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New Insights into Optimal Discrete Rate Adaptation for
Average Power Constrained Single and Multi-Node Systems

Parag S. Khairnar and Neelesh B. Mehta, Senior Member, IEEE

Abstract—The throughput-optimal discrete-rate adaptation
policy, when nodes are subject to constraints on the average
power and bit error rate, is governed by a power control param-
eter, for which a closed-form characterization has remained an
open problem. The parameter is essential in determining the rate
adaptation thresholds and the transmit rate and power at any
time, and ensuring adherence to the power constraint. We derive
novel insightful bounds and approximations that characterize the
power control parameter and the throughput in closed-form. The
results are comprehensive as they apply to the general class of
Nakagami-𝑚 (𝑚 ≥ 1) fading channels, which includes Rayleigh
fading, uncoded and coded modulation, and single and multi-
node systems with selection. The results are appealing as they
are provably tight in the asymptotic large average power regime,
and are designed and verified to be accurate even for smaller
average powers.

Index Terms—Fading channels, power adaptation, rate adap-
tation, selection, asymptotic analysis, bounds, approximations.

I. INTRODUCTION

RATE and power adaptation is a fundamental technology
that underpins several current and next generation wire-

less systems, and enables spectrally efficient transmission in
fading channels. In it, the transmit power, symbol rate, constel-
lation, coding, or any combination thereof are adapted based
on channel conditions [1]. Given its importance, considerable
attention has been devoted to rate and power adaptation over
the past two decades [2]–[9]. The goal has been to determine
the rate and transmit power as a function of the channel gain,
ℎ, given a constraint on the average transmit power, so as to
maximize the throughput.

An information-theoretic analysis of rate adaptation for a
single node was developed in [2]. Optimal rate and power
adaptation using uncoded 𝑀 -ary constellations subject to a
bit error rate (BER) constraint was studied in [3], [4]. Both
continuous rate adaptation and the more practically relevant
discrete rate adaptation were studied. The optimal policy
when the node is subject to a weaker average BER constraint
was characterized in [4]. This was extended to a general
class of coded modulation schemes in [5]. The effect of
imperfect channel estimates on rate adaptation subject to either
instantaneous BER or average BER constraints was analyzed
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in [7], [8]. Adaptation in multi-node systems in multi-rate code
division multiple access (CDMA) systems was considered
in [6], with quality of service constraints also being considered
in [9].

In both uncoded and coded adaptive modulation schemes,
the throughput-optimal discrete rate adaptation policy for a
single node, which is subject to an average power constraint
and an instantaneous BER constraint, is as follows [3]–[5].
The node transmits with rate 𝑟𝑗 and with a power given
by 𝑑𝑗

ℎ , if ℎ ∈ [𝜂𝑘𝑗 , 𝜂𝑘𝑗+1), where 𝑘𝑗 and 𝑑𝑗 are constants
that depend on the modulation and coding used for rate 𝑟𝑗 ,
for 1 ≤ 𝑗 ≤ 𝑀 .1 Here, 𝜂𝑘𝑗 , 1 ≤ 𝑗 ≤ 𝑀 + 1, are the
rate adaptation thresholds. The parameter 𝜂, which completely
determines the optimal adaptation policy, is called the power
control parameter. It ensures that the average transmit power
is constrained to 𝑃 as follows:

𝑀∑
𝑗=1

𝑑𝑗

∫ 𝜂𝑘𝑗+1

𝜂𝑘𝑗

𝑓(ℎ)

ℎ
𝑑ℎ = 𝑃 , (1)

where 𝑓(⋅) is the probability density function (PDF) of ℎ.
We thus see that 𝜂 is a key parameter that drives the

optimal adaptation policy. Without it, the transmit rate and
power cannot be determined at any time. Its knowledge is
also necessary to ensure adherence to the power constraint.
Despite its importance, a closed-form expression for 𝜂 is not
available in the literature. Instead, it has to be numerically
computed from (1). Similarly, a closed-form expression for
the optimal throughput has also remained an open problem.

A similar theoretical framework and a challenging open
problem arise when multiple rate-adaptive nodes share a
channel to transmit to a common sink, and only a single
node with the highest channel gain is selected. Such selection
is of practical interest since synchronization among multiple
transmit nodes is not required. Even here, the throughput-
optimal transmission rule turns out to be similar, with the
corresponding power control parameter 𝜂 being the solution
of the following power constraint equation:

𝑀∑
𝑗=1

𝑑𝑗

∫ 𝜂𝑘𝑗+1

𝜂𝑘𝑗

(𝐹 (ℎ))𝐾−1 𝑓(ℎ)

ℎ
𝑑ℎ = 𝑃 , (2)

where 𝐾 is the number of nodes. In this case too, closed-form
expressions for 𝜂 and optimal throughput are not known.

Given the practical importance of discrete rate adaptation
in wireless systems today, it is of great interest to analytically

1Note that the optimal transmit power policy is different from channel
inversion, which is used in fixed rate systems, because the transmit power
depends on the rate chosen through the parameter 𝑑𝑗 . In general, 𝑑𝑗 increases
as 𝑟𝑗 increases.
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characterize 𝜂 and optimal throughput, and gain a deeper
understanding of their functional dependence on system pa-
rameters. The problem is also theoretically relevant because
considerable research on link adaptation, including extensions
to channel estimation errors and time-varying channels [7],
[8], opportunistic scheduling [10], multi-rate CDMA [6], [11],
orthogonal frequency division multiplexing (OFDM) [12], and
multiple antenna systems [12], [13], has been motivated by the
aforementioned model.

A. Contributions

In this paper, we develop novel expressions in the form
of bounds and approximations for 𝜂 and optimal throughput
for both single and multi-node rate adaptive systems for the
general class of Nakagami-𝑚 fading channels, for all 𝑚 ≥
1. Nakagami fading closely approximates line-of-sight (LoS)
Ricean fading, includes non-LoS Rayleigh fading as a special
case, models 𝐿-branch time or spatial diversity, and provides a
closer match to some experimental data than several common
distributions [14]. It is also extensively used in the literature,
e.g., [8], [15], [16]. Thus, our results have wide applicability.

The expressions come with theoretical guarantees, in that
they are shown to be tight in the asymptotic regime of large
transmit power.2 They provide new insights into the behavior
of 𝜂 and lead to novel closed-form expressions for both 𝜂
and throughput. Equally importantly, they are designed and
verified to be accurate in a large portion of the non-asymptotic
regime, which makes them useful in system design. They
are also computationally useful as good initial values for
algorithms that compute 𝜂 numerically. To the best of our
knowledge, this is the first time that such closed-form expres-
sions have been derived. An innovative asymptotic approach
and several new tricks are used to overcome the challenge of
characterizing 𝜂 – accurately and analytically – even though it
appears in the integration limits in the power constraint in (1).

The paper is organized as follows. Sections II and III ad-
dress the single and multi-node cases, respectively. Simulation
results are presented in Sec. IV, and are followed by our
conclusions in Sec. V.

II. SINGLE NODE DISCRETE RATE ADAPTATION:
GENERAL FRAMEWORK

Consider a single node that transmits a symbol 𝑥 over a
frequency-flat block-fading channel with a power gain ℎ. The
baseband received signal, 𝑦, equals

𝑦 =
√
ℎ𝑒𝑗𝜙𝑥+ 𝑛,

where 𝜙 is the phase of the channel response and 𝑛 is additive
white Gaussian noise (AWGN) with power spectral density
𝑁0/2. Without loss of generality, the average channel power
gain is set to unity. The transmitter and receiver are assumed
to know the channel gain, as has also been assumed in [3],
[4], [17]. This can be achieved in practice through pilots
and feedback. The resultant uncoded BER for transmit power

2For Nakagami-𝑚 fading with 𝑚 > 1 or the multi-node case, the maximum
average transmit power of the optimal policy turns out to be finite. In this
case, the asymptotic regime shall refer to the average transmit power being
close to its maximum value.

𝑃tx and a general 𝑀 -ary constellation of size 𝜇 is given
by 𝑐1 exp

(
−𝑐2ℎ𝑃tx

𝑁0𝐵(𝜇𝑐3−𝑐4)
)
, where 𝑐1, . . . , 𝑐4 are modulation-

specific real constants [4]. The constellation size is chosen
from the set ℳ = {𝜇1, 𝜇2, . . . , 𝜇𝑀}, with 𝜇1 = 1 (no
transmission) and 𝜇1 < 𝜇2 < ⋅ ⋅ ⋅ < 𝜇𝑀 .

The throughput-optimal policy subject to an instantaneous
BER constraint of 𝑃𝑏 and an average transmit power constraint
of 𝑃 is as follows [4]: The node transmits with a constellation
of size 𝜇𝑗 if ℎ ∈ [𝐻𝑗 , 𝐻𝑗+1), where 𝐻1, . . . , 𝐻𝑀+1 are called
the rate adaptation thresholds. They equal

𝐻𝑗 = 𝜂𝑘𝑗 , for 1 ≤ 𝑗 ≤𝑀 + 1. (3)

Here, 𝜂 is a constant, 𝑘1 = 0, 𝑘2 = 1
𝑐2

log𝑒

(
𝑐1
𝑃𝑏

)
(𝜇2)

𝑐3−𝑐4
log2(𝜇2)

,

𝑘𝑗 = 1
𝑐2

log𝑒

(
𝑐1
𝑃𝑏

)
(𝜇𝑗)

𝑐3−(𝜇𝑗−1)
𝑐3

log2(𝜇𝑗)−log2(𝜇𝑗−1)
, for 3 ≤ 𝑗 ≤ 𝑀 , and

𝑘𝑀+1 = ∞.3 Further, the transmit power, 𝑃tx(ℎ, 𝜇𝑗) ∈ ℝ
+,

of a node that transmits with a constellation of size 𝜇𝑗 when
the channel gain is ℎ is

𝑃tx(ℎ, 𝜇𝑗) =
𝑑𝑗
ℎ
, for 1 ≤ 𝑗 ≤𝑀 + 1, (4)

where 𝑑𝑗 = 𝑁0𝐵
𝑐2

((𝜇𝑗)
𝑐3 − 𝑐4) log𝑒

(
𝑐1
𝑃𝑏

)
, for 2 ≤ 𝑗 ≤ 𝑀 ,

and 𝑑1 = 0.
When coded modulation schemes such as coset codes

(which includes trellis codes and lattice codes) are used, the
optimal policy remains the same. The difference arises in 𝑑𝑗 ,
which depends on the coding gain 𝐺 of the code [5], [18].
The coding gain model is motivated by Shannon’s capacity
formula. Thus, the framework applies to both coded and
uncoded adaptive modulation.

A. Results about Power Control Parameter and Throughput

We begin with the following simple proposition about 𝜂.
Its proof follows in a straightforward manner from (1) and is
omitted to conserve space.

Proposition 1: Let 𝜂1 and 𝜂2 be the power control param-
eters corresponding to average transmit powers of 𝑃1 and 𝑃2,
respectively. Then, 𝑃1 > 𝑃2 if and only if (iff) 𝜂1 < 𝜂2.

Thus, the larger the average transmit power, the smaller is
the corresponding value of 𝜂. The nature of the relationship
between 𝜂 and 𝑃 is captured below, first for Rayleigh fading
and then for Nakagami-𝑚 (𝑚 > 1) fading, by means of novel
asymptotically tight bounds.

Proposition 2: For Rayleigh fading and 𝜂𝑘𝑀 ≤ 4,

𝜂 ≥ 1

𝑘𝑀
exp (𝛼1 − 𝛾0) exp

(
− 𝑃

𝑑𝑀

)
, (5)

where 𝛼1 =
∑𝑀−1

𝑗=2
𝑑𝑗
𝑑𝑀

log𝑒

(
𝑘𝑗+1

𝑘𝑗

)
and 𝛾0 is Euler’s con-

stant [19]. Further, the bound is asymptotically tight, i.e.,
lim𝑃→∞

𝜂

exp
(
− 𝑃

𝑑𝑀

) = 1
𝑘𝑀

exp (−𝛾0 + 𝛼1). The correspond-

ing asymptotically tight bound for the optimal throughput,

3Thus, 𝐻𝑀+1 = ∞ for any 𝜂 > 0. When 𝜂 = 0, we define 𝐻𝑀+1 to
be ∞. Similarly, 𝐻1 = 0 always.
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𝑅
∗
(𝑃 ), is given by

𝑅
∗
(𝑃 ) ≤

𝑀∑
𝑗=2

[
exp

(
− 𝑘𝑗
𝑘𝑀

exp

(
−𝛾0 + 𝛼1 − 𝑃

𝑑𝑀

))

× log2

(
𝜇𝑗
𝜇𝑗−1

)]
. (6)

Proof: The proof is relegated to Appendix A.
The above result shows that, for large 𝑃 , 𝜂 decreases

exponentially as a function of 𝑃 . The dependence of 𝜂 and
the optimal throughput on the system parameters, such as
{𝑘𝑗} and {𝑑𝑗}, where {𝑥𝑗} denotes {𝑥1, 𝑥2, . . .}, is now
very evident. Notice that the bound in (5) is true so long as
𝜂𝑘𝑀 ≤ 4; this condition holds even for relatively small 𝑃 .
For even lower 𝑃 , (5) is useful as an approximation.

Proposition 3: For Nakagami-𝑚 (𝑚> 1) fading, 𝜂 = 0 iff
𝑃 ≥ 𝑃max, where 𝑃max = 𝑚

𝑚−1𝑑𝑀 is the maximum average
power consumed by the optimal policy. For 𝑃 ≤ 𝑃max,

lim
𝑃→𝑃max

1

𝜂
log𝑒

[
1− 𝛼2(𝑃max − 𝑃 ) 1

𝑚−1

]
= −𝑚𝑘𝑀 , (7)

where 𝛼2 =

(
Γ(𝑚)(𝑚−1)

𝑚
∑𝑀

𝑗=2(𝑑𝑗−𝑑𝑗−1)
(

𝑘𝑗
𝑘𝑀

)

) 1
𝑚−1

and Γ(⋅) is the

Gamma function [19]. Furthermore, (7), when rearranged, is
an upper bound for 𝑚 ≥ 2, i.e.,

𝜂≤− 1

𝑚𝑘𝑀
log𝑒

[
1− 𝛼2(𝑃max − 𝑃 ) 1

𝑚−1

]
. (8)

The corresponding result for the throughput, 𝑅
∗
(𝑃 ), which

is an asymptotically tight bound for 𝑚 ≥ 2 and is an
asymptotically tight approximation for 1 < 𝑚 < 2, is as
follows:

𝑅
∗
(𝑃 ) ≥ log2 (𝜇𝑀 )− 1

Γ(𝑚)

𝑀∑
𝑗=2

[
log2

(
𝜇𝑗
𝜇𝑗−1

)

×𝛾
(
𝑚,− 𝑘𝑗

𝑘𝑀
log𝑒

(
1− 𝛼2(𝑃max − 𝑃 ) 1

𝑚−1

))]
. (9)

Here, 𝛾(⋅, ⋅) is the lower incomplete gamma function [19].
Proof: The proof is relegated to Appendix B.

Note that unlike the case of Rayleigh fading (𝑚 = 1), the
maximum average power consumed for 𝑚 > 1 is finite. The
above proposition shows that (8) is an asymptotically tight
approximation for 𝜂 for all 𝑚 > 1. Further, for 𝑚 ≥ 2, it re-
fines the result by showing that it is, in fact, an asymptotically
tight upper bound. Notice how 𝜂 depends on the difference
between 𝑃max and 𝑃 and on various system parameters. Note
also that Prop. 3 does not apply for 𝑚 = 1 (Rayleigh fading).

III. MULTIPLE RATE ADAPTIVE NODES WITH SELECTION

As shown in Fig. 1, we now consider a system with 𝐾
(≥ 2) nodes that have data to transmit to a common sink over
a flat-fading channel. Let ℎ𝑖 denote the channel power gain
between the 𝑖th node and the sink; ℎ1, . . . , ℎ𝐾 are assumed
to be independent and identically distributed. The models for
the channel gain, noise, and BER are as stated before for the
single node.

Fig. 1. Illustration of a multi-node system consisting of 𝐾 rate- and power-
adaptive nodes that have data to transmit to a common sink node over a shared
channel.

A. Throughput-Optimal Scheme and Results about the Power
Control Parameter and Throughput

Maximizing the average throughput requires determining:
(i) which node to select, and (ii) the selected node’s rate and
transmit power. The throughput-optimal adaptation policy is
as follows:4

∙ Selection rule: The index, 𝑠, of the selected node is

𝑠 = arg max
1≤𝑖≤𝐾

ℎ𝑖. (10)

∙ Rate and power adaptation rule: The selected node, 𝑠,
transmits with a constellation of size 𝜇𝑗 and transmit
power 𝑃tx(ℎ, 𝜇𝑗) =

𝑑𝑗
ℎ , if 𝜂𝑘𝑗 ≤ ℎ𝑠 < 𝜂𝑘𝑗+1, where

𝑘1 = 0, 𝑘𝑀+1 = ∞, and {𝑘𝑗}, 2 ≤ 𝑗 ≤𝑀 , are as given
in Sec. II.

Here, 𝜂 is the implicit solution of the following power con-
straint equation:

𝑃 =
𝑀−1∑
𝑗=2

𝑑𝑗

∫ 𝜂𝑘𝑗+1

𝜂𝑘𝑗

𝑓(ℎ)

ℎ
(𝐹 (ℎ))𝐾−1 𝑑ℎ

+ 𝑑𝑀

∫ ∞

𝜂𝑘𝑀

𝑓(ℎ)

ℎ
(𝐹 (ℎ))𝐾−1 𝑑ℎ. (11)

As before, finding closed-form expressions for 𝜂 has re-
mained an open problem. The following novel results capture
the relationship between 𝜂 and 𝑃 , and help solve this problem.

Proposition 4: For Rayleigh fading and 𝐾 ≥ 2 nodes, the
power control parameter is 𝜂 = 0 iff 𝑃 ≥ 𝑃max, where

𝑃max = 𝑑𝑀

𝐾−1∑
𝑖=0

(−1)𝑖+1

(
𝐾 − 1

𝑖

)
log𝑒 (𝑖+ 1), (12)

is the maximum average transmit power that is consumed by
the optimal policy. Further, the following approximation is
asymptotically tight:

𝜂 ≈ − 1

𝑘𝑀
log𝑒

[
1− 𝑥0 − 𝛽𝑥20

𝐾(1− 𝛽𝑥0)− 1

]
, (13)

4It can be proved from the results derived in [6]. Given the policy’s intuitive
form, the proof is skipped to conserve space.
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where

𝑥0 ≜

⎛
⎜⎝ (𝑃max − 𝑃 )(𝐾 − 1)∑𝑀

𝑗=2(𝑑𝑗 − 𝑑𝑗−1)
(
𝑘𝑗
𝑘𝑀

)𝐾−1

⎞
⎟⎠

1
𝐾−1

, (14)

𝛽 ≜
(𝐾 − 1)

∑𝑀
𝑗=2(𝑑𝑗 − 𝑑𝑗−1)

(
𝑘𝑗
𝑘𝑀

)𝐾
2𝐾

∑𝑀
𝑗=2(𝑑𝑗 − 𝑑𝑗−1)

(
𝑘𝑗
𝑘𝑀

)𝐾−1
. (15)

The corresponding asymptotically tight approximation for the
system throughput, 𝑅

∗
(𝑃 ), is

𝑅
∗
(𝑃 ) ≈ log2 𝜇𝑀 −

𝑀∑
𝑗=2

log2

(
𝜇𝑗
𝜇𝑗−1

)

×
[
1− exp

(
𝑘𝑗
𝑘𝑀

log𝑒

(
1− 𝑥0 − 𝛽𝑥20

𝐾(1− 𝛽𝑥0)− 1

))]𝐾
.

(16)

Proof: The proof is relegated to Appendix C.
Note that the maximum average power consumed is now finite
even for Rayleigh fading, and that 𝜂 depends on the difference
between 𝑃max and 𝑃 .

Next, we tackle multi-node rate adaptation over Nakagami-
𝑚 fading with 𝑚 > 1. Again, 𝜂 = 0 if 𝑃 ≥ 𝑃max, where
𝑃max = 𝑑𝑀𝑚𝑚

Γ𝐾(𝑚)

∫∞
0
ℎ𝑚−2𝛾𝐾−1(𝑚,𝑚ℎ)𝑒−𝑚ℎ 𝑑ℎ and 𝛾(⋅, ⋅)

is the lower incomplete gamma function [19].
Approximation 1: For Nakagami-𝑚 fading with 𝑚 ≥ 1

and 𝐾 ≥ 2 nodes, if 𝑃 < 𝑃max, then

𝜂 ≈ − 1

𝑚𝑘𝑀

×log𝑒

⎡
⎢⎢⎣1−

⎛
⎜⎝ (𝑃max − 𝑃 )(𝑏 + 1)Γ𝐾(𝑚)

𝑎𝑚𝑚−1
∑𝑀
𝑗=2(𝑑𝑗 − 𝑑𝑗−1)

(
𝑘𝑗
𝑘𝑀

)𝑏+1

⎞
⎟⎠

1
𝑏+1

⎤
⎥⎥⎦ ,
(17)

where 𝑎 = 𝜉𝑚−2𝛾𝐾−1(𝑚,𝑚𝜉)𝑒−𝑚𝜉, 𝑏 = 𝑒𝑚𝜉−1, and 𝜉 is a
constant that satisfies:

𝑚− 2

𝜉
+

(𝐾 − 1)𝑚𝑚𝜉𝑚−1𝑒−𝑚𝜉

𝛾(𝑚,𝑚𝜉)
= 𝑚. (18)

The corresponding expression for the throughput is

𝑅
∗
(𝑃 ) ≈ log2 (𝜇𝑀 )− 1

(Γ(𝑚))
𝐾

𝑀∑
𝑗=2

log2

(
𝜇𝑗
𝜇𝑗−1

)

×
[
𝛾

(
𝑚,− 𝑘𝑗

𝑘𝑀
log𝑒

(
1− 𝜔 1

𝑏+1

))]𝐾
, (19)

where 𝜔 = (𝑃max−𝑃 )(𝑏+1)(Γ(𝑚))𝐾

𝑎𝑚𝑚−1
∑𝑀

𝑖=2(𝑑𝑖−𝑑𝑖−1)
(

𝑘𝑖
𝑘𝑀

)𝑏+1 .

Derivation: The derivation is relegated to Appendix D.
The main advantage of the approach above is that 𝜉 and,

thus, 𝑎 and 𝑏 do not depend on 𝑃 . Values of 𝜉 for different
values of 𝑚 and 𝐾 are tabulated in Table I. The values of 𝑎
and 𝑏 and, hence, 𝜂 are then readily computed. Note that this is
computationally less expensive than solving (11) numerically
for 𝜂 for different 𝑃 . As we shall see in Sec. IV, the error in
the approximation in (17) is negligible.

TABLE I
MULTIPLE NODES, NAKAGAMI-𝑚 (𝑚 > 1) FADING: TABLE OF VALUES

OF 𝜉 FOR DIFFERENT VALUES OF NAKAGAMI-𝑚 FADING PARAMETER (𝑚)
AND NUMBER OF NODES (𝐾 ).

Nakagami fading parameter (𝑚) Number of nodes (𝐾) 𝜉

2
5 1.33
10 1.81
15 2.07

3
5 1.34
10 1.7
15 1.9

4
5 1.33
10 1.63
15 1.79

5
5 1.32
10 1.57
15 1.71
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Fig. 2. Single node: power control parameter, 𝜂, as a function of average
transmit power, 𝑃 .

Note that in the multi-node case, both Prop. 4 and Approx. 1
apply for 𝑚 = 1 (Rayleigh fading). However, Prop. 4 is
simpler to use for Rayleigh fading.

IV. SIMULATION RESULTS ON ACCURACY IN

ASYMPTOTIC/NON-ASYMPTOTIC REGIMES

We illustrate our results for 𝑀 -QAM with the set of
constellation sizes given by ℳ = {1, 4, 16, 64}. The average
transmit power is normalized with respect to 𝑁0𝐵, where 𝐵 is
the bandwidth. We first consider the single node case. Figure 2
plots the exact value of 𝜂 and its bounds as a function of 𝑃 ,
for both Rayleigh and Nakagami-𝑚 (𝑚 = 2.5) fading.

Figure 3 plots the exact value and the bounds for the
corresponding optimal throughput. We observe that the bounds
on 𝜂 and throughput are asymptotically tight. Further, they
are quite accurate even for relatively small values of 𝑃 . For
example, the error between the bound and the exact value of
𝜂 is 11% at 𝑃 = 400 for 𝑚 = 1 and is 7% at 𝑃 = 0.8𝑃max

for 𝑚 = 2.5. The corresponding errors for the throughput are
just 1.9% and 0.6%.

We now consider the multi-node case with 𝐾 = 10 nodes.
Figure 4 plots the exact and the approximate values of the
power control parameter, 𝜂, as a function of the average



KHAIRNAR and MEHTA: NEW INSIGHTS INTO OPTIMAL DISCRETE RATE ADAPTATION FOR AVERAGE POWER CONSTRAINED SINGLE . . . 541

250 300 350 400 450 500
4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

Average power constraint (P̄ )

A
ve

ra
ge

th
ro

ug
hp

ut

 

 

Exact (Rayleigh)
Upper bound (Rayleigh)
Exact (Nakagami-m)
Lower bound (Nakagami-m)

Nakagami-m

Rayleigh

P̄max

Fig. 3. Single node: Zoomed-in view of throughput as a function of average
transmit power.
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Fig. 4. Multiple nodes: Power control parameter (𝜂) as a function of average
transmit power per node (𝐾 = 10).

power for both Rayleigh and Nakagami-𝑚 (𝑚 = 1.5) fading.
The values of 𝑃max are lower compared to the single node
case. We observe that the approximations are tight and are
quite accurate even for relatively small values of 𝑃 . For
example, the error between the approximate and exact values
is just 3.4% and 0.4% for Rayleigh and Nakagami-𝑚 fading,
respectively, when 𝑃 is 66% of the corresponding 𝑃max.
Figure 5 plots the corresponding curves for throughput. As
before, the error between the approximate and exact values is
very small. At 𝑃 = 0.66𝑃max, the error is just 0.9% and 0.1%
for 𝑚 = 1 and 𝑚 = 1.5, respectively.

V. CONCLUSIONS

The optimal power and discrete rate adaptation policy for
a wireless system, which consists of one or more nodes
that are subject to constraints on the average power and
the instantaneous BER, is governed by the power control
parameter, 𝜂. The power control parameter plays a central
role in the rate adaptation policy as it directly determines the
rate adaptation thresholds. Without knowing it, the transmitter
cannot determine its transmit rate and power at any time
instant, nor can it ensure adherence to the power constraint.
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Fig. 5. Multiple nodes: Zoomed-in view of throughput as a function of
average transmit power per node (𝐾 = 10).

However, this important parameter has thus far been computed
only numerically.

We showed, for the first time, that closed-form asymp-
totically tight bounds or approximations for 𝜂 as well as
optimal throughput are indeed possible. Furthermore, the novel
expressions were verified to be accurate even in a large portion
of the non-asymptotic average power regime. For example, the
error in throughput when 𝑃 is 66% of 𝑃max was less than
1% for a system with 10 nodes. New tricks were developed
to overcome the challenge of analytically characterizing 𝜂,
despite it occurring in the limits of integration of several
integrals in the average power constraint equation. Altogether,
our comprehensive analysis covers the general and widely
applicable class of Nakagami-𝑚 (𝑚 > 1) and Rayleigh fading
channels, and handles both uncoded and coded modulation,
and single and multi-node systems with selection. The ex-
pressions brought out the functional dependence of 𝜂 and the
optimal throughput on system parameters such as the set of
discrete rates, modulation schemes, and average power.

Given the fundamental importance of link adaptation in
current and next generation wireless systems, our results
motivate the investigation of similar results in several other
rate-adaptive systems that use multiple antenna technology,
multi-rate CDMA, or OFDM, or use average BER constraints,
discrete power adaptation, and in systems with imperfect
channel estimates and time-varying channels. Further, it would
be interesting to attempt to derive universal bounds or approx-
imations that are tight for all possible values of the average
power and for fading models other than Nakagami-𝑚 fading.

APPENDIX

A. Proof of Prop. 2

Substituting 𝑓(ℎ) = 𝑒−ℎ, for ℎ > 0, in (1), we get

𝑃 =

𝑀∑
𝑗=2

𝑑𝑗

∫ 𝜂𝑘𝑗+1

𝜂𝑘𝑗

𝑒−ℎ

ℎ
𝑑ℎ,

= 𝑑𝑀𝐸1(𝜂𝑘𝑀 ) +

𝑀−1∑
𝑗=2

𝑑𝑗 (𝐸1(𝜂𝑘𝑗)− 𝐸1(𝜂𝑘𝑗+1)) , (20)
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where 𝐸1(⋅) is the Euler exponential integral [19]. Substituting
𝐸1(𝑥) = −𝛾0− log𝑒(𝑥)+

∑∞
𝑙=1

(−1)𝑙+1𝑥𝑙

𝑙⋅𝑙! , where 𝛾0 is Euler’s
constant [19], in (20) gives

𝑃

𝑑𝑀
= −𝛾0 − log𝑒 (𝑘𝑀𝜂) +

𝑀−1∑
𝑗=2

𝑑𝑗
𝑑𝑀

log𝑒

(
𝑘𝑗+1

𝑘𝑗

)

+
𝑀∑
𝑗=2

(𝑑𝑗 − 𝑑𝑗−1)

𝑑𝑀

∞∑
𝑙=1

(−1)𝑙+1

𝑙 ⋅ 𝑙! (𝜂𝑘𝑗)
𝑙. (21)

For 𝜂𝑘𝑀 ≤ 4, we can show that (𝜂𝑘𝑗)
𝑙+1

(𝑙+1)⋅(𝑙+1)! ≤ (𝜂𝑘𝑗)
𝑙

𝑙⋅𝑙! , ∀ 𝑙 ≥
1 and 2 ≤ 𝑗 ≤ 𝑀 . Thus, the above alternating series in
𝑙 is bounded below by 0. Since 𝑑𝑗 > 𝑑𝑗−1, it follows that
𝑃
𝑑𝑀

≥ −𝛾0 − log𝑒(𝜂𝑘𝑀 ) +
∑𝑀−1
𝑗=2

𝑑𝑗
𝑑𝑀

log𝑒

(
𝑘𝑗+1

𝑘𝑗

)
. Taking

exponentials on both sides and simplifying gives (5). Taking
the limit as 𝑃 → ∞ (which is equivalent to 𝜂 → 0) in (21)
yields the desired limit result.

The optimum throughput simplifies as follows:

𝑅
∗
(𝑃 ) =

𝑀∑
𝑗=2

log2 (𝜇𝑗)

∫ 𝜂𝑘𝑗+1

𝜂𝑘𝑗

𝑓(ℎ) 𝑑ℎ,

= log2 (𝜇𝑀 )−
𝑀∑
𝑗=2

𝐹 (𝜂𝑘𝑗) log2

(
𝜇𝑗
𝜇𝑗−1

)
. (22)

Substituting 𝐹 (𝑥) = 1 − 𝑒−𝑥, for 𝑥 ≥ 0, and the expression
for 𝜂 from (5) into (22) and simplifying yields (6).

B. Proof of Prop. 3

From Prop. 1, maximum average power is consumed iff
𝜂 = 0. Substituting 𝜂 = 0 and 𝑓(ℎ) = 𝑚𝑚

Γ(𝑚)ℎ
𝑚−1𝑒−𝑚ℎ, for

ℎ ≥ 0, in (1), we get

𝑃max =
𝑚𝑚𝑑𝑀
Γ(𝑚)

∫ ∞

0

ℎ𝑚−2𝑒−𝑚ℎ 𝑑ℎ =
𝑚

𝑚− 1
𝑑𝑀 .

Now, consider the case where 𝑃 ≤ 𝑃max and 𝑚 ≥ 2.
From (1), we have

𝑃 =
𝑚𝑚

Γ(𝑚)

𝑀∑
𝑗=2

𝑑𝑗

∫ 𝜂𝑘𝑗+1

𝜂𝑘𝑗

ℎ𝑚−2𝑒−𝑚ℎ 𝑑ℎ,

= 𝑃max − 𝑚𝑚

Γ(𝑚)

𝑀∑
𝑗=2

𝑢𝑗(𝑑𝑗 − 𝑑𝑗−1), (23)

where 𝑢𝑗 ≜
∫ 𝜂𝑘𝑗
0

ℎ𝑚−2𝑒−𝑚ℎ 𝑑ℎ. The following two asymptot-
ically tight bounds are the key steps that address the challenge
of ferreting 𝜂 out of the limits of integration: ℎ ≥ 1−𝑒−𝑚ℎ

𝑚 and
1−𝑒−𝑚𝜂𝑘𝑗

1−𝑒−𝑚𝜂𝑘𝑀
≥ 𝑘𝑗

𝑘𝑀
, for ℎ ≥ 0. Using these, we get

𝑢𝑗 ≥
(
1− 𝑒−𝑚𝜂𝑘𝑗)𝑚−1

(𝑚− 1)𝑚𝑚−1
≥ (1− 𝑒−𝑚𝜂𝑘𝑀 )𝑚−1

(𝑚− 1)𝑚𝑚−1

(
𝑘𝑗
𝑘𝑀

)𝑚−1

.

(24)
Substituting (24) in (23) gives

𝑃max−𝑃 ≥ 𝑚(1− 𝑒−𝑚𝜂𝑘𝑀 )𝑚−1

(𝑚− 1)Γ(𝑚)

𝑀∑
𝑗=2

(𝑑𝑗−𝑑𝑗−1)

(
𝑘𝑗
𝑘𝑀

)𝑚−1

,

which leads to (8).

Also note that the first inequality in (24) gets reversed for
𝑚 < 2, as a result of which (8) is not a bound on 𝜂 for
1 < 𝑚 < 2. However, from (23), 𝑃max−𝑃∑𝑀

𝑗=2 𝑢𝑗(𝑑𝑗−𝑑𝑗−1)
= 𝑚𝑚

Γ(𝑚) ,

for any 𝑚 > 1. Taking limits as 𝑃 → 𝑃max, i.e., 𝜂 → 0, and
using limℎ→0

ℎ(
1−𝑒−𝑚ℎ

𝑚

) = 1 and lim𝜂→0

(
1−𝑒−𝑚𝜂𝑘𝑗

1−𝑒−𝑚𝜂𝑘𝑀

)
=

𝑘𝑗
𝑘𝑀

results in (7).
The corresponding throughput expression in (9) is obtained

by substituting 𝐹 (𝑥) = 𝛾(𝑚,𝑥)
Γ(𝑚) , 𝑥 ≥ 0, and 𝜂 from (8) in (22).

C. Proof of Prop. 4

We shall use the following notation: For any two functions
𝜓1(⋅) and 𝜓2(⋅) defined on ℝ, we say that 𝜓1(𝑥) ∼ 𝜓2(𝑥)

iff lim𝑥→0
𝜓1(𝑥)
𝜓2(𝑥)

= 1. As in Prop. 1, it can be shown that
maximum average power is consumed iff 𝜂 = 0. Substituting
𝑓(ℎ) = 𝑒−ℎ and 𝜂 = 0 in (11), we get

𝑃max = 𝑑𝑀

∫ ∞

0

𝑒−ℎ

ℎ
(1− 𝑒−ℎ)𝐾−1 𝑑ℎ,

= 𝑑𝑀 lim
𝑥→0

𝐾−1∑
𝑖=0

(−1)𝑖
(
𝐾 − 1

𝑖

)
𝐸1((𝑖 + 1)𝑥). (25)

Substituting 𝐸1(𝑥) = −𝛾0 − log𝑒(𝑥) +
∑∞
𝑛=1

(−1)𝑛+1𝑥𝑛

𝑛⋅𝑛! in
the above equation gives the desired expression for 𝑃max.

Substituting 𝑓(ℎ) = 𝑒−ℎ in (11) and using (25) yields

𝑃max − 𝑃 =

𝑀∑
𝑗=2

(𝑑𝑗 − 𝑑𝑗−1)

∫ 𝜂𝑘𝑗

0

𝑒−ℎ

ℎ

(
1− 𝑒−ℎ)𝐾−1

𝑑ℎ,

=

𝑀∑
𝑗=2

(𝑑𝑗 − 𝑑𝑗−1)𝑣𝑗 , (26)

where 𝑣𝑗 =
∫ 𝜂𝑘𝑗
0

𝑒−ℎ

ℎ

(
1− 𝑒−ℎ)𝐾−1

𝑑ℎ. The following sim-
ple observation is key to simplifying 𝑣𝑗 in a manner that, as
we shall see, enables 𝜂 to be approximated in closed-form:

1− 𝑒−ℎ
ℎ

∼ 1 + 𝑒−ℎ

2
. (27)

Thus,

𝑣𝑗 ∼
∫ 𝜂𝑘𝑗

0

𝑒−ℎ
(
1 + 𝑒−ℎ

2

)(
1− 𝑒−ℎ)𝐾−2

𝑑ℎ,

=
𝑡𝐾−1
𝑗

𝐾 − 1
− 𝑡𝐾𝑗

2𝐾
, (28)

where 𝑡𝑗 ≜ 1− 𝑒−𝜂𝑘𝑗 . Substituting this in (26), we get,

𝑃max − 𝑃 ∼
𝑀∑
𝑗=2

(𝑑𝑗 − 𝑑𝑗−1)

(
𝑡𝐾−1
𝑗

𝐾 − 1
− 𝑡𝐾𝑗

2𝐾

)
, (29)

∼ 𝑡𝐾−1
𝑀

𝑀∑
𝑗=2

𝑑𝑗 − 𝑑𝑗−1

𝐾 − 1

(
𝑡𝑗
𝑡𝑀

)𝐾−1

. (30)

Another key observation is that 𝑡𝑗
𝑡𝑀

∼ 𝑘𝑗
𝑘𝑀

. This results in

𝑃max − 𝑃 ∼ 𝑡𝐾−1
𝑀

𝐾 − 1

𝑀∑
𝑗=2

(𝑑𝑗 − 𝑑𝑗−1)

(
𝑘𝑗
𝑘𝑀

)𝐾−1

.



KHAIRNAR and MEHTA: NEW INSIGHTS INTO OPTIMAL DISCRETE RATE ADAPTATION FOR AVERAGE POWER CONSTRAINED SINGLE . . . 543

Rearranging terms, we get 𝑡𝑀 ∼ 𝑥0 (cf. (14)). Therefore,

𝜂 = − 1

𝑘𝑀
log𝑒 (1− 𝑡𝑀 ) ∼ − 1

𝑘𝑀
log𝑒 (1− 𝑥0). (31)

This proves the asymptotic tightness of (13) since 𝑥0
dominates the term containing 𝑥20 as 𝑥0 → 0. A perturbation
analysis on the roots of the polynomial equation in (29) results
in the inclusion of the term containing 𝑥20, which refines the
result in (31) and makes it more accurate for smaller 𝑃 . The
intermediate steps are omitted due to space constraints.

The optimal throughput simplifies as follows:

𝑅
∗
(𝑃 ) =

𝑀∑
𝑗=2

log2 (𝜇𝑗)

∫ 𝜂𝑘𝑗+1

𝜂𝑘𝑗

𝑓(ℎ) (𝐹 (ℎ))
𝐾−1

𝑑ℎ,

= log2 (𝜇𝑀 )−
𝑀∑
𝑗=2

(𝐹 (𝜂𝑘𝑗))
𝐾 log2

(
𝜇𝑗
𝜇𝑗−1

)
. (32)

Substituting 𝐹 (𝑥) = 1 − 𝑒−𝑥, 𝑥 ≥ 0, and the expression for
𝜂 from (13) into (32) yields (16).

D. Derivation of Approx. 1

Substituting 𝑓(ℎ) = 𝑚𝑚

Γ(𝑚)ℎ
𝑚−1𝑒−𝑚ℎ and 𝐹 (ℎ) =

𝛾(𝑚,𝑚ℎ)
Γ(𝑚) , for ℎ ≥ 0, in (11), we get

𝑃 =
𝑚𝑚

Γ𝐾(𝑚)

𝑀∑
𝑗=2

𝑑𝑗

∫ 𝜂𝑘𝑗+1

𝜂𝑘𝑗

ℎ𝑚−2𝛾𝐾−1(𝑚,𝑚ℎ)𝑒−𝑚ℎ 𝑑ℎ,

= 𝑃max − 𝑚𝑚

Γ𝐾(𝑚)

𝑀∑
𝑗=2

𝑤𝑗(𝑑𝑗 − 𝑑𝑗−1), (33)

where 𝑤𝑗 ≜
∫ 𝜂𝑘𝑗
0 ℎ𝑚−2𝛾𝐾−1(𝑚,𝑚ℎ)𝑒−𝑚ℎ 𝑑ℎ. Let 𝑔1(ℎ) =

ℎ𝑚−2𝛾𝐾−1(𝑚,𝑚ℎ)𝑒−𝑚ℎ and 𝑔2(ℎ) = 𝑎(1 − 𝑒−𝑚ℎ)𝑏𝑒−𝑚ℎ,
where 𝑎, 𝑏 ∈ ℝ

+. Notice that 𝑔1(0) = 𝑔2(0) = 0 and
limℎ→∞ 𝑔1(ℎ) = limℎ→∞ 𝑔2(ℎ) = 0. Further, both 𝑔1(⋅) and
𝑔2(⋅) have unique maxima. Let the maximum of 𝑔1(ℎ) occur
at ℎ = 𝜉. A key step is to approximate 𝑔1(ℎ) with 𝑔2(ℎ), both
of which tend to the same value of 0 for ℎ → 0 as well as
ℎ→ ∞. For this, 𝑎 and 𝑏 are chosen to make 𝑔2(ℎ) have the
same maximum as 𝑔1(ℎ) and at ℎ = 𝜉. Thus, 𝜉 is a solution
of 𝑑𝑔1(ℎ)

𝑑ℎ

∣∣
ℎ=𝜉

= 0, which gives (18). Using 𝑑𝑔2(ℎ)
𝑑ℎ

∣∣
ℎ=𝜉

= 0

and 𝑔2(𝜉) = 𝑔1(𝜉) gives 𝑎 = 𝜉𝑚−2𝛾𝐾−1(𝑚,𝑚𝜉)𝑒−𝑚𝜉 and
𝑏 = 𝑒𝑚𝜉−1.

Replacing 𝑔1(ℎ) with 𝑔2(ℎ) gives

𝑤𝑗 ≈
∫ 𝜂𝑘𝑗

0

𝑎(1− 𝑒−𝑚ℎ)𝑏𝑒−𝑚ℎ 𝑑ℎ =
𝑎(1− 𝑒−𝑚𝜂𝑘𝑗 )𝑏+1

𝑚(𝑏 + 1)
.

Substituting this in (33), we get

𝑃max − 𝑃 ≈ 𝑚𝑚

Γ𝐾(𝑚)

𝑀∑
𝑗=2

(𝑑𝑗 − 𝑑𝑗−1)
𝑎(1 − 𝑒−𝑚𝜂𝑘𝑗 )𝑏+1

𝑚(𝑏+ 1)
,

≈ 𝑎𝑚𝑚−1

Γ𝐾(𝑚)(𝑏 + 1)
(1− 𝑒−𝑚𝜂𝑘𝑀 )𝑏+1

×
𝑀∑
𝑗=2

(𝑑𝑗 − 𝑑𝑗−1)

(
𝑘𝑗
𝑘𝑀

)𝑏+1

. (34)

Rearranging terms in the above equation yields (17).
The throughput expression in (19) is obtained by substitut-

ing (17) and 𝐹 (𝑥) = 𝛾(𝑚,𝑥)
Γ(𝑚) , 𝑥 ≥ 0, into (32).
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