
2742 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 9, SEPTEMBER 2010

Transactions Papers

A Novel, Balanced, and Energy-Efficient
Training Method for Receive Antenna Selection

Vinod Kristem, Neelesh B. Mehta, Senior Member, IEEE, and Andreas F. Molisch, Fellow, IEEE

Abstract—In receive antenna selection (AS), only signals from
a subset of the antennas are processed at any time by the
limited number of radio frequency (RF) chains available at the
receiver. Hence, the transmitter needs to send pilots multiple
times to enable the receiver to estimate the channel state of
all the antennas and select the best subset. Conventionally, the
sensitivity of coherent reception to channel estimation errors has
been tackled by boosting the energy allocated to all pilots to
ensure accurate channel estimates for all antennas. Energy for
pilots received by unselected antennas is mostly wasted, especially
since the selection process is robust to estimation errors. In this
paper, we propose a novel training method uniquely tailored
for AS that transmits one extra pilot symbol that generates
accurate channel estimates for the antenna subset that actually
receives data. Consequently, the transmitter can selectively boost
the energy allocated to the extra pilot. We derive closed-form
expressions for the proposed scheme’s symbol error probability
for MPSK and MQAM, and optimize the energy allocated to pilot
and data symbols. Through an insightful asymptotic analysis, we
show that the optimal solution achieves full diversity and is better
than the conventional method.

Index Terms—Training, antenna selection, diversity methods,
fading channels, estimation, error analysis, quadrature amplitude
modulation, quadrature phase shift keying, energy efficient.

I. INTRODUCTION

RECEIVE antenna selection (AS) provides a low hardware
complexity solution for exploiting the spatial diversity

benefits of receiving with multiple antennas [1]–[3]. In AS,
the receiver does not receive and process signals from all its
antennas. Instead, it dynamically selects a subset of the an-
tennas with the ‘best’ instantaneous channel conditions to the
transmitter, and processes signals through them. This enables
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the receiver to employ fewer of the expensive radio frequency
(RF) chains. Consequently, AS has been adopted in next
generation wireless systems such as IEEE 802.11n [4]. Despite
its lower hardware complexity, AS achieves the full diversity
order with perfect channel state information (CSI) [5], [6].

In practice, the CSI needs to be acquired using a pilot-based
training scheme [7]. The basic operation of AS imposes the
constraint that only 𝐿 antennas can be estimated at any time
with 𝐿 RF chains. Therefore, in receive AS, the transmitter
needs to transmit pilots multiple times so that the receiver
can estimate the channels of all the available antennas and
choose the antennas with the best channels. As an example,
consider an AS system with 𝑁 = 6 antennas and 𝐿 = 2 RF
chains. To estimate the channels of all 6 antennas, at least 3
pilot transmissions are needed. The first pilot helps estimate
channel gains of antennas #1 and #2, the second pilot helps
estimate channel gains of antennas #3 and #4, and the third
pilot helps estimate channel gains of antennas #5 and #6. In
general, with 𝑁 antennas and 𝐿 RF chains, at least ⌈𝑁/𝐿⌉
pilot transmissions are required, where ⌈.⌉ denotes the ceil
function.

In AS, estimation errors may cause a suboptimal antenna
subset to get selected and will also impair coherent demodu-
lation. While selection is quite robust to such errors, as has
been observed empirically in [8], coherent demodulation is
not. This forces the transmitter to increase/boost, if possible,
the energy allocated to the pilot symbols. Since the transmitter
does not know a priori which antennas will be selected,
it needs to uniformly boost the energy of all the pilots
used to estimate the channel gains of all the antennas. This
process is energy-inefficient because it obtains highly accurate
channel estimates for unselected antennas, as well. Under a
total energy constraint, it also draws energy away from data
symbols, and, thus, increases their symbol error probability
(SEP).

In this paper, we propose a novel training method for AS
that significantly improves the energy-efficiency of AS. In
the proposed method, the transmitter sends an extra pilot
symbol after the first ⌈𝑁/𝐿⌉ pilots, which we call selection
pilots. While the selection pilots help in selecting the best
antenna subset, the extra pilot helps in refining the channel
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estimates of the selected antenna subset that will be used for
data reception. A key point to note is that the impact of
the extra pilot on the SEP of receive AS is vastly different
compared to a non-AS system, which has as many RF chains
as antennas. In the latter case, sending two pilots – one with
energy 𝐸𝑠 and the other with energy 𝐸𝑒 – leads to the same
estimation error as sending a single pilot with an energy of
𝐸𝑠 + 𝐸𝑒. With AS there exists a unique trade-off between
𝐸𝑠 and 𝐸𝑒 since the first pilot can be used for selection
and the second one for refining the estimates for coherent
demodulation. This is because increasing 𝐸𝑠 improves the
probability that the optimal antenna subset is selected, while
increasing 𝐸𝑒 specifically reduces the error in the channel
estimates of the selected antenna subset used for coherent
demodulation. Intuitively, the robustness of AS to selection
errors suggests that the transmitter can significantly reduce the
total energy it allocates to the many selection pilots. Instead,
it need only boost the energy of the extra pilot in order to get
accurate estimates for demodulation. The energy thus saved
can be transferred to the data symbols to reduce their SEP.

This trade-off has not been explored in the AS literature, to
the best of our knowledge. When more pilot symbols than re-
quired (i.e., ⌈𝑁/𝐿⌉) are transmitted, it has been conventionally
assumed that this affects the performance of AS only through
the product of the number of pilot symbols per antenna and
the energy per pilot symbol. This is the case, for example,
in [9], which analyzed the impact of imperfect estimates on
both subset selection and coherent demodulation. While [10]–
[15] also considered the impact of channel estimation errors
on AS, the way in which estimates are obtained was not
modified. Similar results for Selection Diversity receivers in
the presence of estimation errors were also derived in [16],
[17]. While optimal power allocation for pilots and data has
been considered for multiple antenna systems in [18]–[21] and
for a time division code division multiple access (TD-CDMA)
system in [22], it was not done for AS; consequently, the above
trade-off did not occur.

The paper makes the following additional contributions in
understanding and exploiting the above trade-off. Under a total
energy constraint, it derives closed-form expressions for the
fading-averaged SEP of MPSK and MQAM constellations of
the proposed method as a function of the fractions of energy
allocated to the various pilot and data symbols. The analysis
accounts for imperfect estimation in both the selection and
data transmission phases, and enables the fraction of energy
allocated to pilots and data to be optimized. The analytical
expressions clearly bring out the dependence of the SEP on
the number of available and selected antennas, the number of
data symbols, and the total energy available to the transmitter.
To provide a fair comparison, we also optimize the energies
allocated to pilots and data in the conventional AS training
method of [9], and develop a new closed-form solution for its
optimal energy allocation. The analysis, which is verified using
extensive Monte Carlo simulations, shows that an energy gain
as large as 3 dB over the conventional AS training method
can be achieved.

In the asymptotic scenario where the total available energy
is large, we show that the proposed AS training scheme
achieves the full diversity order. The asymptotic analysis
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Fig. 1. Training for receive antenna selection: conventional and proposed
AS training methods.

shows that the optimal energy allocation for the proposed
method is unique and strictly better than that of the conven-
tional optimized method. An approximate, but closed-form,
expression for the optimal allocation is also derived.

The outline of this paper is as follows. The AS training and
data transmission models are described in Sec. II and analyzed
in Sec. III, and are followed by extensive simulation results in
Sec. IV. We conclude in Sec. V. Several mathematical details
are relegated to the Appendix.

II. SYSTEM MODEL

Consider a system with one transmit antenna, 𝑁 receive an-
tennas, and 𝐿 receive RF chains. Let ℎ𝑘 denote the frequency-
flat, block-fading channel between the transmitter and the
𝑘th receive antenna. It is modeled as a circularly symmetric
complex Gaussian random variable (RV) with unit variance.
Therefore, the channel gain ∣ℎ𝑘∣ is a Rayleigh RV. The
channel gains for different receive antennas are assumed to be
independent and identically distributed (i. i. d.), which is the
case when the receive antennas are spaced sufficiently apart
in a rich scattering environment [23].

We first describe the transmitter and receiver behavior for
the conventional AS training method, and then describe how
the proposed method differs from it.

A. Conventional AS Training Method

To enable the receiver to estimate the channel gains of all
the 𝑁 links, the transmitter sequentially transmits 𝑎 = ⌈𝑁𝐿 ⌉
pilot symbols [9], [15] each with energy 𝜀𝐸1, sequentially, as
shown in Figure 1(a), where 𝐸1 is the energy allocated to a
data symbol and 𝜀 ≥ 0 is the energy scaling factor for pilots.
Each pilot symbol is received by at most 𝐿 receive antennas.

The signal received by the 𝑘th receive antenna is given by

𝑟𝑘 =
√
𝜀𝐸1𝑝ℎ𝑘 + 𝑛𝑘, (1)

where 𝑝 is the (complex) pilot with ∣𝑝∣ = 1, 𝑛𝑘 is a
circular symmetric complex Gaussian RV with variance 𝑁0

that is independent across different antennas, 𝑘, and time. The
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minimum mean square estimate (MMSE) channel estimate for
the 𝑘th antenna is [24]

ℎ̂𝑘 =

√
𝜀𝐸1𝑝

∗

𝜀𝐸1 +𝑁0
𝑟𝑘. (2)

Since the channel estimates of different antenna elements
are independent, the receiver selects the 𝐿 antennas with the
highest estimated channel gains. Let Ω̂𝐿 denote the selected

subset of antennas. Note that Ω̂𝐿 depends on
{
ℎ̂𝑘

}𝑁
𝑘=1

.

The pilot symbols are followed by 𝑑 data symbols, each
transmitted with energy 𝐸1. All the 𝑑 data symbols are
received by the same antenna subset Ω̂𝐿. The received signal
at the 𝑘th antenna for the 𝑙th data symbol, 𝑠(𝑙), equals

𝑦
(𝑙)
𝑘 = ℎ𝑘𝑠

(𝑙) + 𝑛
(𝑙)
𝑘 , 𝑘 ∈ Ω̂𝐿. (3)

The data symbols are equi-probable and derived from either
the MPSK or MQAM constellations. For MPSK, 𝑠(𝑙) ∈{√

𝐸1 exp(
𝑗2𝜋𝑚
𝑀 ),𝑚 = 0, . . . ,𝑀 − 1}. For MQAM, 𝑠(𝑙) =√

3𝐸1

2(𝑀−1) (𝑎𝐼 + 𝑗𝑎𝑄), where 𝑎𝐼 , 𝑎𝑄 ∈ {2𝑖 − 1 − √
𝑀, 𝑖 =

1, . . . ,
√
𝑀}. To simplify the notation, we shall henceforth

drop the symbol index 𝑙, unless required otherwise.
The maximum likelihood (ML) decision variable for decod-

ing a data symbol is 𝒟 =
∑
𝑘∈Ω̂𝐿

ℎ̂∗𝑘𝑦𝑘. The constraint on total

energy, 𝐸𝑇 , takes the form1

(𝑎𝜀+ 𝑑)𝐸1 = 𝐸𝑇 . (4)

Let 𝛾 ≜ 𝐸𝑇

𝑁0
. Therefore, 𝐸1

𝑁0
= 𝛾
𝑎𝜀+𝑑 . Notice that the choice

of 𝜀 affects the energy allocated, 𝐸1, to each data symbol.

B. Proposed Method

We now describe the proposed AS training method, which
is shown in Figure 1(b). As before, the transmitter now first
sequentially transmits 𝑎 = ⌈𝑁𝐿 ⌉ pilot symbols so that all the𝑁
channels can be estimated, with 𝐿 channels getting estimated
every time a pilot is transmitted. But, each pilot symbol is
now transmitted with energy 𝛼𝐸2, where 𝐸2 is the energy
per data symbol and 𝛼 is now the energy scaling factor for
these pilots.

The pilot symbol received by the 𝑘th receive antenna is
𝑟𝑘 =

√
𝛼𝐸2𝑝ℎ𝑘 + 𝑛𝑘, where 𝑛𝑘, as before, is a circular

symmetric complex Gaussian RV with variance 𝑁0. As in (2),
the MMSE channel estimate for the 𝑘th antenna is given by

ℎ̂𝑘 =

√
𝛼𝐸2𝑝

∗

𝛼𝐸2 +𝑁0
𝑟𝑘 = 𝑎1ℎ𝑘 + 𝑒𝑘, (5)

where 𝑝 is the (complex) pilot with ∣𝑝∣ = 1, 𝑎1 ≜ 𝛼𝐸2

𝛼𝐸2+𝑁0
,

and the zero-mean Gaussian noise term 𝑒𝑘 ≜ 𝑛𝑘𝑝
∗√𝛼𝐸2

𝛼𝐸2+𝑁0
has

a variance 𝜎2
𝑒 =

𝛼𝐸2𝑁0

(𝛼𝐸2+𝑁0)2
.

Since the channel estimates of different antennas are un-
correlated, the 𝐿 antennas with the highest estimated channel
gains are selected. As before, Ω̂𝐿 denotes the selected antenna

subset, and depends on
{
ℎ̂𝑘

}𝑁
𝑘=1

.

1The case where the total pilot and data energy is less than 𝐸𝑇 is
suboptimal, and is, therefore, not considered here.

Extra Pilot and Refined Estimates: The key difference in the
proposed method is that an extra pilot symbol is transmitted
with energy 𝛽𝐸2, and is received by the selected 𝐿 antennas.
The extra pilot helps in refining the channel estimates of the
selected 𝐿 antennas as explained below. Note that, in general,
𝛽 ∕= 𝛼. The received signal, 𝑟′𝑘, for the extra pilot is

𝑟′𝑘 =
√
𝛽𝐸2𝑝ℎ𝑘 + 𝑛′

𝑘, 𝑘 ∈ Ω̂𝐿, (6)

where 𝑛′
𝑘 is a circular symmetric complex Gaussian RV with

variance 𝑁0, and is independent of 𝑛𝑘.
The channel estimate of a selected antenna 𝑘 ∈ Ω̂𝐿 can

be refined using the two observations 𝑟′𝑘 and 𝑟𝑘 . The refined

MMSE estimate, ˆ̂ℎ𝑘, that uses both 𝑟𝑘 and 𝑟′𝑘 equals [24]

ˆ̂
ℎ𝑘 =

√
𝛼𝐸2𝑝

∗𝑟𝑘 +
√
𝛽𝐸2𝑝

∗𝑟′𝑘
(𝛼+ 𝛽)𝐸2 +𝑁0

= 𝑎2ℎ𝑘 + 𝑒′𝑘, (7)

where 𝑎2 ≜ (𝛼+𝛽)𝐸2

(𝛼+𝛽)𝐸2+𝑁0
and the zero-mean Gaussian noise

term 𝑒′𝑘 ≜
√
𝛼𝐸2𝑝

∗𝑛𝑘+
√
𝛽𝐸2𝑝

∗𝑛′
𝑘

(𝛼+𝛽)𝐸2+𝑁0
has a variance of 𝜎2

𝑒′ =
(𝛼+𝛽)𝐸2𝑁0

((𝛼+𝛽)𝐸2+𝑁0)2
. Note that 𝑒′𝑘 and 𝑒𝑘 are correlated.

Data Reception: The pilot symbols are followed by 𝑑
data symbols, each transmitted with energy 𝐸2. They are all
received by the antenna subset Ω̂𝐿.2 The received signal for
a data symbol 𝑠 is

𝑦𝑘 = ℎ𝑘𝑠+ 𝑛′′
𝑘, 𝑘 ∈ Ω̂𝐿. (8)

The maximum likelihood decision variable, 𝒟, for data de-
coding is 𝒟 =

∑
𝑘∈Ω̂𝐿

ˆ̂
ℎ∗𝑘𝑦𝑘. The total energy constraint is

𝐸𝑇 = (𝑎𝛼+ 𝛽 + 𝑑)𝐸2. (9)

Let 𝛾 ≜ 𝐸𝑇

𝑁0
. Hence, 𝐸2

𝑁0
= 𝛾
𝑎𝛼+𝛽+𝑑 . Now, 𝛼 and 𝛽 together

affect the energy 𝐸2 allocated to a data symbol. When 𝛽 = 0,
the SEP of the proposed method is the same as that of the
conventional AS training method with 𝜀 = 𝛼.

While a corresponding scheme can be developed for multi-
ple transmit antennas, its analysis is beyond the scope of this
paper. Even the one transmit antenna case considered in this
paper will turn out to be analytically interesting and insightful.

III. SEP ANALYSIS AND OPTIMIZATION

We now analyze the fading-averaged SEP for MPSK or
MQAM for receive AS with imperfect CSI for the conven-
tional and proposed AS training methods, and optimize their
parameters to minimize the SEP. The case where channel
coding is used across the 𝑑 symbols is beyond the scope of this
paper due to its analytical intractability. This approach has also
been followed in [6], [9], [12], [17], which focus on the SEP to
gain insights. While [25] did analyze AS with channel coding,
channel estimation errors or training details for AS were not
addressed. Henceforth, E [𝐴] and var [𝐴] shall denote the
expectation and variance, respectively, of RV 𝐴. E [𝐴∣𝐵] and
var [𝐴∣𝐵] will denote the conditional expectation and variance
of 𝐴 given 𝐵, respectively; 𝑥∗ denotes the complex conjugate
of scalar 𝑥; 𝑌 𝐻 denotes the Hermitian transpose of vector 𝑌 .

2After receiving the extra pilot, the receiver can, in fact, reselect the

antennas based on ℎ̂𝑘 or ˆ̂
ℎ𝑘, depending on whether 𝑘 is in Ω̂𝐿 or not. We

do not allow this to keep the analysis tractable. Simulations show that the
performance gains from such a reselection are negligible.
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A. Conventional Method Optimization

We discuss the conventional method only briefly given the
analysis in [9]. The main contribution of this section lies
in determining the optimal value of 𝜀 that minimizes the
SEP subject to total energy constraint, and in deriving the
expression for the optimal SEP; these were are not considered
in [9]. This provides a fair benchmark for our new method,
which is analyzed next.

In terms of the notation used in our paper, the SEP ex-
pressions for MPSK and MQAM, denoted by 𝑃 𝜀MPSK(𝛾) and
𝑃 𝜀MQAM(𝛾), respectively, are [9]:

𝑃 𝜀MPSK(𝛾) =
1

𝜋

∫ 𝑀−1
𝑀 𝜋

0

(
sin2 𝜃

sin2 𝜃 + 𝑐PSK

)𝐿

×
𝑁∏

𝑛=𝐿+1

(
sin2 𝜃

sin2 𝜃 + 𝑐PSK𝐿
𝑛

)
𝑑𝜃, (10)

𝑃 𝜀MQAM(𝛾) =
4

𝜋

(
1− 1√

𝑀

)∫ 𝜋
2

0

𝜉(𝜃)

(
sin2 𝜃

sin2 𝜃 + 𝑐QAM

)𝐿

×
𝑁∏

𝑛=𝐿+1

(
sin2 𝜃

sin2 𝜃 + 𝑐QAM𝐿
𝑛

)
𝑑𝜃, (11)

where 𝜉(𝜃) = 1√
𝑀

, for 0 ≤ 𝜃 < 𝜋
4 , and 𝜉(𝜃) = 1, for

𝜋
4 ≤ 𝜃 ≤ 𝜋

2 ; 𝑐PSK ≜ 𝜀𝛾2 sin2( 𝜋
𝑀 )

(𝑎𝜀+𝑑)((𝜀+1)𝛾+𝑎𝜀+𝑑) , and 𝑐QAM ≜
1.5𝜀𝛾2/(𝑀−1)

(𝑎𝜀+𝑑)((𝜀+1)𝛾+𝑎𝜀+𝑑) .
Lemma 1: The optimal value of 𝜀, denoted by 𝜀∗(𝛾), that

minimizes the SEP of both MPSK and MQAM is

𝜀∗(𝛾) =

√
𝑑(𝛾 + 𝑑)

𝑎(𝛾 + 𝑎)
. (12)

Proof: The proof is given in Appendix A.

When 𝛾 → ∞, we have lim
𝛾→∞𝜀

∗(𝛾) ≜ 𝜀∗∞ =
√
𝑑
𝑎 . Note

that this asymptotic result (but not the general expression
for any 𝛾 in Lemma 1) can also be construed as a special
case of the result in [22, (15)], which considered energy
allocation between data symbols and mid-amble pilots in a
TD-CDMA system to minimize mean square estimation error.
Consequently, the asymptotic expression for the optimal SEP
of MPSK, 𝑃 𝜀,∞MPSK(𝛾), simplifies to

𝑃 𝜀,∞MPSK (𝛾) = 𝛾−𝑁
(𝐿+ 1) (𝐿+ 2) ⋅ ⋅ ⋅ (𝑁)

𝜋4𝑁𝐿𝑁−𝐿
(√

𝑑+
√
𝑎
)2𝑁

× sin−2𝑁
( 𝜋
𝑀

)
𝜓

(
𝑀 − 1
𝑀

𝜋,𝑁

)
, (13)

where 𝜓 (𝑇,𝑁) ≜
(
2𝑁
𝑁

)
𝑇+

𝑁−1∑
𝑗=0

(−1)𝑗+𝑁

𝑁−𝑗
(
2𝑁
𝑗

)
sin(2(𝑁−𝑗)𝑇 ).

The derivation is relegated to Appendix B. The asymptotic
expression for the optimal SEP of MQAM can be written
similarly.

B. Analysis and Optimization of SEP of Proposed Method

We now analyze the SEP of the proposed method given 𝛼
and 𝛽, and then minimize it. The following result about the
statistics of 𝒟 shall be useful in deriving the SEP.

Lemma 2: Conditioned on
{
ℎ̂𝑙,
ˆ̂
ℎ𝑙

}
𝑙∈Ω̂𝐿

and 𝑠, the deci-

sion variable, 𝒟, is a complex Gaussian RV with conditional
mean, 𝜇𝒟 , and variance, 𝜎2

𝒟 , given by

𝜇𝒟 ≜ E

[
𝒟
⏐⏐⏐{ℎ̂𝑙, ˆ̂ℎ𝑙}

𝑙∈Ω̂𝐿

, 𝑠

]
= 𝑠

∑
𝑘∈Ω̂𝐿

∣∣∣ˆ̂ℎ𝑘∣∣∣2 , (14)

𝜎2
𝒟≜var

[
𝒟
⏐⏐⏐{ℎ̂𝑙, ˆ̂ℎ𝑙}

𝑙∈Ω̂𝐿

, 𝑠

]
= ((1−𝑎2)𝐸2+𝑁0)

∑
𝑘∈Ω̂𝐿

∣∣∣ˆ̂ℎ𝑘∣∣∣2.
(15)

Proof: The proof is given in Appendix C.

Since 𝜇𝒟 and 𝜎2
𝒟 depend only on ˆ̂ℎ𝑘, we see that all the

information in ℎ̂𝑘 is captured by ˆ̂ℎ𝑘. We now derive the SEP
for MPSK and MQAM for the proposed method as a function
of 𝛼 and 𝛽.

Theorem 1: With noisy channel estimates, the fading-
averaged SEP of MPSK and MQAM is:

𝑃𝛼,𝛽MPSK(𝛾) =
1

𝜋

∫ 𝑀−1
𝑀 𝜋

0

(
sin2 𝜃

𝑎2𝑏PSK + sin
2 𝜃

)𝐿

×
𝑁∏

𝑛=𝐿+1

(
1 +

𝑎1𝑏PSK𝐿/𝑛

(𝑎2 − 𝑎1)𝑏PSK + sin
2 𝜃

)−1

𝑑𝜃, (16)

𝑃𝛼,𝛽MQAM(𝛾)=
4

𝜋

(
1− 1√

𝑀

)∫ 𝜋
2

0

𝜉(𝜃)

(
sin2 𝜃

𝑎2𝑏QAM+sin
2 𝜃

)𝐿

×
𝑁∏

𝑛=𝐿+1

(
1+

𝑎1𝑏QAM𝐿/𝑛

(𝑎2−𝑎1)𝑏QAM+sin
2 𝜃

)−1

𝑑𝜃, (17)

where 𝜉(𝜃) = 1√
𝑀

, for 0 ≤ 𝜃 < 𝜋
4 , and 𝜉(𝜃) = 1, for 𝜋4 ≤

𝜃 ≤ 𝜋
2 , 𝑎1 =

𝛼𝛾
(𝑎+𝛾)𝛼+𝛽+𝑑 , 𝑎2 =

(𝛼+𝛽)𝛾
(𝑎+𝛾)𝛼+(𝛾+1)𝛽+𝑑 , 𝑏PSK =

𝛾 sin2( 𝜋
𝑀 )

(1−𝑎2)𝛾+𝑎𝛼+𝛽+𝑑 , and 𝑏QAM =
1.5𝛾/(𝑀−1)

(1−𝑎2)𝛾+𝑎𝛼+𝛽+𝑑 .
Proof: The proof is given in Appendix D.

Closed-form expressions can be derived from (16) and (17)
using [26, (5A.42), (5A.56)]. However, they are quite involved,
and are not shown here. The optimal values of 𝛼 and 𝛽 are
then found numerically using gradient search. Considerable
insight about them can be gained by analyzing the asymptotic
energy regime, as we show below.

C. Asymptotic Characterization of SEP (𝛾 → ∞)

In the asymptotic regime, the SEP of MPSK and MQAM
shall be denoted by 𝑃𝛼,𝛽,∞MPSK (𝛾) and 𝑃𝛼,𝛽,∞MQAM (𝛾), respectively.
In the results below, we do not show higher order terms
involving 𝛾 since their contribution becomes negligible as
𝛾 → ∞.

Lemma 3: The asymptotic SEPs of MPSK and MQAM
are given by

𝑃𝛼,𝛽,∞MPSK (𝛾) = 𝛾−𝑁
(𝐿+ 1) (𝐿+ 2) ⋅ ⋅ ⋅ (𝑁)
𝜋𝐿𝑁−𝐿 (4(𝛼+ 𝛽))

𝑁

× (𝑎𝛼+ 𝛽 + 𝑑)
𝑁
(𝛼+ 𝛽 + 1)

𝑁
sin−2𝑁

( 𝜋
𝑀

)

×
𝑁−𝐿∑
𝑘=0

(
𝑁−𝐿
𝑘

)(
4𝛽 sin2

(
𝜋
𝑀

)
𝛼(𝛼+𝛽+1)

)𝑘
𝜓

(
𝑀−1
𝑀

𝜋,𝑁−𝑘
)
, (18)
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𝑃𝛼,𝛽,∞MQAM (𝛾) = 𝛾−𝑁
4 (𝐿+1) (𝐿+2) ⋅ ⋅ ⋅ (𝑁)
𝜋𝐿𝑁−𝐿 (6(𝛼+ 𝛽))

𝑁

× (𝑎𝛼+ 𝛽 + 𝑑)
𝑁
(𝛼+ 𝛽 + 1)

𝑁
(𝑀 − 1)𝑁

(
1− 1√

𝑀

)

×
𝑁−𝐿∑
𝑘=0

[(
𝑁 − 𝐿

𝑘

)(
6𝛽/(𝑀 − 1)
𝛼(𝛼+ 𝛽 + 1)

)𝑘

×
(
𝜓
(𝜋
2
, 𝑁 − 𝑘

)
−
(
1− 1√

𝑀

)
𝜓
(𝜋
4
, 𝑁 − 𝑘

))]
.

(19)

Proof: The proof is given in Appendix E.
The above expressions show that the diversity order is 𝑁 for
any 𝛼 > 0 and 𝛽 ≥ 0. This is to be expected since the
conventional training method, which is a special case of the
proposed scheme with regard to SEP, also achieves a diversity
order of 𝑁 .

Even the form in (18) is intractable for determining the
optimal values of 𝛼 and 𝛽. We, therefore, minimize an upper
bound on the SEP that is obtained by replacing sin2 𝜃 with 1
in (16) [27]. Let 𝛼∗

∞ and 𝛽∗
∞ denote the optimal values of 𝛼

and 𝛽, respectively, that minimize the SEP upper bound.
From the proof of Lemma 3 in Appendix E (see (41)), it

can be shown that 𝑃𝛼,𝛽,∞MPSK (𝛾) ≤ 𝛾−𝑁𝑈𝛼,𝛽MPSK (𝛾), where

𝑈𝛼,𝛽MPSK ≜ (𝐿+1) (𝐿+2) ⋅ ⋅ ⋅ (𝑁)
𝐿𝑁−𝐿

(
𝑀−1
𝑀

)
sin−2𝑁

( 𝜋
𝑀

)

×
(
(𝑎𝛼+𝛽+𝑑)(𝛼+𝛽+1)

𝛼+𝛽

)𝑁(
1+

𝛽 sin2
(
𝜋
𝑀

)
𝛼(𝛼+𝛽+1)

)𝑁−𝐿
. (20)

Similarly, for MQAM, 𝑃𝛼,𝛽,∞MQAM (𝛾) ≤ 𝛾−𝑁𝑈𝛼,𝛽MQAM, where

𝑈𝛼,𝛽MQAM ≜ (𝐿+1) (𝐿+2) ⋅ ⋅ ⋅ (𝑁)
𝐿𝑁−𝐿

(
𝑀−1
𝑀

)(
1.5

𝑀−1
)−𝑁

×
(
(𝑎𝛼+𝛽+𝑑)(𝛼+𝛽+1)

𝛼+𝛽

)𝑁 ⎛⎝1+ 𝛽
(

1.5
𝑀−1

)
𝛼(𝛼+𝛽+1)

⎞
⎠
𝑁−𝐿

. (21)

As we see below, the upper bounds provide considerable
insight about the optimal parameters. Specifically, for MPSK,
𝛼∗
∞ and 𝛽∗

∞ satisfy the following properties:
Theorem 2: 1) 𝛼∗

∞ and 𝛽∗
∞ are related by

𝛽∗
∞ = −𝛼∗

∞ +

√
𝑑− (𝛼∗∞)

2
(𝑎− 1). (22)

2) 𝛼∗∞ is a zero of the function 𝑔1(𝛼), where

𝑔1(𝛼)≜
√
𝑑−𝛼2(𝑎−1)

(
𝑁𝛼2csc2

( 𝜋
𝑀

)
+ 𝐿𝛼−𝑑

(
𝑁−𝐿
𝑎−1

))

+ 𝛼2
(
𝑁 csc2

( 𝜋
𝑀

)
− 𝐿
)
− 𝑑

(
𝑁 − 𝐿

𝑎− 1
)
. (23)

3) And, 𝛼∗
∞ is unique and lies in the following range:

0 < 𝛼∗
∞ ≤

√
𝑑(𝑁 − 𝐿)

𝑁(𝑎− 1) sin
( 𝜋
𝑀

)
≤ 𝜀∗∞ =

√
𝑑

𝑎
, (24)

with the equalities holding only if both the following condi-
tions hold: 𝑀 = 2 (BPSK) and 𝐿 divides 𝑁 .

Proof: The proof is given in Appendix F.

For large constellation sizes (𝑀 → ∞), the optimal values
𝛼∗
∞ and 𝛽∗

∞ can, in fact, be determined in closed-form as
shown below.

Corollary 1:

lim
𝑀→∞

𝛼∗∞
sin
(
𝜋
𝑀

) =
√
𝑑(𝑁 − 𝐿)

𝑁(𝑎− 1) . (25)

Proof: The proof is given in Appendix G.
Corollary 1 motivates the following approximation for any

𝑀 , which is obtained by substituting (25) in (22):

𝛼∗
∞≈

√
𝑑(𝑁−𝐿)
𝑁(𝑎−1) sin

( 𝜋
𝑀

)
, (26)

𝛽∗
∞≈ −

√
𝑑(𝑁−𝐿)
𝑁(𝑎−1) sin

( 𝜋
𝑀

)
+
√
𝑑

√
1−
(
1− 𝐿

𝑁

)
sin2

( 𝜋
𝑀

)
.

(27)

From the Corollary, it directly follows that the error in the
approximation disappears as 𝑀 → ∞. Interestingly, we shall
see that the error in (26) is small even when 𝑀 is as small
as 4.

Corresponding Results for MQAM: Results analogous to
Theorem 2 and Corollary 1 are obtained for MQAM by

simply replacing sin
(
𝜋
𝑀

)
with

√
1.5
𝑀−1 . This follows because

the expressions in (20) and (21) are very similar except that

sin
(
𝜋
𝑀

)
is replaced by

√
1.5
𝑀−1 .

The asymptotic expressions for SEP provide the following
insights about the proposed scheme.

1) Variation with System Parameters: While 𝜀∗∞ in the
conventional method depends only on 𝑑 and the number of
pilot symbols, 𝑎; in the proposed scheme, 𝛼∗

∞ depends on
all system parameters 𝑁 , 𝐿, 𝑑, 𝑀 , and 𝑎. Furthermore, as 𝑑
increases, the relative energy allocated to training increases
in the conventional and proposed methods. This trend is
consistent with the observations in [18], which considered
training for multiple antenna systems to maximize average
throughput.

2) BPSK (𝑀 = 2): Theorem 2 shows that this is the only
case when the proposed method provides no benefits over the
conventional method if 𝐿 divides 𝑁 . As expected, for this
case, (24) implies that 𝛼∗

∞ = 𝜀∗∞ and 𝛽∗
∞ = 0. However,

the conclusion is different when 𝐿 does not divide 𝑁 even
for BPSK. In this case, 𝛼∗

∞ < 𝜀∗∞, and the proposed scheme
necessarily improves performance.

3) Asymptotic Energy Gain: The conventional and pro-
posed methods both achieve the full diversity order of 𝑁 .
Hence, we can compare them in terms of the asymptotic
energy gain, Δ, which measures the savings in total energy
achieved by the proposed method over the conventional op-
timized method for the same SEP. It is easy to see that, for
MPSK, Δ = 10

𝑁 log10

(
𝑃 𝜀,∞MPSK/𝑃

𝛼,𝛽,∞
MPSK

)
dB.

Taking the ratio of (13) and (18), we get

Δ = 10 log10

⎛
⎜⎝

(√
𝑑+

√
𝑎
)2
(𝛼∗

∞ + 𝛽∗
∞)

(𝛼∗∞ + 𝛽∗∞ + 1) (𝑎𝛼∗∞ + 𝛽∗∞ + 𝑑)

⎞
⎟⎠
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− 10

𝑁
log10

[
𝑁−𝐿∑
𝑘=0

(
𝑁−𝐿
𝑘

)(
4𝛽∗

∞ sin2
(
𝜋
𝑀

)
𝛼∗∞ (𝛼∗∞ + 𝛽∗∞ + 1)

)𝑘

×
(
𝜓

(
𝑀−1
𝑀

𝜋,𝑁−𝑘
)/

𝜓

(
𝑀 − 1
𝑀

𝜋,𝑁

))]
, (28)

where 𝛼∗
∞ and 𝛽∗

∞ are either found numerically or approxi-
mated using (26).

4) Energy Allocation: 𝐸1 ≤ 𝐸2 and 𝛼∗
∞ + 𝛽∗

∞ ≥ 𝜀∗∞.
From (4) and (9), for optimal values of the parameters, it can

be seen that 𝐸1

𝐸2
− 1 = (𝑎−1)𝛼∗

∞+
√
𝑑−(𝛼∗∞)2(𝑎−1)−𝑎𝜀∗∞
𝑎𝜀∗∞+𝑑 . This is

negative because 𝑑−(𝛼∗
∞)

2
(𝑎−1)−(𝑎𝜀∗∞ − (𝑎− 1)𝛼∗

∞)
2
=

−𝑎(𝑎 − 1) (𝜀∗∞ − 𝛼∗
∞)

2 ≤ 0 (since 𝑎 ≥ 1). Thus, 𝐸1 ≤ 𝐸2.

From (26), 𝛼
∗
∞+𝛽∗

∞
𝜀∗∞

=
√
𝑎
√
1− (1− 𝐿

𝑁

)
sin2

(
𝜋
𝑀

)
. Since

𝑎 ≥ 𝑁
𝐿 , it follows that (𝛼∗

∞ + 𝛽∗
∞)/𝜀

∗
∞ ≥ 1. Furthermore,

the ratio increases as 𝑀 increases.
Note that 𝜀∗∞𝐸1 and (𝛼∗

∞ + 𝛽∗
∞)𝐸2 respectively denote

the quality of channel estimates used for data decoding in
the conventional method and the proposed method. Thus, the
proposed method not only allocates more energy to each data
symbol (since 𝐸2 ≥ 𝐸1), but it also ensures that the quality
of estimates is better than the conventional method (since
(𝛼∗∞ + 𝛽∗∞)𝐸2 ≥ 𝜀∗∞𝐸1).

5) Behavior of 𝐸2/𝐸1, i.e., Ratio of Data Energies Allo-
cated by The Two Methods: Understanding the behavior of
𝐸2/𝐸1 will help explain the behavior of SEP and Δ in the
next section.

(i) 𝐸2/𝐸1 increases with 𝑀 : To show this, it is sufficient to
show that ∂

∂𝛼∗∞
𝐸2

𝐸1
≤ 0 since 𝛼∗∞ scales as sin

(
𝜋
𝑀

)
. From (4)

and (9), it can be seen that 𝐸2

𝐸1
=

𝑎𝜀∗∞+𝑑

(𝑎−1)𝛼∗∞+
√
𝑑−(𝛼∗∞)2(𝑎−1)+𝑑

.

Since 𝜀∗∞ does not depend on 𝑀 , its sufficient to show
that the denominator is non-decreasing in 𝛼∗

∞. This follows

because ∂
∂𝛼∗∞

(
(𝑎− 1)𝛼∗

∞ +

√
𝑑− (𝛼∗∞)

2
(𝑎− 1)

)
= (𝑎 −

1)

(
1− 𝛼∗

∞√
𝑑−(𝛼∗∞)2(𝑎−1)

)
≥ 0 since 𝛼∗

∞ ≤
√
𝑑
𝑎 .

(ii) 𝐸2/𝐸1 increases with 𝐿 and decreases with 𝑁 (when
𝑎 is fixed): From (4), (9), and Theorem 2, we see that 𝐸2

𝐸1
=

𝑎𝜀∗∞+𝑑

(𝑎−1)𝛼∗∞+
√
𝑑−(𝛼∗∞)2(𝑎−1)+𝑑

. Substituting the optimal values

of the parameters and simplifying further, we get

𝐸2

𝐸1
=

√
𝑎+

√
𝑑√

(𝑎− 1)𝜏 +√
1− 𝜏 +

√
𝑑
, (29)

where 𝜏 ≜
(
1− 𝐿

𝑁

)
sin2

(
𝜋
𝑀

)
. To prove the desired result it

is sufficient to show that the denominator is non-decreasing
in 𝜏 . This follows because

∂

∂𝜏
(
√
(𝑎− 1)𝜏 +√

1− 𝜏 ) = 0.5

(√
𝑎− 1
𝜏

−
√

1

1− 𝜏

)
.

This is non-negative because the inequality 𝑎 ≥ 𝑁
𝐿 implies that(

1− 1
𝑎

) ≥ 𝜏 , which after algebraic manipulations implies that√
𝑎−1
𝜏 ≥

√
1

1−𝜏 .
(iii) 𝐸2/𝐸1 decreases with 𝑑: On substituting the optimal

values of parameters, the expression for the ratio simplifies
to 𝐸2

𝐸1
=

√
𝑎+

√
𝑑√

(𝑎−1)(1− 𝐿
𝑁 ) sin(

𝜋
𝑀 )+

√
1−(1− 𝐿

𝑁 ) sin2( 𝜋
𝑀 )+

√
𝑑
. Since
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Fig. 2. Effect of constellation size on average SEP of MPSK (𝑁 = 6,
𝐿 = 1, and 𝑑 = 10).
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Fig. 3. Effect of constellation size on average SEP of MQAM (𝑁 = 6,
𝐿 = 1, and 𝑑 = 10).

𝐸2 ≥ 𝐸1, as shown in Sec. III-C4, the expression takes the
form 𝐸2

𝐸1
= 1 + 𝑓1

𝑓2
, with 𝑓1 is positive and independent of 𝑑,

and 𝑓2 is positive and monotonically increases with 𝑑. Hence,
the ratio decreases with 𝑑.

IV. SIMULATION RESULTS

We now plot the analytical results derived in Sec. III and
validate them with Monte Carlo simulations that use 105

samples for each SNR. As specified in the system model, the
channel remains constant for 𝑑 + 𝑎 + 1 symbols. We also
compare the conventional and proposed AS training methods
as a function of all the system parameters 𝑁 , 𝐿, 𝑑, and 𝑀 .

Figures 2 and 3 plot the SEP as a function of normalized
total energy, 𝐸𝑇

𝑑𝑁0
(= 𝛾

𝑑 ), for MPSK and MQAM, respectively,
for a given 𝐿 and 𝑁 . While the SEP of both methods
expectedly increases with 𝑀 , the performance gain of the
proposed method increases with 𝑀 . This is because 𝜀∗∞ of the
conventional method is insensitive to 𝑀 despite the fact that
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(8PSK,
𝑁 = 6, 𝐿 = 1, and 𝑑 = 10).

the SEP of larger constellations is more sensitive to channel
estimation errors. The optimal values of 𝛼 and 𝛽 that are
used in the figures are found by using a gradient search over
the SEP formulae of Theorem 1.3 The figures also plot the
SEP obtained by using the approximate values of 𝛼∗∞ and 𝛽∗∞
given in (26). Notice that the SEP using the approximation is
accurate even at low values of 𝛾. Furthermore, there is an
excellent match between the analytical and simulation results.
The small mismatch between analytical and simulation results
for MQAM is explained in Appendix D.

Figure 4 shows the optimal energy allocation (𝜀∗, 𝛼∗, and
𝛽∗) as a function of the normalized total energy. 𝛼∗(𝛾) and
𝛽∗(𝛾) are obtained by performing a gradient search that min-
imizes 𝑃𝛼−𝛽MPSK(𝛾). Also shown are the asymptotically optimal
values 𝛼∗

∞ and 𝛽∗
∞ of (26). These are very close to the exact

optimal values for 𝛾
𝑑 ≥ 15 dB. Henceforth, we, therefore,

only use 𝛼∗
∞ and 𝛽∗

∞ of (26), unless mentioned otherwise. In
the conventional method, 𝜀∗ monotonically decreases with 𝛾

and saturates at
√
𝑑
𝑎 = 1.291. However, the proposed method

behaves differently. At low 𝛾, 𝛼∗(𝛾) is close to zero and 𝛽∗(𝛾)
is large since selection does not matter, only coherent reception
does. Once 𝛾 crosses a threshold, the system allocates more
energy to the selection pilots. This triggers a corresponding
decrease in 𝛽∗(𝛾) since the selection pilot and the last pilot
are both used for coherent reception.

Figure 5 shows the effect of the antenna subset size, 𝐿, on
the SEP. As 𝐿 increases, the number of pilots that need to be
transmitted decreases. Hence, relatively less energy is spent on
training. Consequently, for both methods, the SEP improves
for all 𝛾.4

3Since the optimal solution is unique in the asymptotic regime (𝛾 → ∞),
we know that the gradient search will converge to the global minimum at
least for large 𝛾. In our numerical computations, we have observed the same
for smaller 𝛾, as well.

4The behavior with 𝑁 turns out to be different. At low 𝛾, a smaller 𝑁 is
better because the energy-starved system cannot afford to spend energy on
training. At high 𝛾, where diversity order matters, a larger 𝑁 does better.
Due to the better utilization of energy by the proposed method, this crossover
turns out to occur at a smaller value of 𝛾.
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Fig. 5. Effect of number of receive RF chains on average SEP (8PSK,
𝑁 = 6, and 𝑑 = 10).
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Fig. 6. Effect of number of receive antennas on asymptotic energy gain
(MPSK, 𝑑 = 10, and 𝐿 = 1).

Figure 6 plots the asymptotic energy gain, Δ, as a function
of 𝑁 and 𝑀 . We can see that the energy gain increases
with 𝑀 . This is because: (i) The relative quality of estimates
improves with 𝑀 . (This can be seen from the behavior of the
ratio 𝛼∗

∞+𝛽∗
∞

𝜀∗∞
, which was discussed in Sec. III-C4.) (ii) The

proposed method allocates relatively more energy to the data
symbols, as shown in Sec. III-C5. A similar argument, not
repeated here due to space constraints, also explains the
variation with 𝑁 .

Figure 7 plots the energy gain as a function of 𝐿 for fixed
𝑁 and different values of 𝑀 . We choose 𝑁 as 16 in order to
illustrate how the energy gain increases as 𝐿 increases from
𝑁
2 to 𝑁 − 1. This figure can be understood as follows: (i) For
𝑁
2 ≤ 𝐿 < 𝑁 , 𝑎 is fixed at 2. Hence, 𝛼

∗
∞+𝛽∗

∞
𝜀∗∞

increases with 𝐿.
(ii) 𝐸2/𝐸1 increases with 𝐿, as shown in Sec. III-C5. Hence,
the energy gain increases with 𝐿 in this region. The same is
true even when 𝐿 increases from 4 to 5 (𝑎 = 4) and 6 to 7
(𝑎 = 3). In other regions, as 𝐿 increases, 𝑎 decreases. Hence,
the energy gain decreases.

Figure 8 studies the joint impact of 𝑑 and 𝑀 on the
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Fig. 8. Effect of number of data symbols on asymptotic energy gain (MPSK,
𝑁 = 6, and 𝐿 = 1).

asymptotic energy gain. The energy gain decreases as 𝑑
increases because: (i) The relative quality of channel estimates
decreases since the ratio 𝛼∗

∞+𝛽∗
∞

𝜀∗∞
does not depend on 𝑑.

(ii) The relative energy allocated to data symbols decreases
since the ratio 𝐸2/𝐸1 decreases with 𝑑 (see Sec. III-C5).
While the energy gain decreases, it still exceeds 1 dB when
𝑑 ≤ 15 for 𝑀 ≥ 8. The above three figures again show
that the closed-form approximations for 𝛼∗∞ and 𝛽∗∞ are just
as accurate as the optimal values found numerically using
gradient search.

V. CONCLUSIONS

We proposed a new training method tailored for antenna
subset selection that exploited the observation that subset
selection is robust to channel estimation errors, while coherent
demodulation is not. The method assigns less energy to
‘selection pilots’, which are used to select the antenna subset.
It instead allocates more energy to an extra last pilot to refine
the channel estimates for the antenna subset actually used for
data reception. We derived closed-form equations for the SEP
of both MPSK and MQAM, and showed analytically that it is
lower than the SEP of the conventional method that uses the
same pilots for selection and channel estimation.

The analysis gave considerable insight about the behavior
of the proposed method vis-à-vis the conventional method.
While the conventional method’s optimal energy allocation
depended only on the number of data symbols, 𝑑, and the
number of pilot symbols, 𝑎, the proposed method’s optimal
parameters depended on 𝑁 , 𝐿, 𝑑, and the constellation size,
𝑀 . Approximate, but closed-form, expressions are derived
for the optimal parameters that are exact as 𝑀 → ∞.
Even for 𝑀 = 4, 𝑑 = 10, 𝑁 = 6, and 𝛾 = 6 dB,
the approximation error in SEP is just 4%. The energy gain
increased as the constellation size or the number of pilots
transmitted increased. It decreased when more data symbols
were to be received by the same antenna subset.

The considerable energy savings achieved motivate future
work that incorporates a time-varying channel model and
an outage capacity analysis that quantifies the throughput
penalty of including an extra pilot symbol. Finally, the use of
data-decision-aided refinement of channel estimates is worth
exploring.

APPENDIX

A. Proof of Lemma 1

From (10), it is clear that the SEP of MPSK monotonically
decreases with 𝑐PSK. Hence, the 𝜀 that maximizes 𝑐PSK will
minimize the SEP of MPSK. Similarly, from (11), the 𝜀 that
maximizes 𝑐QAM will minimize the SEP of MQAM. Since,
𝑐PSK and 𝑐QAM differ only by a constant scaling factor, the
same solution is optimal for both MPSK and MQAM.

For MPSK, ∂
∂𝜀𝑐PSK must be 0 at the extremum

point, i.e., ∂
∂𝜀

(
𝜀

(𝑎𝜀+𝑑)((𝜀+1)𝛾+𝑎𝜀+𝑑)

)⏐⏐⏐⏐⏐
𝜀=𝜀∗

= 0. This re-

sults in the equation: (𝑎𝜀∗ + 𝑑) (𝜀∗ (𝛾 + 𝑎) + 𝛾 + 𝑑) =
𝜀∗ (2𝑎𝜀∗ (𝛾 + 𝑎) + 𝑑(𝛾 + 𝑎) + 𝑎(𝑑+ 𝛾)). Solving it shows

that 𝜀∗ =
√
𝑑(𝛾+𝑑)
𝑎(𝛾+𝑎) is the unique positive-valued optimum.

B. Derivation of (13)

From the expression for 𝑐PSK given in Sec. III-A, as

𝛾 → ∞, lim
𝛾→∞

𝑐PSK
𝛾 =

𝜀 sin2( 𝜋
𝑀 )

(𝑎𝜀+𝑑)(𝜀+1) . Hence, the asymptotic SEP

expression simplifies to

𝑃 𝜀,∞MPSK(𝛾) = 𝛾−𝑁
(𝐿+ 1) (𝐿+ 2) ⋅ ⋅ ⋅ (𝑁)

𝜋𝐿𝑁−𝐿𝜀𝑁
(𝑎𝜀+ 𝑑)𝑁

× (𝜀+ 1)𝑁 sin−2𝑁
( 𝜋
𝑀

)∫ 𝑀−1
𝑀 𝜋

0

sin2𝑁 𝜃𝑑𝜃. (30)

Using the following result from [28, (2.513)] in (30) yields
the desired expression:

∫ 𝑇
0

sin2𝑘 𝑡 𝑑𝑡 =
𝑇

22𝑘

(
2𝑘

𝑘

)

+
(−1)𝑘
22𝑘−1

𝑘−1∑
𝑗=0

(−1)𝑗
(
2𝑘

𝑗

)
sin[(2𝑘 − 2𝑗)𝑇 ]

2𝑘 − 2𝑗 . (31)
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C. Proof of Lemma 2

From (5), we see that ℎ𝑘 is independent of 𝑒𝑘 but not
ℎ̂𝑘. We, therefore, need to take recourse to the following two
standard results on moments of conditional Gaussians: If 𝑋 ,
a complex Gaussian RV, and 𝑌 , a complex Gaussian random
vector, are jointly Gaussian, then

E [𝑋 ∣𝑌 ] = E [𝑋 ] + Σ𝑋𝑌 Σ
−1
𝑌 (𝑌 −E [𝑌 ]),

var [𝑋 ∣𝑌 ] = var [𝑋 ]− Σ𝑋𝑌 Σ−1
𝑌 Σ𝐻𝑋𝑌 , (32)

where Σ𝑋𝑌 is the cross-correlation of 𝑋 and 𝑌 and Σ𝑌 is
the covariance of 𝑌 .

In our case, 𝑋 ≜ ℎ𝑘 and 𝑌 ≜
[
ℎ̂𝑘
ˆ̂
ℎ𝑘

]
. We can show from (5)

and (7) that Σ𝑌 = [ 𝑎1 𝑎1𝑎1 𝑎2 ] and Σ𝑋𝑌 = [ 𝑎1 𝑎2 ], where, as
mentioned, 𝑎1 = 𝛼𝐸2

𝛼𝐸2+𝑁0
and 𝑎2 =

(𝛼+𝛽)𝐸2

(𝛼+𝛽)𝐸2+𝑁0
. Hence,

E
[
ℎ𝑘

⏐⏐⏐ℎ̂𝑘, ˆ̂ℎ𝑘] = [𝑎1 𝑎2
] [𝑎1 𝑎1
𝑎1 𝑎2

]−1
[
ℎ̂𝑘
ˆ̂
ℎ𝑘

]
=
ˆ̂
ℎ𝑘,

and

var
[
ℎ𝑘

⏐⏐⏐ℎ̂𝑘, ˆ̂ℎ𝑘] = 1− [𝑎1 𝑎2
] [𝑎1 𝑎1
𝑎1 𝑎2

]−1 [
𝑎1
𝑎2

]
= 1− 𝑎2.

Therefore, the decision variable’s conditional mean and vari-
ance are

E

[
𝒟
⏐⏐⏐{ℎ̂𝑙, ˆ̂ℎ𝑙}

𝑙∈Ω̂𝐿

, 𝑠

]
=
∑
𝑘∈Ω̂𝐿

ˆ̂
ℎ∗𝑘E

[
𝑦𝑘

⏐⏐⏐ℎ̂𝑘, ˆ̂ℎ𝑘, 𝑠] ,
var

[
𝒟
⏐⏐⏐{ℎ̂𝑙, ˆ̂ℎ𝑙}

𝑙∈Ω̂𝐿

, 𝑠

]
=
∑
𝑘∈Ω̂𝐿

∣∣∣ˆ̂ℎ𝑘∣∣∣2 var [𝑦𝑘⏐⏐⏐ℎ̂𝑘, ˆ̂ℎ𝑘, 𝑠] .
From (8), we have E

[
𝑦𝑘

⏐⏐⏐ℎ̂𝑘, ˆ̂ℎ𝑘, 𝑠] =
ˆ̂
ℎ𝑘𝑠 and

var
[
𝑦𝑘

⏐⏐⏐ℎ̂𝑘, ˆ̂ℎ𝑘, 𝑠] = var
[
ℎ𝑘

⏐⏐⏐ℎ̂𝑘, ˆ̂ℎ𝑘] ∣𝑠∣2 + 𝑁0 = (1 −
𝑎2)𝐸2 +𝑁0. Hence, the desired result follows.

D. Proof of Theorem 1

MPSK: The standard SEP expression for MPSK when 𝒟 is
a Gaussian RV [27, (40)] is

𝑃MPSK

({
ℎ̂𝑙,
ˆ̂
ℎ𝑙

}
𝑙∈Ω̂𝐿

)
=
1

𝜋

∫ 𝑀−1
𝑀 𝜋

0

exp

(
−∣𝜇𝒟∣2sin2

(
𝜋
𝑀

)
𝜎2
𝒟 sin

2 𝜃

)
d𝜃.

(33)
The notation above clearly shows the dependence of 𝑃MPSK on

the observables ℎ̂𝑙,
ˆ̂
ℎ𝑙, and Ω̂𝐿. Note that Ω̂𝐿, in turn, depends

on ℎ̂𝑙. From Lemma 2, the above equation can be simplified
to

𝑃MPSK

({
ℎ̂𝑙,
ˆ̂
ℎ𝑙

}
𝑙∈Ω̂𝐿

)
=
1

𝜋

∫ 𝑀−1
𝑀 𝜋

0

exp

⎛
⎝− 𝑏PSK

sin2 𝜃

∑
𝑘∈Ω̂𝐿

∣∣∣ˆ̂ℎ𝑘∣∣∣2
⎞
⎠d𝜃,

(34)

where 𝑏PSK =
𝐸2 sin2( 𝜋

𝑀 )
(1−𝑎2)𝐸2+𝑁0

=
𝛾 sin2( 𝜋

𝑀 )
(1−𝑎2)𝛾+𝑎𝛼+𝛽+𝑑 . Let 𝑌 ≜∑

𝑘∈Ω̂𝐿

∣∣∣ˆ̂ℎ𝑘∣∣∣2. Averaging over
{
ˆ̂
ℎ𝑙

}
𝑙∈Ω̂𝐿

, the SEP simplifies to

𝑃MPSK

({
ℎ̂𝑙

}
𝑙∈Ω̂𝐿

)
=
1

𝜋

∫ 𝑀−1
𝑀 𝜋

0

ℳ
𝑌
⏐⏐{ℎ̂𝑙}

𝑙∈Ω̂𝐿

(−𝑏PSK

sin2 𝜃

)
d𝜃,

(35)

where ℳ
𝑌
⏐⏐{ℎ̂𝑙}

𝑙∈Ω̂𝐿

(.) is the moment generating function

(MGF) of
∑
𝑘∈Ω̂𝐿

∣∣∣ˆ̂ℎ𝑘∣∣∣2 conditioned on
{
ℎ̂𝑙

}
𝑙∈Ω̂𝐿

[30]. We

know that ˆ̂ℎ𝑘 conditioned on ℎ̂𝑘 is a Gaussian RV. Using the

conditional results in (32), we can show that E
[
ˆ̂
ℎ𝑘

⏐⏐⏐ℎ̂𝑘] = ℎ̂𝑘

and var
[
ˆ̂
ℎ𝑘

⏐⏐⏐ℎ̂𝑘] = 𝑎2 − 𝑎1. Hence, 𝑌 is a non-central Chi-
square distributed RV, whose conditional MGF is [31]

ℳ
𝑌
⏐⏐{ℎ̂𝑙}

𝑙∈Ω̂𝐿

(𝑥)=(1−(𝑎2−𝑎1)𝑥)−𝐿exp

⎛
⎜⎝
∑
𝑘∈Ω̂𝐿

∣∣∣ℎ̂𝑘∣∣∣2𝑥
1−(𝑎2−𝑎1)𝑥

⎞
⎟⎠.
(36)

Substituting (36) in (35) and averaging over the channel
estimates of the selected subset of antennas,

{
ℎ̂𝑙

}
𝑙∈Ω̂𝐿

, yields

𝑃MPSK =
1

𝜋

∫ 𝑀−1
𝑀 𝜋

0

(
1 +

(𝑎2 − 𝑎1)𝑏PSK

sin2 𝜃

)−𝐿

×ℳ ∑
𝑘∈Ω̂𝐿

∣ℎ̂𝑘∣2
( −𝑏PSK

sin2 𝜃 + (𝑎2 − 𝑎1)𝑏PSK

)
d𝜃, (37)

where ℳ∑
𝑘∈Ω̂𝐿

∣ℎ̂𝑘∣2 is the MGF of
∑
𝑘∈Ω̂𝐿

∣∣∣ℎ̂𝑘∣∣∣2. Using the virtual

branch combining technique of [6], the MGF of
∑
𝑘∈Ω̂𝐿

∣∣∣ℎ̂𝑘∣∣∣2
becomes [9]

ℳ ∑
𝑘∈Ω̂𝐿

∣ℎ̂𝑘∣2(𝑥) = (1− 𝑎1𝑥)
−𝐿

𝑁∏
𝑛=𝐿+1

(
1− 𝑎1𝐿𝑥

𝑛

)−1

.

Substituting this in (37) and simplifying further gives the
fading-averaged SEP expression.5

MQAM: Using Lemma 2, the standard MQAM SEP expres-
sion is [27, (48)]6

𝑃MQAM

({
ℎ̂𝑙,
ˆ̂
ℎ𝑙

}
𝑙∈Ω̂𝐿

)

=
4

𝜋

(
1− 1√

𝑀

)∫ 𝜋
2

0

𝜉(𝜃) exp

⎛
⎝− 𝑏QAM

sin2 𝜃

∑
𝑘∈Ω̂𝐿

∣∣∣ˆ̂ℎ𝑘∣∣∣2
⎞
⎠ d𝜃,

(38)

where 𝜉(𝜃) = 1√
𝑀

, for 0 ≤ 𝜃 < 𝜋
4 , and 𝜉(𝜃) = 1, for 𝜋4 ≤

𝜃 ≤ 𝜋
2 , and 𝑏QAM =

1.5𝐸2

(𝑀−1)((1−𝑎2)𝐸2+𝑁0)
= 1.5𝛾/(𝑀−1)

(1−𝑎2)𝛾+𝑎𝛼+𝛽+𝑑 .
Proceeding along lines similar to that of MPSK, gives the
required result. This involves a two step process that first

averages over
{
ˆ̂
ℎ𝑙

}
𝑙∈Ω̂𝐿

given
{
ℎ̂𝑙

}
𝑙∈Ω̂𝐿

, and then averages

over
{
ℎ̂𝑙

}
𝑙∈Ω̂𝐿

. We skip intermediate steps to avoid repetition

and to conserve space.

5Note that the initial steps in this proof such as computing the moments
of the decision variable and using (33) are similar to [9]. However, it differs

thereafter from [9] because the SEP in our case depends on both ℎ̂𝑙 and ˆ̂
ℎ𝑙.

6This expression implicitly assumes in its derivation that the variance of 𝒟
is the same for all symbols, which is not so for the MQAM constellation in
the presence of estimation errors. However, as the simulation results in [9],
[15], and this paper show, the expression is accurate.
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E. Proof of Lemma 3

From the expressions for 𝑎2, 𝑎1, and 𝑏PSK given in
Sec. III-B, as 𝛾 → ∞, we have the following:

lim
𝛾→∞(𝑎2 − 𝑎1)𝑏PSK =

𝛽 sin2
(
𝜋
𝑀

)
𝛼(𝛼+ 𝛽 + 1)

, (39)

and

lim
𝛾→∞

𝑎1𝑏PSK

𝛾
= lim
𝛾→∞

𝑎2𝑏PSK

𝛾
=

(𝛼+ 𝛽) sin2
(
𝜋
𝑀

)
(𝛼+ 𝛽 + 1)(𝑎𝛼+ 𝛽 + 𝑑)

.

(40)
Hence,

𝑃𝛼,𝛽,∞MPSK (𝛾) = 𝛾−𝑁
(𝐿+ 1) (𝐿+ 2) ⋅ ⋅ ⋅ (𝑁)

𝜋𝐿𝑁−𝐿

×
(
(𝑎𝛼+ 𝛽 + 𝑑)(𝛼 + 𝛽 + 1)

𝛼+ 𝛽

)𝑁
sin−2𝑁

( 𝜋
𝑀

)

×
∫ 𝑀−1

𝑀 𝜋

0

sin2𝐿 𝜃

(
𝛽 sin2

(
𝜋
𝑀

)
𝛼(𝛼+ 𝛽 + 1)

+ sin2 𝜃

)𝑁−𝐿
𝑑𝜃. (41)

Expanding

(
𝛽 sin2( 𝜋

𝑀 )
𝛼(𝛼+𝛽+1) + sin

2 𝜃

)𝑁−𝐿
in a binomial series

and using (31) gives the desired result. The asymptotic ex-
pression for SEP of MQAM can be derived similarly.

F. Proof of Theorem 2

1) Proof of (22): At the optimal values of 𝛼 and 𝛽, we have
∂
∂𝛼𝑈

𝛼,𝛽
MPSK

⏐⏐⏐
𝛼∗∞,𝛽∗∞

= 0 and ∂
∂𝛽𝑈

𝛼,𝛽
MPSK

⏐⏐⏐
𝛼∗∞,𝛽∗∞

= 0. Hence,

from (20), 𝛼∗
∞ and 𝛽∗

∞ satisfy the following two equations:

(𝑁 − 𝐿)𝛽(𝑎𝛼 + 𝛽 + 𝑑)(2𝛼 + 𝛽 + 1) sin2
(
𝜋
𝑀

)
𝛼2(𝛼 + 𝛽)(𝛼+ 𝛽 + 1)

= 𝑁

(
1 +

𝛽 sin2
(
𝜋
𝑀

)
𝛼(𝛼+ 𝛽 + 1)

)(
𝑎+

𝛽(𝑎− 1)− 𝑑

(𝛼+ 𝛽)2

)
, (42)

and

(𝑁 − 𝐿)(𝑎𝛼+ 𝛽 + 𝑑)(𝛼 + 1) sin2
(
𝜋
𝑀

)
𝛼(𝛼+ 𝛽)(𝛼 + 𝛽 + 1)

= 𝑁

(
1 +

𝛽 sin2
(
𝜋
𝑀

)
𝛼(𝛼 + 𝛽 + 1)

)(
−1 + 𝛼(𝑎− 1) + 𝑑

(𝛼+ 𝛽)2

)
. (43)

Taking the ratio of (42) and (43), we get

𝛽(2𝛼+ 𝛽 + 1)

𝛼(𝛼+ 1)
=

𝑎(𝛼+ 𝛽)2 + 𝛽(𝑎− 1)− 𝑑

−(𝛼+ 𝛽)2 + 𝛼(𝑎− 1) + 𝑑
. (44)

When 1 is added to both sides, it becomes obvious that 𝛼+𝛽
and 𝛼+𝛽+1 are common factors of both sides of the equation,
which can be canceled since 𝛼+𝛽 > 0 for the optimal values.
We then get 𝛽2 + 2𝛼𝛽 + 𝑎𝛼2 − 𝑑 = 0. This implies (22).

2) Derivation of (23): The partial derivative with respect
to 𝛼 of (20) takes the form

∂

∂𝛼
𝑈𝛼,𝛽MPSK = 𝑓(𝛼, 𝛽)

[(
𝑁𝛼
(
𝛼(𝛼 + 𝛽 + 1)+𝛽sin2

( 𝜋
𝑀

))

× (𝑎(𝛼+ 𝛽)2 + 𝛽(𝑎− 1)−𝑑))−
(
(𝛼+ 𝛽)(𝑎𝛼 + 𝛽 + 𝑑)

× (𝑁 − 𝐿)𝛽 sin2
( 𝜋
𝑀

)
(2𝛼+ 𝛽 + 1)

)]
. (45)

Here,

𝑓(𝛼, 𝛽) ≜ (𝐿+1) (𝐿+2) ⋅ ⋅ ⋅ (𝑁)
𝐿𝑁−𝐿

(
𝑀−1
𝑀

)
sin−2𝑁

( 𝜋
𝑀

)

× (𝑎𝛼+𝛽+𝑑)𝑁−1(𝛼+𝛽+1)𝑁−2

𝛼2 (𝛼+ 𝛽)
𝑁+1

(
1+

𝛽 sin2
(
𝜋
𝑀

)
𝛼(𝛼+𝛽+1)

)𝑁−𝐿−1
,

is positive, for 𝛼 > 0 and 𝛽 ≥ 0. Using the relationship in (22)
between the optimal 𝛼 and 𝛽, we can simplify (45) to

∂

∂𝛼
𝑈𝛼,𝛽MPSK

⏐⏐⏐
𝛼∗∞,𝛽∗∞

= 𝛽∗
∞ (2𝛼∗

∞ + 𝛽∗
∞ + 1) 𝑓(𝛼∗

∞, 𝛽
∗
∞)

× (𝑎− 1) sin2
( 𝜋
𝑀

)
𝑔1(𝛼

∗
∞), (46)

where 𝑔1(.) is as defined in (23). Hence, the solution of
∂
∂𝛼𝑈

𝛼,𝛽
MPSK

⏐⏐⏐
𝛼∗∞,𝛽∗∞

= 0 is either 𝛽∗
∞ = 0 or 𝑔1 (𝛼∗

∞) = 0.

We first characterize the positive roots of 𝑔1 (𝛼) = 0.
3) At Least One Positive Root of 𝑔1(𝛼) Lies in(
0,
√
𝑑(𝑁−𝐿)
𝑁(𝑎−1) sin

(
𝜋
𝑀

)]
: 𝑔1(𝛼) is continuous and differen-

tiable for 0 ≤ 𝛼 ≤
√
𝑑
𝑎 . Furthermore, 𝑔1(0) = −(√𝑑 +

1)𝑑
(
𝑁−𝐿
𝑎−1

)
< 0. Let 𝛼1 ≜

√
𝑑(𝑁−𝐿)
𝑁(𝑎−1) sin

(
𝜋
𝑀

)
. Then,

𝑔1(𝛼1) ≥ 0 because
(√

𝑑− 𝛼2
1(𝑎− 1) + 𝛼1

)
𝑔1(𝛼1) =

𝑎𝑑𝐿2𝛼1

𝑁

(
𝑁
𝐿

𝑎 − 𝑁
𝐿 −1

𝑎−1 sin
2
(
𝜋
𝑀

)) ≥ 0. The last expression is

non-negative because 𝑎 = ⌈𝑁𝐿 ⌉ ≥ 𝑁
𝐿 , which implies that

𝑁
𝐿

𝑎 ≥ 𝑁
𝐿 −1

𝑎−1 ≥ 𝑁
𝐿 −1

𝑎−1 sin
2
(
𝜋
𝑀

)
. Note that 𝑔1(𝛼1) = 0 only

when 𝐿 divides 𝑁 and sin
(
𝜋
𝑀

)
= 1, which occurs only when

𝑀 = 2 (BPSK). In this case, 𝛼1 is itself the root of 𝑔1(𝛼)
and equals 𝜀∗∞. For all other cases, which will be the focus
of the steps below, it follows from the Intermediate value
theorem [32] that at least one root of 𝑔1(𝛼) lies in the interval

[0, 𝛼1]. Since 𝛼1 <
√
𝑑(𝑁−𝐿)
𝑁(𝑎−1) ≤ 𝜀∗∞ (see Lemma 1), this root

of 𝑔1(𝛼) is necessarily different from 𝜀∗∞.
4) Positive Root of 𝑔1(𝛼) is Unique: 𝑔1(𝛼) cannot have

an even number of real roots in the interval

[
0,
√
𝑑
𝑎

]
because

𝑔1(0) < 0, 𝑔1(𝛼1) > 0, and 𝑔1

(√
𝑑
𝑎

)
> 0. If 𝑔1(𝛼) has three

or more real roots in the interval

[
0,
√
𝑑
𝑎

]
, then ∂

∂𝛼𝑔1(𝛼) must

have more than one real root in the same interval. We will
now rule out this possibility. From (23),

∂

∂𝛼
𝑔1(𝛼) =

𝑔2(𝛼)√
𝑑− 𝛼2(𝑎− 1) + 2𝛼

(
𝑁 csc2

( 𝜋
𝑀

)
− 𝐿
)
,

(47)
where

𝑔2(𝛼) ≜ 𝛼3
(
−3𝑁(𝑎− 1) csc2

( 𝜋
𝑀

))
+ 𝛼2 (−2𝐿(𝑎− 1))

+ 𝛼
(
2𝑁𝑑 csc2

( 𝜋
𝑀

)
+ 𝑑(𝑁 − 𝐿)

)
+ 𝐿𝑑. (48)

Notice that the second term, 2𝛼
(
𝑁 csc2

(
𝜋
𝑀

)− 𝐿
)
, in the

right hand side (RHS) of (47) is positive for 𝛼 > 0. We make
the following three observations about 𝑔2(𝛼): (i) 𝑔2(0) =
𝐿𝑑 > 0. (ii) 𝑔2(𝛼) has only one positive real root. This
follows from Descartes’ rule of signs [32] since 𝑔2(𝛼) has
one sign change. And, (iii) 𝑔2(𝛼) is concave for 𝛼 ≥ 0
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since ∂2

∂𝛼2 𝑔2(𝛼) = −2(𝑎− 1) (9𝑁𝛼 csc2 ( 𝜋𝑀 )+ 2𝐿) < 0, for
𝛼 ≥ 0.

Let 𝛼𝑝 be the positive root of 𝑔2(𝛼). If 𝛼𝑝 >
√
𝑑
𝑎 , then,

∂
∂𝛼𝑔1(𝛼) > 0 for all 𝛼 ∈

[
0,
√
𝑑
𝑎

]
since each of the terms in

the RHS of (47) is positive. This implies that ∂
∂𝛼𝑔1(𝛼) has no

real root in the interval

[
0,
√
𝑑
𝑎

]
, in which case we are done.

Else, let 𝛼𝑝 ≤
√
𝑑
𝑎 . Then, the following two observations

hold: (i) ∂
∂𝛼𝑔1(𝛼) > 0 for 𝛼 ∈ [0, 𝛼𝑝]. This is because the

concavity of 𝑔2(𝛼) implies that the first term in the RHS
of (47) is positive in this interval. And, (ii) in the interval[
𝛼𝑝,
√
𝑑
𝑎

]
, ∂
∂𝛼𝑔1(𝛼) is concave, i.e., ∂3

∂𝛼3 𝑔1(𝛼) < 0. This

follows from the reasoning below.

We have

∂3

∂𝛼3
𝑔1(𝛼) =

∂2

∂𝛼2 𝑔2(𝛼)√
𝑑− 𝛼2(𝑎− 1) +

2𝛼(𝑎− 1) ∂∂𝛼𝑔2(𝛼)
(𝑑− 𝛼2(𝑎− 1))3/2

+
(𝑎− 1)(𝑑+ 2𝛼2(𝑎− 1))𝑔2(𝛼)

(𝑑− 𝛼2(𝑎− 1))5/2 . (49)

The first term in the RHS of (49) is negative since 𝑔2(𝛼) is
concave. The second and third terms are also negative because
𝑔2(𝛼), which is concave for 𝛼 > 0, must be both negative

and monotonically decreasing in

[
𝛼𝑝,
√
𝑑
𝑎

]
. The above two

observations together imply that ∂
∂𝛼𝑔1(𝛼) has at most one real

root in the interval

[
0,
√
𝑑
𝑎

]
.

Irrespective of 𝛼𝑝, we have shown that ∂
∂𝛼𝑔1(𝛼) cannot

have more that one real root in the interval

[
0,
√
𝑑
𝑎

]
. Hence,

there is only one unique positive root of 𝑔1(𝛼).

5) 𝛼∗
∞ < 𝜀∗∞ (i.e., 𝛽∗

∞ ∕= 0): The results thus far have
established that ∂

∂𝛼𝑈
𝛼,𝛽
MPSK = 0 occurs at exactly two values

of 𝛼: one value lies between 0 and 𝛼1 < 𝜀∗∞ and the other
one equals 𝜀∗∞. Since 𝑓(0, 𝛽) > 0, it follows from (45) that
∂
∂𝛼𝑈

𝛼,𝛽
MPSK

⏐⏐⏐
𝛼=0

< 0. Thus, ∂∂𝛼𝑈
𝛼,𝛽
MPSK increases from a negative

value at 𝛼 = 0 to zero at exactly one point in the interval
(0, 𝛼1) and then decreases back to zero at 𝛼 = 𝜀∗∞. Hence,
∂2

∂𝛼2𝑈
𝛼,𝛽
MPSK must be negative at 𝛼 = 𝜀∗∞, which implies that

it is a maxima that is not of interest to us. Furthermore, this
also proves that the optimum solution must lie in (0, 𝛼1) and
is unique.

At the same time, we know that the SEP of the proposed
method equals that of the conventional AS training method
when 𝛼 = 𝜀∗∞ and 𝛽 = 0. Since the optimal value of 𝛼
is different from 𝜀∗∞, this implies that the optimal SEP of
the proposed method is strictly lower than the conventional
method. In fact, the proof above shows that any feasible value
of 𝛽 > 0 (and the corresponding 𝛼) will lead to an SEP upper
bound that is lower than that for the conventional method for
large 𝛾. A similar behavior is observed in the non-asymptotic
regime as well.

G. Proof of Corollary 1

We will now show that 𝑔1
(√

𝑑(𝑁−𝐿)
𝑁(𝑎−1) sin

(
𝜋
𝑀

)) → 0 as

𝑀 → ∞. This will imply that
√
𝑑(𝑁−𝐿)
𝑁(𝑎−1) sin

(
𝜋
𝑀

)
is a root of

𝑔1(𝛼), and, hence, must be 𝛼∗
∞.

From (23), after simplification, we get

𝑔1

(√
𝑑(𝑁 − 𝐿)

𝑁(𝑎− 1) sin
( 𝜋
𝑀

))
= 𝐿𝑑

√
𝑁 − 𝐿

𝑁(𝑎− 1) sin
2
( 𝜋
𝑀

)

×
(
−
√
(𝑁 − 𝐿)

𝑁(𝑎− 1) +
√
cot2

( 𝜋
𝑀

)
+
𝐿

𝑁

)
. (50)

As 𝑀 → ∞, we know that sin2
(
𝜋
𝑀

) → 0. Therefore,

𝑔1

(√
𝑑(𝑁−𝐿)
𝑁(𝑎−1) sin

(
𝜋
𝑀

))→ 0.
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