21]

fγ jl ,...,γ jh

(
x jl , z, xnh

)
= e

−
(
η jl x jl +η jh x jh +∑ jh−1

r= jl +1 ηr zr

)
2 jh− jl+1σ 2( jh− jl+1)(1 − ρ2) jh− jl

×
∞∑

n=0

δ2n

4n

∑
0≤q jl ≤···≤q jh−1≤n

q jl +···+q jh−1=n

x
q jl
jl

x
q jh−1

jh

∏ jh−1
r= jl+1 zqr−1+qr

r∏ jh−1
r= jl

(qr !)2
,

(23)

where ηr = (
1 + ρ2

)
/
(
2σ 2(1 − ρ2)

)
, for r ∈ J j , and ηr =

1/
(
2σ 2(1 − ρ2)

)
, for r ∈ { jl , jh}. Substituting (23) in (22) and

pooling together the terms with the same variable of integration,
we eventually get

γ̂ j = A j

B j
, (24)

where

A j =
∞∑

n=0

δ2n

4n

∑
0≤q jl ,··· ,q jh−1≤n
q jl +···+q jh−1=n

x
q jl
jl

x
q jh−1

jh

∫ xiM
0 z

q j−1+q j +1
j e−η j z j dz j∏ jh−1

r= jl
(qr !)2

×
jh−1∏

r= jl+1,r 	= j

∫ xiM

0
zqr−1+qr

r e−ηr zr dzr , (25)

B j =
∞∑

n=0

δ2n

4n

∑
0≤q jl ,··· ,q jh−1≤n
q jl +···+q jh−1=n

x
q jl
jl

x
q jh−1

jh∏ jh−1
r= jl

(qr !)2

×
jh−1∏

r= jl+1

∫ xiM

0
zqr−1+qr

r e−ηr zr dzr , (26)

and ηr = (
1 + ρ2

)
/
(
2σ 2(1 − ρ2)

)
, for r = jl + 1, . . . ,

jh − 1.
2) When jl = 0 and jh ≤ N: We proceed along the same

lines as above, except that we use the joint PDF of the expo-
nentially correlated RVs γ jl+1, . . . , γ jh to evaluate (21b). This
yields

γ̂ j = C j

D j
, (27)

where

C j =
∞∑

n=0

δ2n

4n

∑
0≤q jl +1,··· ,q jh−1≤n
q jl +1+···+q jh−1=n

x
q jh −1
jh

∫ xiM
0 z

q j−1+q j +1
j e−η j z j dz j∏ jh−1

r= jl+1 (qr !)2

×
jh−1∏

r= jl+2,r 	= j

∫ xiM

0
zqr−1+qr

r e−ηr zr dzr, (28)

D j =
∞∑

n=0

δ2n

4n

∑
0≤q jl +1,··· ,q jh−1≤n
q jl +1+···+q jh−1=n

x
q jh−1

jh∏ jh−1
r= jl+1 (qr !)2

×
jh−1∏

r= jl+2

∫ xiM

0
zqr−1+qr

r e−ηr zr dzr , (29)

η1 = 1/
(
2σ 2(1 − ρ2)

)
, ηr = (

1 + ρ2
)
/
(
2σ 2(1 − ρ2)

)
, for

r = 2, . . . , jh − 1, and q jl = 0. Equivalently, substituting jl =
0, x jl = 0, and η jl+1 = η1 = 1/

(
2σ 2(1 − ρ2)

)
in A j and B j

reduces them to C j and D j , respectively.
3) When jl ≥ 1 and jh = N + 1: Here, we evaluate γ̂ j ,

which is given by (21c), using the joint PDF of the exponen-
tially correlated RVs γ jl , . . . , γ jh−1. It can be shown, as before,
that the resulting expression for γ̂ j can be equivalently obtained
from (24), where A j and B j are computed with jh = N + 1,
x jh = 0, and η jh−1 = ηN = 1/

(
2σ 2(1 − ρ2)

)
.

Thus, γ̂ j in (24) compactly represents all the cases. Finally,
writing (25) and (26) in terms of the incomplete gamma
function yields (11) and (12), respectively.

B. Brief Derivation of Expression for MSE

The MSE for an unreported subchannel j is given by

MSE = Eγi1 ,...,γiM ,IM

[
Eγ j

[(
γ j − γ̂ j

)2∣∣∣ j ∈ Ic
M ;

γi1 , . . . , γiM ; IM
]]

. (30)

Substituting the expression for γ̂ j from (6) in (30) and using the
fact that γ̂ j depends only on γiM , we get

MSE = Eγ j ,γiM

⎡⎢⎣
⎛⎝γ j − 2σ 2 + γiM

e
γiM
2σ2 − 1

⎞⎠2
∣∣∣∣∣∣∣ j ∈ Ic

M

⎤⎥⎦ ,

=
∫ ∞

0

∫ ∞

0

(
y − 2σ 2 + x

e
x

2σ2 − 1

)2

× p
(
γ j = y, γiM = x

∣∣ j ∈ Ic
M

)
dydx . (31)

We now evaluate p
(
γ j = y, γiM = x

∣∣ j ∈ Ic
M

)
. This prob-

ability is zero for y > x since the SNR of an unreported
subchannel cannot exceed γiM . For y ≤ x , we proceed as fol-
lows. Since the subchannel SNRs are statistically identical,
any subchannel, e.g., subchannel n, is equally likely to be iM .
Combining this with Bayes’ rule yields

p
(
γ j = y, γiM = x

∣∣ j ∈ Ic
M

)
= (N − 1)p

(
γ j = y, γn = x, iM = n, j ∈ Ic

M

)
p
(

j ∈ Ic
M

) , (32)

= (N − 1)p
(
γ j = y, γn = x, iM = n

)
1 − (M/N )

. (33)

The second step follows because p
(

j ∈ Ic
M

) = 1 − (M/N )

and since y < x implies that j ∈ Ic
M . The probability that a sub-

channel SNR exceeds x is e−x/(2σ 2). Using the theory of order
statistics, we get
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p
(
γ j = y, γn = x, iM = n

)
=
(

N − 2

M − 1

)e
− y+Mx

2σ2
(

1 − e
− x

2σ2
)N−M−1

4σ 4
. (34)

Substituting (34) in (33) yields p
(
γ j = y, γiM = x

∣∣ j ∈ Ic
M

)
.

Upon substituting this in (31) and integrating over y, we get

MSE = N

2σ 2

(
N − 1

M − 1

)∫ ∞

0
e
− Mx

2σ2
(

1 − e
− x

2σ2
)N−M−1

×
(

4σ 4
(

1 − e
− x

2σ2
)

+ x2 − x2

1 − e
− x

2σ2

)
dx . (35)

Using the definition of the trigamma function 	(1)(z)
= ∫∞

0 te−zt/
(
1 − e−t

)
dt and simplifying yields (9).

C. Derivation of SNR Estimate for NRSR Approach

The conditional expectation in (13) can be written as

γ̃ j = E
[
γ j |γ jn = x jn , γ j < xiM

]
,

=
∫ xiM

0 y fγ j ,γ jn
(y, x jn )dy∫ xiM

0 fγ j ,γ jn
(y, x jn )dy

. (36)

The joint PDF fγ j ,γ jn
(u, v) of γ j and γ jn is given by [21]

fγ j ,γ jn
(u, v) =

∞∑
n=0

e
− u+v

2σ2(1−ω2
j ) ω2n

j (uv)n(
4σ 4

)n+1
(

1 − ω2
j

)2n+1
(n!)2

, u, v ≥ 0.

(37)
Substituting (37) in (36), we get

γ̃ j =
∑∞

l=0
(λ j)

2l
(x jn )

l

4l (l!)2

∫ xiM
0 yl+1e−μ j ydy∑∞

l=0
(λ j)

2l
(x jn )

l

4l (l!)2

∫ xiM
0 yle−μ j ydy

, (38)

where λ j and μ j are defined in Result 3’s statement. Expressing
the integrals in the numerator and denominator of (38) in terms
of the incomplete gamma function yields (14).
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