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SEP-Optimal Transmit Power Policy for
Peak Power and Interference Outage Probability
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Abstract—In underlay cognitive radio (CR), a secondary user
(SU) can transmit concurrently with a primary user (PU)
provided that it does not cause excessive interference at the
primary receiver (PRx). The interference constraint fundamen-
tally changes how the SU transmits, and makes link adaptation
in underlay CR systems different from that in conventional
wireless systems. In this paper, we develop a novel, symbol error
probability (SEP)-optimal transmit power adaptation policy for
an underlay CR system that is subject to two practically moti-
vated constraints, namely, a peak transmit power constraint and
an interference outage probability constraint. For the optimal
policy, we derive its SEP and a tight upper bound for MPSK
and MQAM constellations when the links from the secondary
transmitter (STx) to its receiver and to the PRx follow the
versatile Nakagami-m fading model. We also characterize the
impact of imperfectly estimating the STx-PRx link on the SEP
and the interference. Extensive simulation results are presented
to validate the analysis and evaluate the impact of the constraints,
fading parameters, and imperfect estimates.

Index Terms—Cognitive radio, underlay, fading channels,
peak power, interference outage probability, imperfect channel
estimates, symbol error probability.

I. INTRODUCTION

W ITH the increase in the number of wireless appli-
cations and services, the demand for bandwidth has

increased substantially over the years. Cognitive radio (CR)
technology promises to quench this demand by allowing the
users to access the spectrum opportunistically [1]–[3]. A
popular paradigm of CR called the commons spectrum usage
model separates the users into two classes, namely, primary
and secondary users. A secondary user (SU) can share the
spectrum with a primary user (PU) but must ensure that its
transmissions do not adversely interfere with the PU [4], [5].

For this usage model, various modes such as interweave
and underlay have been considered in the literature [6]. In
the interweave mode, the SU transmits only when it senses
that the PU is off. On the other hand, in the underlay mode,
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which is the focus of this paper, the secondary transmitter
(STx) can transmit even when the primary is on provided that
it does not cause excessive interference at the primary receiver
(PRx). The interference constraint fundamentally affects how
the SU transmits, and sets the underlay CR mode apart from
conventional wireless communication systems [7].

Several interference constraints have been investigated in
the literature, and lead to different optimal transmission poli-
cies. Broadly, they can be classified into three categories:
(i) average interference constraint, in which the STx needs
to ensure that the interference it causes to the PRx, when
averaged over the channel gains, is below a threshold [8]–
[11], (ii) instantaneous interference constraint, in which the
instantaneous interference must not cross a threshold with
a pre-specified probability [8]–[10], [12], and (iii) signal-to-
interference-plus-noise-ratio (SINR)-based outage constraint,
in which the instantaneous SINR of the primary signal at the
PRx must not fall below a threshold [4], [13], [14]. The third
category is most well-suited to guarantee a quality of service
(QoS) at the PU. However, unlike the previous two constraints,
it requires channel state information (CSI) about the primary
transmitter (PTx)-PRx link at the secondary receiver (SRx).
This is practically infeasible when the PUs operate oblivious
to the presence of the SUs.

A. Related Literature on Transmission Policies

Recent papers on CR have developed different optimal
SU transmission policies for some of the above constraint
categories [4], [8]–[14]. The papers also differ in whether they
impose a peak or average transmit power constraint on the
STx. We discuss and categorize them below.

1) Assuming CSI about the STx-SRx and STx-PRx links:
Ergodic capacity of a single SU link, which is subject to a
peak or average interference power constraint at the PRx,
is derived in [8]. However, no transmit power constraint is
imposed on the STx. In [15], the channel capacity of SUs is
studied under an average receive interference power constraint.
While [10] derives the capacity of an SU subject to an
average transmit power constraint and an additional constraint
on the peak or average interference power at the PRx, [9]
develops the ergodic, outage, and delay-limited capacities for
all the four possible combinations of peak or average transmit
power constraints and peak or average interference power
constraints. A capacity-optimal power allocation scheme for
a CR that is subject to both peak and average interference
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power constraints but without a transmit power constraint is
developed in [16].

The maximum power with which the STx can transmit
without violating a target outage probability is characterized
in [14]. In [11], the optimal transmit policy that minimizes
the SEP of a peak transmit power and an average interference
power constrained STx is derived, whereas [12] derives the
SEP-optimal power policy when the STx is subject to peak
transmit and peak interference power constraints. The impact
of imperfect CSI of the STx-PRx link on the mean capacity of
a peak interference power constrained SU is analyzed in [17].

2) Assuming CSI about the STx-SRx, STx-PRx, and PTx-
PRx links: In [4], an adaptive transmit power policy that max-
imizes the data rate of a peak transmit power constrained SU
is developed. In [13], transmit power policies that maximize
the ergodic and outage rates of a peak or average transmit
power constrained SU are investigated. In both [4] and [13],
the STx is subject to an additional primary SINR-based outage
probability constraint, which requires perfect knowledge of the
PTx-PRx link at the STx. In [18], the optimal power control
policy that maximizes the SU ergodic rate is developed for
an average transmit power constrained SU. An upper bound
on the rate of the cognitive users is derived in [19] under
a constraint on the average or peak secondary-to-primary
interference-to-signal ratio. In [20], the ergodic capacity of
an SU subject to average or peak transmit power constraints
and with respect to an interference outage constraint and a
signal-to-interference outage constraint is derived. However,
with perfect CSI, the instantaneous interference at the PRx is
never allowed to exceed a threshold.

B. Underlay Constraints and CSI Model

In this paper, we consider an underlay CR system that is
subject to the following two practically motivated constraints:

• Interference outage probability constraint: It mandates
that the instantaneous interference should not exceed a
threshold τ more than Pout fraction of the time. The
constraint is well-suited for scenarios in which the PU
transmissions do not last long enough to average over
a sufficient number of coherence intervals of the STx-
PRx channel [9]. It has been used to design the pri-
mary exclusive zone (PEZ) to protect the PUs in CR
networks [1], [21]. Furthermore, it includes as a special
case the rigid constraint imposed in [8]–[10], [12], [17],
in which the instantaneous interference at the PRx is
required to always lie below a threshold.

• Peak transmit power constraint: It mandates that the SU
transmit power must not exceed a peak value of Pmax. It
is practically well motivated by the inherent limitations of
non-linear transmit power amplifiers. Clearly, it is more
restrictive than an average transmit power constraint.

We assume that the STx knows the channel power gain of its
local links, i.e., its links to the SRx and to the PRx, which can
be obtained in practice by exploiting channel reciprocity and
by measuring the signal energy received from transmissions
by the PRx. The STx does not know the PTx-PRx channel
gain, given that this is practically infeasible. Furthermore, no
knowledge of the phases of any channel power gain is required
at the STx.

C. Contributions

We make the following contributions:
Underlay CR Model and Optimal Policy: We derive a novel

SEP-optimal transmit power adaptation policy for an STx
that is subject to the aforementioned constraints, which have
been considered in isolation in the literature. This is achieved
through a sequence of insightful results that bring out the
unique attributes of these constraints and show how they
mould the structure of the optimal policy. The optimal policy
includes as its special case the policy derived in [17], in which
the STx is subject to the peak interference constraint.

SEP Analysis: We then derive the SEP of the optimal
transmit power policy for both MPSK and MQAM constel-
lations, when the STx-SRx and STx-PRx links follow the
versatile Nakagami-m fading model. It covers non-line-of-
sight Rayleigh fading and the net channel seen by wireless
systems that exploit frequency, time, multi-antenna, or space
diversity, and line-of-sight Rician fading [7, Chp. 3] and [22,
Chp. 2].

Impact of Imperfect CSI: Finally, we characterize the impact
of imperfect estimation of the STx-PRx channel power gain
on the SEP and the interference of the optimal policy. This
is an essential first step in understanding its robustness in
practical scenarios, in which the CSI is likely to be imperfect.
An extensive set of results – with perfect and imperfect CSI
– then quantitatively characterize the effect of various system
parameters.

We develop the system model and formulate the problem
in Sec. II. The optimal transmit power policy is developed in
Sec. III. Its SEP is derived in Sec. IV. The impact of imperfect
channel estimation is analyzed in Sec. V. Numerical results
and conclusions follow in Sec. VI and Sec. VII, respectively.

II. SYSTEM MODEL

We use the following notation henceforth. The notation
X ∼ Nakagami(m,Ω) means that X is a Nakagami-m
distributed random variable (RV) with fading parameter m
and mean square value Ω. Similarly, X ∼ CN (0, δ) means
that X is a circular symmetric complex Gaussian RV with
zero mean and variance δ. The expectation with respect to an
RV X is denoted by EX [.]. The probability of an event A is
denoted by Pr(A).

As shown in Figure 1, we consider an underlay CR network
in which the SU shares the same spectrum with the PU
opportunistically. The STx sends data to the SRx, and, in
the process, causes interference at the PRx. The STx, SRx,
and PRx are equipped with one antenna each. Let h denote
the instantaneous channel power gain of the link between the
STx and the SRx, which we shall refer to as the data link, and
let g denote the instantaneous channel power gain of the link
between the STx and the PRx, which we shall refer to as the
interference link. The two links are assumed to be independent
of each other, which is justified because the primary and
the secondary nodes are spatially separated. However, they
need not be identically distributed. Both the links undergo
Nakagami-m fading. Therefore,

√
h ∼ Nakagami(ms,Ωs)

and
√
g ∼ Nakagami(mp,Ωp).
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Fig. 1. System model showing a secondary system comprising of a STx that
communicates with a SRx, and, in the process, interferes with a PRx.

A. Data Transmission

The STx transmits to the SRx a data symbol x that is
chosen with equal probability from an MPSK or MQAM
constellation. The signal ys received by the SRx and the
interference Ip seen by the PRx are given by

ys =
√
P
√
hejθhx+ ns + nps, (1)

Ip =
√
P
√
gejθgx, (2)

where P is the power with which the STx transmits data
symbols and E

[
|x|2

]
= 1. Also, θh and θg are the phases

of the complex baseband channel gains of the data and the
interference links, respectively, and ns is circular symmetric
complex additive white Gaussian noise (CAWGN) at the SRx.
The interference at the SRx due to transmissions from the PTx
is denoted by nps and is assumed to be Gaussian [1], [9], [23].1

This is a worst case model for the interference from the PTx.
It ensures analytical tractability and gives valuable insights.
Thus, ns + nps ∼ CN (0, σ2).

The STx is subject to the following two constraints:

1) Interference outage probability constraint: This con-
straint protects the primary link from the secondary
transmissions by ensuring that the probability that the
instantaneous interference power at the PRx exceeds the
interference threshold τ is less than or equal to a target
outage probability Pout. Hence, Pr(Pg > τ) ≤ Pout.

2) Peak transmit power constraint: This ensures that the
instantaneous power of the STx does not exceed a peak
value of Pmax, i.e., P ≤ Pmax.2

CSI Assumptions: We assume that the STx knows the
channel power gains of its local data and interference links,
i.e., h and g, as has also been assumed in [4], [8]–[10], [13],
[14]. However, no knowledge of the phases of any of the
channel gains is required at the STx. The SRx uses a coherent
receiver and is assumed to know both h and θh, but neither g

1The validity of this assumption depends on the channel fading statistics of
the PTx-SRx link, the signal transmitted by the PTx, and the number of PTxs.
It is also valid in a simpler scenario that has been assumed in the literature
in which the PTx is far away from the SRx so that the interference that it
causes to the SRx is negligible [9]–[12], [16], [20].

2The peak power constraint is more relevant to the secondary uplink
because a secondary mobile is more likely to be peak power constrained
than a secondary base station or access point.

nor θg . As mentioned, the STx and the SRx also do not know
the PTx-PRx channel power gain, unlike [4], [13], [14].

B. Problem Statement

A power adaptation policy θ is a mapping θ : (R+)2 → R+

that determines the STx transmit power P for every realization
of h and g. We do not show explicitly the dependence of P
on h and g in order to keep the notation simple. Let S denote
the set of all feasible transmit power policies, where a feasible
policy is defined as one that satisfies the peak transmit power
constraint and the interference outage probability constraint.
Our objective is to determine the optimal transmit power
policy θ∗ ∈ S that minimizes the average SEP of the
secondary system. Let SEP(h, g) denote the resultant SEP
given the channel power gains h and g. For MPSK, it is given
by [24, (40)]

SEPMPSK(h, g) =
1

π

∫ Λπ

0

exp

(
−Ph sin

2
(

π
M

)
σ2 sin2 φ

)
dφ, (3)

where Λ = 1 − 1
M . Similarly, for square-MQAM, the SEP

given h and g is equal to [24, (48)]

SEPMQAM(h, g)=
4

π

(
1− 1√

M

)∫ π
2

0

exp

( −1.5Ph

Δσ2 sin2 φ

)
dφ

− 4

π

(
1− 1√

M

)2 ∫ π
4

0

exp

( −1.5Ph

Δσ2 sin2 φ

)
dφ, (4)

where Δ =M − 1. Hence, our problem can be stated as:

min
θ

Eh,g [SEP(h, g)] , (5)

s. t. Pr(Pg > τ) ≤ Pout, (6)

P ≤ Pmax. (7)

III. OPTIMAL TRANSMIT POWER ADAPTATION POLICY

We now develop the optimal transmit power adaptation
policy θ∗ that minimizes the average SEP of the secondary
system subject to the interference outage probability and peak
transmit power constraints. We shall prove the following key
result in this section.

Theorem 1: Let α be the unique solution of the equation

1− Fg(α) = Pout, (8)

where Fg(·) denotes the cumulative distribution function
(CDF) of g. If τ

Pmax
≥ α, then the optimal transmit power

P ∗ is
P ∗ = Pmax, ∀ g. (9)

Else, the optimal transmit power is given by

P ∗ =

{
Pmax, 0 ≤ g ≤ τ

Pmax
or g > α,

τ
g ,

τ
Pmax

< g ≤ α.
(10)

�
The instantaneous transmit power and interference of the
optimal transmit power policy are illustrated in Figures 2
and 3, respectively.

Before we delve into the proof, we highlight three interest-
ing attributes of the optimal policy. First, it does not depend
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Fig. 2. Optimal policy: peak transmit power as a function of g.

Fig. 3. Optimal policy: instantaneous interference power at the PRx as a
function of g.

on the STx-SRx channel power gain h, as has also been seen
in [8]–[10], [12]. Second, the STx transmits with peak power
not only when the interference link is very weak but also when
it is very strong. Intuitively, this is because the interference
outage probability constraint penalizes the fraction of time the
instantaneous interference exceeds the threshold τ , but not the
extent to which it exceeds τ . This suggests that, in practice,
one might impose an additional constraint on the maximum
value that the interference can take. Third, the structure of the
optimal policy is valid for all fading parameters; the fading
statistics only affect α.

The proof is through the following sequence of claims that
lead to the final result in Theorem 1, and show how the
constraints influence the structure of the optimal policy.

Claim 1: If τ
Pmax

≥ α, then the max-power policy,
i.e., P ∗ = Pmax, ∀ g, is the optimal transmit power policy.

Proof: For the max-power policy, the outage probability
Po is given by

Po = Pr(Pmaxg > τ) = 1− Fg

(
τ

Pmax

)
. (11)

If τ
Pmax

≥ α, then it follows that Po = 1 − Fg

(
τ

Pmax

)
≤

1 − Fg(α) since the CDF is a monotonically non-decreasing
function. However, from (8), 1 − Fg(α) = Pout. Thus, the
max-power policy is a feasible policy. Since it gives the lowest
possible SEP among all possible policies, it is optimal.

Henceforth, we focus on the regime τ
Pmax

< α, in which
the max-power policy is not feasible. Next we characterize the
optimal transmit power when the interference link is weak.

Claim 2: For all g ∈
[
0, τ

Pmax

)
, P ∗ = Pmax for the

optimal transmit power policy.

Proof: When g ∈
[
0, τ

Pmax

)
, even when the secondary

transmits at its peak power Pmax, the instantaneous interfer-
ence that it causes at the PRx is less than or equal to τ ,
and does not contribute to the interference outage probability.
Therefore, it is sub-optimal in terms of the SEP to transmit at
a power below Pmax in this interval.

Thus, when the interference link is weak, the STx should
transmit data with peak power. The next claim shows that an
optimal policy must satisfy the interference outage probability
constraint with equality.

Claim 3: Any feasible policy that satisfies Claim 2 and
does not meet the interference outage probability constraint
with equality is sub-optimal.

Proof: Let θ be a feasible policy that does not meet the
interference outage probability constraint with equality. Since

τ
Pmax

< α and the max-power policy is infeasible, there must
be an interval [g1, g2], where g2 > g1 ≥ τ

Pmax
, in which

P < Pmax. It follows that there exists an ε > 0 such that
the transmit power can be increased to P + ε ≤ Pmax in this
interval with the interference constraint still being satisfied.
Doing so clearly reduces the SEP. Therefore, θ cannot be an
optimal policy.

Next, we present a key property of the optimal policy for
g ≥ τ

Pmax
.

Claim 4: For g ≥ τ
Pmax

, a feasible policy in which Ip is
neither τ nor Pmaxg (i.e., P is not Pmax) is sub-optimal.

Proof: Let θ be a feasible policy such that Ip 	= τ and
P < Pmax, for all g ∈ [g1, g2], where g2 > g1 ≥ τ

Pmax
and

g2 − g1 is infinitesimally small. Then, one of the following
two possibilities arises for all g ∈ [g1, g2]:

(i) Ip < τ : In this case, one can strictly increase the transmit
power of the STx for all g ∈ [g1, g2] until either P = Pmax

or Ip = τ , whichever happens earlier. Doing so yields another
feasible policy whose interference outage probability is clearly
the same as that of θ but whose SEP is lower than that of θ.
Hence, θ is sub-optimal.

(ii) τ < Ip < Pmaxg: In this case, the primary link is
already in outage. Hence, increasing the STx power to Pmax

for all g ∈ [g1, g2] results in another feasible policy with the
same interference outage probability but a lower SEP. Hence,
again, θ is sub-optimal.

Let ג denote the subset of feasible policies that meet the
interference outage probability constraint with equality and
satisfy the conditions Ip = Pmaxg, for g < τ

Pmax
, and Ip = τ

or Pmaxg, for all g ≥ τ
Pmax

. From Claims 2, 3, and 4, we
know that θ∗ ∈ .ג

Claim 5: For a policy θ ∈ ג to be optimal, if there
is an interval (g2, g2 + δ2) ⊂ [α,∞) such that Ip = τ ,
for g ∈ (g2, g2 + δ2), then there must also exist another

interval (g1, g1 + δ1) ⊂
[

τ
Pmax

, α
)

in which Ip = Pmaxg,

for g ∈ (g1, g1 + δ1).
Proof: We are given that there is an interval (g2, g2 +

δ2) ⊂ [α,∞) such that Ip = τ , for all g ∈ (g2, g2+δ2). Since
Ip = τ , this interval does not contribute to the interference
outage probability. Let there be no interval (g1, g1 + δ1) ⊂[

τ
Pmax

, α
)

in which Ip = Pmaxg, for all g ∈ (g1, g1 + δ1).
Then, from Claim 4, since θ is optimal, we must have Ip =

τ , for g ∈
[

τ
Pmax

, α
)

. Thus, this region does not contribute
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to the interference outage probability. Therefore, the outage
probability P ′

o of θ can be upper bounded as follows:

P ′
o ≤ Pr(g > α)− Pr [g ∈ (g2, g2 + δ2)] < Pout. (12)

From Claim 3, it follows that θ is sub-optimal, which is a
contradiction.
The next claim shows that we can obtain a new transmit power
policy in ג that has a lower SEP by making the above variable
g2 equal to α itself.

Claim 6: If a policy θ ∈ ג is optimal and there is an
interval (g2, g2+ δ2) ⊂ [α,∞) in which Ip = τ , then g2 = α.

Proof: Without loss of generality, let δ2 be infinitesimally
small. Consider another policy θ′ such that Ip = τ , for g ∈
(α, α+ δ′2), and Ip = Pmaxg, for g ∈ (g2, g2 + δ2), where δ′2
is chosen so that p(α)δ′2 = p(g2)δ2, where p(·) denotes the
probability density function (pdf) of g. This is allowed because
P =

Ip
g = τ

α ≤ Pmax. For all other values of g ∈ R+, Ip of θ′

is the same as that for θ. It can be easily seen that the outage
probability of θ is the same as that of θ′, which is Pout. Hence,
θ′ is also feasible, and as required by Claim 3, it meets the
interference outage probability constraint with equality. Thus,
θ′ ∈ .ג

For θ, since Ip = τ , we have P = τ
g2

, for g ∈ (g2, g2+δ2).
Similarly, for θ′, P = τ

α , for g ∈ (α, α+δ′2). Now for MPSK,
the SEP of θ′, which we denote by SEPθ′ , can be written in
terms of the SEP of θ, denoted by SEPθ, as follows:

SEPθ′ = SEPθ − 1

π

∫ Λπ

0

p(g2)δ2(
1 +

τ sin2( π
M )

σ2g2 sin2 φ

)ms
dφ

+
1

π

∫ Λπ

0

p(α)δ′2(
1 +

τ sin2( π
M )

σ2α sin2 φ

)ms
dφ, (13)

where the term inside the integral arises because h is a
Nakagami-m RV. Since g2 > α and p(α)δ′2 = p(g2)δ2, it
follows that, p(g2)δ2(

1+
τ sin2( π

M )
σ2g2 sin2 φ

)ms >
p(α)δ′2(

1+
τ sin2( π

M )
σ2α sin2 φ

)ms , for 0 ≤

φ ≤ Λπ. Hence, SEPθ′ < SEPθ, which implies that θ is sub-
optimal. The proof for MQAM is similar.

Intuitively, when g2 ∈ (α,∞) is reduced to α itself, the
channel power gain of the interference link reduces. This
enables the STx to transmit at a higher power, which lowers
the SEP without affecting the interference outage probability.

Claim 7: For an optimal transmit power policy in ,ג the
interval (g1, g1+δ1) over which Ip = Pmaxg, and the interval
(α, α + δ2) over which Ip = τ , where τ

Pmax
< g1 < α, must

both be of zero length, i.e., δ1 = δ2 = 0.
Proof: The proof is given in Appendix A.

Combining the above results leads to Theorem 1.

IV. SEP ANALYSIS OF THE SECONDARY SYSTEM

We now derive the fading-averaged SEP of the secondary
system of the optimal transmit power policy for both MPSK
and MQAM. We first derive the SEP when τ

Pmax
< α. The

nature of the result depends on whether ms is an integer or

not. In the latter case, a simplification is achieved by means
of an upper bound.

Theorem 2: For τ
Pmax

< α, the SEP for MPSK is

SEPMPSK=

⎛⎝1+
γ
(
mp,

mpτ
ΩpPmax

)
−γ

(
mp,

mpα
Ωp

)
Γ(mp)

⎞⎠ψ(cMPSK
1 )

+

(
mp

Ωp

)mp
∫ α

τ
Pmax

gmp−1e−mpg/Ωp ψ(cMPSK
2 (g))

Γ(mp)
dg, (14)

where γ(·, ·) is the lower incomplete gamma function [25,
(8.350.1)] and

ψ(x0) =
1

π

∫ Λπ

0

(
sin2 φ

sin2 φ+ x0

)ms

dφ. (15)

This equation holds for both integer as well as non-integer
ms. For integer ms, ψ(x0) is given in closed-form by

ψ(x0) = Λ− 1

π

√
x0

1 + x0

×
((π

2
+ tan−1 β

)[
ms−1∑
k=0

(
2k

k

)
1

4k(1 + x0)k

]

+
β√

1 + β2

ms−1∑
k=1

k∑
j=1

Tjk

(1 + x0)k(1 + β2)k−j+ 1
2

⎞⎠ , (16)

and for non-integer ms, ψ(x0) is upper bounded by

ψ(x0) ≤ Λ

(1 + x0)
ms
. (17)

Here, β �
√

x0

1+x0
cot

(
π
M

)
, Tjk � (2kk )

(2(k−j)
k−j )4j [2(k−j)+1]

,

cMPSK
1 =

Ωs sin2( π
M )Pmax

σ2ms
, and cMPSK

2 (g) =
Ωs sin2( π

M )τ
σ2msg

.
Proof: The proof is given in Appendix B.

Theorem 3: For τ
Pmax

< α, the SEP for MQAM is

SEPMQAM=

⎛⎝1+
γ
(
mp,

mpτ
ΩpPmax

)
−γ

(
mp,

mpα
Ωp

)
Γ(mp)

⎞⎠χ(cMQAM
1 )

+

(
mp

Ωp

)mp
∫ α

τ
Pmax

gmp−1e−mpg/Ωp χ(cMQAM
2 (g))

Γ(mp)
dg, (18)

where

χ(y0) =
4

π

(
1− 1√

M

)∫ π
2

0

(
sin2 φ

sin2 φ+ y0

)ms

dφ

− 4

π

(
1− 1√

M

)2 ∫ π
4

0

(
sin2 φ

sin2 φ+ y0

)ms

dφ. (19)

For integer ms, χ(y0) is given in closed-form as

χ(y0)=2

(
1− 1√

M

)(
1−

√
y0

1 + y0

ms−1∑
k=0

(
2k
k

)
4k(1 + y0)k

)

−
(
1− 1√

M

)2
(
1− 4

π

√
y0

1 + y0

[(π
2
−tan−1ν

)ms−1∑
k=0

(
2k
k

)
4k(1 + y0)k

+
ν√

1 + ν2

ms−1∑
k=1

k∑
j=1

Tjk

(1 + y0)k (1 + ν2)
k−j+ 1

2

⎤⎦⎞⎠ , (20)
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and for non-integer ms, χ(y0) is upper bounded by

χ(y0) ≤ 1√
M

(
1− 1√

M

)
1

(1 + 2y0)
ms

+

(
1− 1√

M

)
1

(1 + y0)
ms
. (21)

Here, ν �
√

y0

1+y0
, cMQAM

1 = 1.5ΩsPmax

σ2Δms
, and cMQAM

2 (g) =
1.5Ωsτ
σ2Δmsg

.
Proof: The proof is given in Appendix C.

The SEP expressions in (14) and (18) are in the form of a
single integral in g and cannot be simplified any further. They
are easily evaluated numerically.

Next we derive the SEP for the case when τ
Pmax

≥ α. In
this case, the STx always transmits at the peak transmit power
Pmax.

Theorem 4: When τ
Pmax

≥ α, the SEP for MPSK is given
by SEPMPSK = ψ(cMPSK

1 ). For MQAM, the SEP is given by
SEPMQAM = χ(cMQAM

1 ).
Proof: The proof is given in Appendix D.

A. Asymptotic Scenarios

To gain more insights about the optimal policy, we now
analyze its SEP in the asymptotic regimes in which the STx is
either not peak power constrained or not interference-limited.

Theorem 5: When Pmax → ∞, the SEP for MPSK is

SEPMPSK =

(
mp

Ωp

)mp
∫ α

0

gmp−1e−mpg/Ωp ψ(cMPSK
2 (g))

Γ(mp)
dg.

(22)
For MQAM, the SEP expression is the same as (22) except
that ψ(cMPSK

2 (g)) is replaced by χ(cMQAM
2 (g)).

Proof: The proof is given in Appendix E.
When τ → ∞, the STx is no longer interference-limited,

and the results given in Theorem 4 apply.

V. IMPACT OF IMPERFECT CHANNEL ESTIMATION OF THE

INTERFERENCE LINK

The optimal transmit power policy requires the STx to know
the instantaneous channel power gain g of the STx-PRx link.
In this section, we investigate how robust the scheme is to
imperfect estimates of g. We develop expressions for the SEP
and the interference outage probability, which will no longer
be Pout. Knowledge of the STx-SRx channel power gain h
is assumed, as before, since this is a link that is internal
to the secondary system. For analytical tractability, we focus
on Rayleigh fading. With Nakagami-m fading, the problem
becomes intractable as it involves dealing with the joint pdf
of correlated Nakagami-m distributed RVs.

Channel estimation: Let xp denote the pilot symbol trans-
mitted by the PRx. The baseband signal yb received at the
STx is then given by

yb =
√
Ebωxp + np, (23)

where Eb is the power with which the PRx sends out pi-
lot symbol, ω is the baseband channel gain of the STx-
PRx link, |xp|2 = 1, and np ∼ CN (0, σ2

p). Furthermore,
ω ∼ CN (0,Ωp) and is independent of np. Now, given the

observable yb at the STx, the minimum mean square error
(MMSE) estimate of the STx-PRx link ω̂ can be written as

ω̂ =

√
EbΩpx

∗
pyb

EbΩp + σ2
p

=
EbΩpω

EbΩp + σ2
p

+ e, (24)

where e ∼ CN
(
0,

Ebσ
2
pΩ

2
p

(EbΩp+σ2
p)

2

)
is the noise-induced channel

estimation error, ω̂ ∼ CN
(
0,

EbΩ
2
p

EbΩp+σ2
p

)
, and e is independent

of ω. Note that similar channel estimation models have also
been considered in the literature. For example, in [4], [13],
[20], [26], [27], the channel estimate is given as ω̂ = ζ1ω+ ε,
where ζ1 is a scaling constant and ε is the channel estimation
error. Let the pilot SNR be given by Υp = Eb

σ2
p

. Note that

g = |ω|2, and let ĝ = |ω̂|2. The SEP of the secondary system
is then given as follows.

Theorem 6: When τ
Pmax

< α, the SEP for MPSK with
imperfect g is given by

SEP=

(
1+e

−α

(
1+ΥpΩp

ΥpΩ2
p

)
−e−

τ(1+ΥpΩp)
ΥpΩ2

pPmax

)

×
(
Λ− 1

π

√
c5

1 + c5

[
π

2
+tan−1

(√
c5

1 + c5
cot

( π
M

))])
+

∫ α

τ
Pmax

(
1 + ΥpΩp

ΥpΩ2
p

)
e
−ĝ

(
1+ΥpΩp

ΥpΩ2
p

)(
Λ− 1

π

√
c6(ĝ)

1 + c6(ĝ)

×
[
π

2
+tan−1

(√
c6(ĝ)

1 + c6(ĝ)
cot

( π
M

))])
dĝ, (25)

where c5 =
Pmax sin2( π

M )Ωs

σ2 and c6(ĝ) =
τ sin2( π

M )Ωs

σ2ĝ .

When τ
Pmax

≥ α, the SEP for MPSK is given by

SEP = Λ− 1

π

√
c5

1 + c5

[
π

2
+ tan−1

(√
c5

1 + c5
cot

( π

M

))]
.

(26)

Proof: The proof involves averaging the instantaneous
SEP over the channel realizations of h and ĝ and is not shown
here.

Notice that the SEP with imperfect channel estimates in (25) is
now a function of Υp. However, this is not so when τ

Pmax
≥ α,

as can be seen from (26). The SEP for MQAM can be derived
in a similar manner.

Next, we find out the impact of imperfect estimation on
interference outage probability, which we denote by P̂out.

Theorem 7: When τ
Pmax

≥ α, P̂out is given by

P̂out = e
− τ

ΩpPmax . (27)
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Fig. 4. Impact of the STx-SRx fading parameter ms and constellation on
the SEP of the secondary system (mp = 1, Ωs = 5, Ωp = 1, Pout = 10%,
and Pmax = 10 dB). Simulations are shown using the marker �.

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

Interference threshold (τ) in dB

S
ym

bo
l e

rr
or

 p
ro

ba
bi

lit
y

 

 

m
s
 = 1.5 (upper bound)

m
s
 = 1.5 (simulation)

m
s
 =2.5 (upper bound)

m
s
 = 2.5 (simulation)

QPSK

16QAM

Fig. 5. Upper bound for non-integer ms (mp = 1, Ωs = 5, Ωp = 1,
Pout = 10%, and Pmax = 10 dB).

When τ
Pmax

< α, P̂out is given by

P̂out=
2(1+ΥpΩp)

ΥpΩ2
pq

2

[
e
− q2b2

2(a2+q2)Q1

(
c
√
a2 + q2,

ab√
a2 + q2

)

−e− q2c2

2 Q1 (ac, b)+q
2

∫ √
α

√
τ

Pmax

x2e
− q2x2

2
2 Q1 (ax2, b1x2) dx2

]

+
2(1 + ΥpΩp)

ΥpΩ2
p

[
e−

q2α
2 Q1 (a

√
α, b)

q2
+ e

− q2b2

2(a2+q2)

×
[
1−Q1

(
√
α
√
a2 + q2,

ab√
a2 + q2

)]]
, (28)

where q2 = 2
K2

− K1K
2
3

2 , a = K3

√
K1

2 , b =
√

2τ
K1Pmax

, c =√
τ

Pmax
, b1 = 2

K1
, K1 =

Ωp

1+ΥpΩp
, K2 =

ΥpΩ
2
p

(1+ΥpΩp)2
, K3 =

2(1+ΥpΩp)
Ωp

, I0(·) is the modified Bessel function of the zeroth
order, and Q1(·, ·) is the Marcum-Q function [22, (4.34)].

Proof: The proof is given in Appendix F.
When τ

Pmax
≥ α, we see that the outage probability decays

exponentially with the interference threshold for both perfect
and imperfect CSI (cf. (27)), since the STx transmits at Pmax

regardless of the state of the STx-PRx link. However, when
τ

Pmax
< α, the outage probability does not remain constant at

Pout with imperfect CSI unlike the perfect CSI case, and is
given by (28). The integral over x2 in (28) can be written in
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Fig. 6. Impact of the peak transmit power constraint Pmax on the BER of
the secondary system (ms = 5, mp = 1, Ωs = 5, Ωp = 1, Pout = 10%,
and QPSK). Simulations are shown using the marker �.

closed-form using [28, (B.47)]. We do not show it here as it
is lengthy and does not provide additional insights.

VI. NUMERICAL RESULTS AND DISCUSSION

We now present Monte Carlo simulation results, which use
106 samples, to verify the analytical results and understand
the impact of system parameters such as τ , Pmax, Pout, ms,
and mp on the SEP. We first consider the perfect CSI case
and then the imperfect CSI case.

A. Perfect CSI

Figure 4 plots the SEP of QPSK and 16QAM as a function
of the interference threshold τ for Pmax = 10 dB and
Pout = 10%. Results are shown for different values of ms. We
observe that the analysis results match well with the simulation
results. Furthermore, for both the constellations and all ms,
as τ increases, the SEP first reduces and eventually reaches
an error floor because of the peak transmit power constraint.
As ms increases, the severity of the fading over the data
link decreases. Hence, the SEP improves and the error floor
decreases. Figure 5 plots the SEP upper bounds for MPSK
(cf. (17)) and MQAM (cf. (21)) for non-integer values of
ms. Also plotted are the corresponding simulation results.
Trends similar to Figure 4 are observed when ms increases.
We observe that upper bound for both QPSK and 16QAM is
within 2 dB of the exact SEP and tracks it well.

In order to evaluate the impact on the bit error rate (BER),
which is another oft-used performance metric, Figure 6 plots
the bit error rate (BER) of QPSK as a function of τ for
different Pmax. As expected, an error floor again arises, which
decreases as Pmax increases. It disappears when Pmax → ∞.
Note that the BER and SEP are closely related. Specifically,
BER ≈ SEP

log2(M) , where M is size of the constellation and
Gray coding is used [7].

Figure 7 investigates the effect of Pout on the SEP of 8-
PSK. It uses the same set of parameters as in Figure 6,
but with Pmax = 10 dB. For smaller τ (< 15 dB), as
Pout increases, the SEP decreases because the interference
constraint becomes more lax. However, for τ (> 15 dB),
Pout does not affect the SEP, which is now driven by the
peak transmit power constraint. It also plots the SEP when
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Fig. 7. Impact of the interference outage probability constraint Pout on
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Fig. 8. Asymptotic regime (Pmax → ∞): Impact of STx-SRx fading
parameter ms and STx-PRx fading parameter mp on the SEP of the
secondary system (Ωs = 5, Ωp = 1, Pout = 10%, and 8-PSK). Simulations
are shown using the marker �.

Pout = 0. Under this condition, the STx must ensure that its
instantaneous interference at the PRx never exceeds τ . Thus,
its instantaneous power is min

{
Pmax,

τ
g

}
, which is akin to

the rule used in [9], [12]. Clearly, the SEP is the highest for
this case.

Figure 8 plots the SEP as a function of τ for different
values of ms and mp in the asymptotic regime of large
Pmax for 8-PSK. Now, no error floors occur because the
STx is power unconstrained. Also, as ms increases, the SEP
improves because the severity of the fading over the data link
reduces. As mp increases, the SEP marginally increases. This
is because the STx transmits at peak power relatively less often
as mp increases.

B. Imperfect CSI

Figure 9 plots the SEP as a function of τ for different values
of the pilot SNR Υp and for both Rayleigh and Nakagami-
m fading channels. The parameters have been chosen so as
to avoid clutter. As Υp decreases, the SEP decreases relative
to the perfect CSI case for both the channel models. This is
because as Υp decreases, the power of the estimated channel
gain of the interference link decreases. Therefore, the STx
transmits at the peak power Pmax more often. This increases
the outage probability beyond the stipulated Pout, as we shall
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Fig. 9. Impact of imperfect channel estimates on the SEP of the secondary
system (mp = 1, Ωp = 1, Pout = 10%, and QPSK). Analytical results are
shown using the marker ◦.
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see in the next figure. As expected, the SEP decays at a faster
rate for ms = 5, when compared to ms = 1, until it reaches
an error floor.

Figure 10 plots the outage probability as a function of τ for
different values of Υp for Rayleigh and Nakagami-m fading.
With imperfect CSI, as τ increases, the outage probability
decreases. This is unlike the perfect CSI case, in which the
outage probability remains at Pout as long as τ

Pmax
< α and

then gradually reduces when τ
Pmax

≥ α. As Υp decreases, the
outage probability increases because the estimate of g gets
noisier. For τ > 8 dB for Rayleigh fading and τ > 13 dB for
Nakagami-m fading, P̂out decays exponentially, as can be seen
from (27). It is insensitive to Υp because the STx transmits
at Pmax more often, regardless of ĝ.

VII. CONCLUSIONS AND EXTENSIONS

We developed an SEP-optimal transmit power adaptation
policy for an underlay CR system that is subject to two prac-
tically motivated constraints, namely, a peak transmit power
constraint and an interference outage probability constraint.
We saw that the STx transmits at peak power not only when
the interference link is very weak but also when it is very
strong. Otherwise, the STx adjusts its transmit power so
that the interference at the PRx equals the threshold τ . To
implement it, the STx only needs to know the channel gain of
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its link to the PRx. It does not require the knowledge of the
channel gain of the PTx-PRx link or the STx-SRx link.

We also analyzed the SEP of the optimal transmit power
policy for both MPSK and MQAM. We saw that imperfect
channel knowledge of the STx-PRx link leads to an increased
interference at the PRx and lowers the SEP of the SU link.
An interesting avenue for future work is developing the
optimal power allocation policy for a CR system with multiple
PRxs, with an interference outage probability constraint to be
satisfied for each PRx.

APPENDIX

A. Proof of Claim 7

Without loss of generality, let δ1 and δ2 be infinitesimally
small. Consider a policy θ

′′
, in which Ip = Pmaxg, for g ∈

(g1, g1 + δ1), and Ip = τ , for g ∈ (α, α+ δ2). To ensure that
the outage probability of θ

′′
and θ∗ is Pout, we set p (g1) δ1 =

p(α)δ2. Recall that θ∗ is the power policy given in (10). Also,
it can be seen that

SEPθ′′ = SEPθ∗ − 1

π

∫ Λπ

0

p(g1)δ1(
1 +

τ sin2( π
M )

σ2g1 sin2 φ

)ms
dφ

+
1

π

∫ Λπ

0

p(α)δ2(
1 +

τ sin2( π
M )

σ2α sin2 φ

)ms
dφ. (29)

Since α > g1 and p (g1) δ1 = p(α)δ2, we get
p(g1)δ1(

1+
τ sin2( π

M )
σ2g1 sin2 φ

)ms < p(α)δ2(
1+

τ sin2( π
M )

σ2α sin2 φ

)ms , for 0 ≤ φ ≤ Λπ.

Hence, SEPθ∗ < SEPθ′′ . Therefore, θ
′′

is sub-optimal.

B. Proof of Theorem 2

From (3), the SEP of MPSK for the optimal transmit power
policy is given by

SEPMPSK = Eh,g

[
1

π

∫ Λπ

0

exp

(
−P

∗h sin2
(

π
M

)
σ2 sin2 φ

)
dφ

]
.

(30)
As per (10), the optimal transmit power is Pmax, for 0 <
g ≤ τ

Pmax
or g > α, and is τ

g , for τ
Pmax

< g ≤ α. Hence,
integrating over the above three regions of g separately, we
get

SEPMPSK = T1 + T2 + T3, (31)

where

T1 =
1

π

∫ ∞

0

∫ τ
Pmax

0

∫ Λπ

0

exp

(
−Pmaxh sin

2
(

π
M

)
σ2 sin2 φ

)
× p(h)p(g) dφ dg dh, (32)

T2 =
1

π

∫ ∞

0

∫ α

τ
Pmax

∫ Λπ

0

exp

(
−hτ sin

2
(

π
M

)
gσ2 sin2 φ

)
× p(h)p(g) dφ dg dh, (33)

T3 =
1

π

∫ ∞

0

∫ ∞

α

∫ Λπ

0

exp

(
−Pmaxh sin

2
(

π
M

)
σ2 sin2 φ

)
× p(h)p(g) dφ dg dh. (34)

We evaluate the above three terms separately below.
Evaluating T1: Substituting the Nakagami-m pdfs of h and

g in (32) and integrating over h, we get

T1=
m

mp
p mms

s

πΓ(mp)Ω
mp
p Ωms

s

∫ τ
Pmax

0

gmp−1e−mpg/Ωp

×
∫ Λπ

0

(
σ2Ωs sin

2 φ

σ2ms sin
2 φ+Ωs sin

2
(

π
M

)
Pmax

)ms

dφ dg. (35)

Writing the integral over g in terms of the incomplete gamma
function, we get

T1 =
γ
(
mp,

mpτ
ΩpPmax

)
ψ(cMPSK

1 )

Γ(mp)
, (36)

where cMPSK
1 =

Ωs sin2( π
M )Pmax

σ2ms
and ψ(·) is defined in the

theorem statement.
Evaluating T2: Substituting the pdfs of h and g in (33), and

integrating over h, we get

T2 =

(
mp

Ωp

)mp
∫ α

τ
Pmax

gmp−1e−mpg/Ωp ψ(cMPSK
2 (g))

Γ(mp)
dg,

(37)

where cMPSK
2 (g) =

Ωs sin2( π
M )τ

σ2msg
.

Evaluating T3: Similarly, we can show that T3 =(
1− 1

Γ(mp)
γ
(
mp,

mpα
Ωp

))
ψ(cMPSK

1 ). Substituting the above
expressions for T1, T2, and T3 in (31) yields (14).

Simplifying ψ(·): For integer ms, using [22, (5A.17)], it
can be shown that ψ(x0) reduces to (16). For non-integer ms,
such a closed-form solution is not possible. However, a closed-
form upper bound is obtained using the inequality sinφ2 ≤ 1,
which yields (17).

C. Proof of Theorem 3

For MQAM, the SEP of the optimal transmit power policy
is

SEPMQAM = Eh,g

[
4

π

(
1− 1√

M

)∫ π
2

0

exp

( −1.5P ∗h
Δσ2 sin2 φ

)
dφ

− 4

π

(
1− 1√

M

)2 ∫ π
4

0

exp

( −1.5P ∗h
Δσ2 sin2 φ

)
dφ

]
. (38)

Using (10), and carefully integrating over the three regions of
g defined in Theorem 1, we get (18), where

χ(y0) =
4

π

(
1− 1√

M

)∫ π
2

0

(
sin2 φ

sin2 φ+ y0

)ms

dφ

− 4

π

(
1− 1√

M

)2 ∫ π
4

0

(
sin2 φ

sin2 φ+ y0

)ms

dφ. (39)

Using the identities [22, (5A.21)] and [22, (5A.24)], (39)
reduces to (20) for integer ms. For non-integer ms, χ(y0)
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can be upper bounded as follows. By rearranging (39), χ(y0)
can be written as

χ(y0) =
4

π
√
M

(
1− 1√

M

)∫ π
4

0

(
sin2 φ

sin2 φ+ y0

)ms

dφ

+
4

π

(
1− 1√

M

)∫ π
2

π
4

(
sin2 φ

sin2 φ+ y0

)ms

dφ. (40)

The first integral can be upper bounded by substituting φ = π
4

in its integrand and the second integral by substituting φ = π
2 .

This yields the bound in (21).

D. Proof of Theorem 4

When τ
Pmax

≥ α, from Claim 1, we have P ∗ = Pmax, ∀g.
Substituting this in (30), we get

SEPMPSK=
1

π

∫ ∞

0

∫ ∞

0

∫ Λπ

0

exp

(
−Pmaxh sin

2
(

π
M

)
sin2 φ

)(
mp

Ωp

)mp

× gmp−1e−mpg/Ωp

Γ(mp)

(
ms

Ωs

)ms hms−1e−msh/Ωs

Γ(ms)
dφ dg dh.

(41)

Integrating over h and g yields

SEPMPSK =
1

π

∫ Λπ

0

(
sin2 φ

sin2 φ+ cMPSK
1

)ms

dφ = ψ(cMPSK
1 ).

(42)
In a similar manner, substituting P ∗ = Pmax in (38) and

integrating over h and g yields the expression for MQAM.

E. Proof of Theorem 5

For g ≤ α, P ∗ = τ
g , and the STx transmits with infinite

power otherwise and does not contribute to the SEP. Substi-
tuting this in (30), we get

SEPMPSK =
1

π

∫ ∞

0

∫ α

0

∫ Λπ

0

exp

(
−hτ sin2 ( π

M

)
g sin2 φ

)(
mp

Ωp

)mp

× gmp−1e−mpg/Ωp

Γ(mp)

(
ms

Ωs

)ms hms−1e−msh/Ωs

Γ(ms)
dφ dg dh.

(43)

Simplifying the integral over h yields (22). The derivation is
similar for MQAM.

F. Proof of Theorem 7

When τ
Pmax

≥ α, the STx transmits at Pmax irrespective of

ĝ. Therefore, P̂out = Pr
(
g > τ

Pmax

)
. Upon simplification this

yields (27).
When τ

Pmax
< α, P̂out can be written as

P̂out = Pr (P (ĝ)g > τ) = Pr
(√

P (ĝ)g >
√
τ
)
. (44)

Let X1 =
√
g and X2 =

√
ĝ. Their joint pdf pX1,X2(x1, x2)

is given by [22, (6.2)]

pX1,X2(x1, x2) =
4x1x2

Ω1Ω2(1− ρ)
exp

( −1

1− ρ

(
x21
Ω1

+
x22
Ω2

))
× I0

(
2
√
ρx1x2

(1− ρ)
√
Ω1Ω2

)
, x1 ≥ 0, x2 > 0, (45)

where Ω1 = E [g] = Ωp, Ω2 = E [ĝ] =
ΥpΩ

2
p

1+ΥpΩp
, ρ =

ΥpΩp

1+ΥpΩp
,

I0(·) is the modified Bessel function of the zeroth order, and
Q1(·, ·) is the Marcum-Q function [22, (4.34)].

As in Appendix B, P̂out can be written as

P̂out = T̂1 + T̂2 + T̂3, (46)

where

T̂1 =

∫ √
τ/Pmax

0

∫ ∞
√

τ/Pmax

pX1,X2(x1, x2) dx1 dx2. (47)

This corresponds to the interval ĝ ∈
[
0, τ

Pmax

)
. The term

T̂2 corresponds to the interval ĝ ∈
[

τ
Pmax

, α
)

and is given

by T̂2 =
∫ α√

τ/Pmax

∫∞
x2

pX1,X2(x1, x2) dx1 dx2. Similarly,

T̂3 =
∫∞√

α

∫∞√
τ/Pmax

pX1,X2(x1, x2) dx1 dx2 corresponds to
the interval ĝ ∈ [α,∞).

Using [28, (B.19)], T̂1 can be simplified to

T̂1 =
2(1+ΥpΩp)

ΥpΩ2
pq

2

[
e
− q2b2

2(a2+q2)Q1

(
c
√
a2 + q2,

ab√
a2 + q2

)

−e− q2c2

2 Q1(ac, b)

]
, (48)

where q2 = 2
K2

− K1K
2
3

2 , a = K3

√
K1

2 , b =
√

2τ
K1Pmax

,

c =
√

τ
Pmax

, K1 =
Ωp

1+ΥpΩp
, K2 =

ΥpΩ
2
p

(1+ΥpΩp)2
, and K3 =

2(1+ΥpΩp)
Ωp

. Using the definition of Marcum-Q function, T̂2
simplifies to

T̂2 =
2(1 + ΥpΩp)

ΥpΩ2
p

∫ √
α

√
τ

Pmax

x2e
− q2x2

2
2 Q1 (ax2, b1x2) dx2,

(49)
where b1 =

√
2
K1

. Similarly, using the identity in [28, (B.18)],

T̂3 can be written as

T̂3 =
2(1 + ΥpΩp)

ΥpΩ2
p

(
1

q2
e−

q2α
2 Q1

(
a
√
α, b

)
+e

− q2b2

2(a2+q2)

[
1−Q1

(
√
α
√
a2 + q2,

ab√
a2 + q2

)])
.

(50)

Substituting T̂1, T̂2, and T̂3 in (46) yields (28).
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