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Abstract—Cooperative relaying combined with selection ex-
ploits spatial diversity to significantly improve the performance of
interference-constrained secondary users in an underlay cognitive
radio (CR) network. However, unlike conventional relaying, the
state of the links between the relay and the primary receiver
affects the choice of the relay. Further, while the optimal amplify-
and-forward (AF) relay selection rule for underlay CR is well
understood for the peak interference-constraint, this is not so
for the less conservative average interference constraint. For the
latter, we present three novel AF relay selection (RS) rules, namely,
symbol error probability (SEP)-optimal, inverse-of-affine (IOA),
and linear rules. We analyze the SEPs of the IOA and linear
rules and also develop a novel, accurate approximation technique
for analyzing the performance of AF relays. Extensive numeri-
cal results show that all the three rules outperform several RS
rules proposed in the literature and generalize the conventional
AF RS rule.

Index Terms—Underlay cognitive radio, interference
constraint, cooperative communications, relays, amplify-and-
forward, selection, symbol error probability.

I. INTRODUCTION

COGNITIVE RADIO (CR) promises to significantly im-
prove the utilization of scarce wireless spectrum, and has

attracted significant interest in academia and industry [1]. In
the underlay mode of CR, which is the focus of our paper,
a secondary user (SU) can simultaneously transmit on the
same band as a higher priority primary user (PU) so long as
the interference it causes to the primary receiver is tightly
constrained [1]. This interference constraint limits the SU’s data
rate and reliability.

Cooperative relaying, which is being standardized in next
generation wireless local area networks and cellular systems
[2], is a promising technique that enhances the performance
of the SUs by exploiting spatial diversity. When multiple
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relays are available, one of them is selected to forward a
message from a secondary source S to a destination D based
on the instantaneous channel conditions. Relay selection (RS)
is practically appealing because it avoids the need for tight
synchronization between simultaneously transmitting relays or
the spectrally inefficient use of bandwidth when all the relays
transmit on orthogonal resources [3]. Even though the relays
have only local channel knowledge, RS can be implemented
using distributed selection algorithms [4], and achieves full
diversity order in conventional relay networks [5]. RS for both
amplify-and-forward (AF) and decode-and-forward (DF) relays
has been studied in the literature [6]–[10].

Conventionally, the best relay is the one that maximizes
the end-to-end signal-to-noise-ratio (SNR) at D. However, in
underlay CR, it may not be preferable to select a relay with
the largest SNR, if it causes excessive interference to a primary
receiver X . Therefore, the RS rule is now also a function of
the links between the relays and X . Further, it also depends on
the interference constraint, which sets underlay CR apart from
conventional wireless communications. In the peak interference
constraint, the instantaneous interference from the source to X
and from the selected relay to X must not exceed a threshold
[11]–[14]. Instead, in the average interference constraint, the
fading-averaged interference caused to X must not exceed a
threshold [8], [15].1

A. Literature on AF RS in Underlay CR

In [11], among the fixed-gain relays that satisfy the peak
interference constraint, the relay that maximizes the SNR of
the relay (R)-to-D (RD) link is selected. In [12], the relay
with the maximum end-to-end SNR at D is selected. Further, in
[12], the relay transmit power is inversely proportional to the
R-to-X (RX) channel power gain to satisfy the peak inter-
ference constraint. Selection with fixed-power relays that are
subject to a peak interference constraint has also been studied
in [13], [14]. In [13], the max-min rule is proposed, in which
the relays that satisfy the peak interference constraint are short-
listed. Among these relays, the one that maximizes the mini-
mum of the S-to-R (SR) and RD link SNRs is selected. Instead,

1Another possible constraint limits how often the signal-to-interference-plus-
noise-ratio (SINR) of the signal transmitted by the primary transmitter (T ) at
X drops below a threshold [9]. However, it requires channel state information
of T -to-X link at S and the relays, which can be impractical. We, therefore, do
not study this constraint.
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in [14], the relays that do not satisfy the peak interference con-
straint or for whom the minimum of the SR and RD link SNRs
is below a threshold are first excluded. Among the remaining
relays, the one that maximizes the ratio of the minimum of the
SR and RD link SNRs and the instantaneous interference power
caused by it to X is selected. We shall refer to this rule as the
quotient rule.

B. Contributions

We study relay selection for an underlay CR network that
uses fixed-power AF relays subject to an average interference
constraint. We focus on the classical AF relaying protocol
[7] because it has attracted considerable interest both in the
conventional cooperative networks [6], [16] and in underlay CR
[12]–[14]. We note that other cooperative protocols exist such
as non-orthogonal relaying [17] and incremental relaying [18],
which achieve higher spectral efficiencies at the expense of a
more involved receiver. However, they are beyond the scope of
this paper.

We study the average interference constraint because it is less
restrictive than the conservative peak interference constraint,
and, thus, enables the secondary system to perform better by
changing both the choice of the relay and its transmit power de-
pending on the channel fades. It is well motivated when Tc/Tp

is of the order of 1 or less, where Tc denotes the coherence time
of the RX link and Tp denotes the packet transmission duration.
When Tc/Tp exceeds 1, its practicality depends on the quality-
of-service requirements of the primary traffic between T and X ,
which anyways needs to be resilient to a prolonged deep fade
in the primary link. Given its appeal, it has been studied for
non-cooperative CR [15] and DF relay-based CR [8]. However,
to the best of our knowledge, the combination of AF RS and
the average interference constraint has not been fully addressed
in the literature.2 RS with the peak interference constraint is
technically simpler because the transmit power of the relay is
simply proportional to the reciprocal of the RX channel power
gain [12].

We make the following contributions in this paper:

• We systematically develop a novel, optimal RS rule that
minimizes the symbol error probability (SEP) of a sec-
ondary system that is subject to an average interference
constraint. We note that alternate problem formulations
that optimize other performance measures such as ca-
pacity [8], [12], outage probability [9], and diversity-
multiplexing tradeoff [20] are possible. We focus on the
SEP because it is a widely studied classical measure of
reliability of communications [13], [14], [21], [22]. Fur-
ther, it leads to a theoretically rich and insightful problem.

• While the optimal rule’s characterization is general and
serves as a fundamental benchmark, it is in the form of a
single integral involving the end-to-end SINR at D, which
makes it difficult to implement. We, therefore, present two

2While [19] also studies AF relaying and the average interference constraint,
the RS rule selects the relay with the highest end-to-end SINR at D. It focuses
on optimizing the transmit powers of the source and relays.

novel, integral-free RS rules, namely, the inverse-of-affine
(IOA) and linear rules, that are derived from the optimal
rule and have lower implementation complexity. All the
three rules reduce to the optimal RS rule for interference-
unconstrained conventional cooperative systems, and are,
thus, generalizations of this rule.

• We derive asymptotically tight upper and lower bounds
for the SEPs of the IOA and linear rules. We find that
the IOA rule, despite its simpler closed-form, performs as
well as the optimal rule for all the parameters of interest.
The linear rule incurs a performance loss compared to
the optimal rule. To gain more insights, we analyze the
asymptotic SEP of these two rules. We also develop a
novel, asymptotically tight, and closed-form SEP approx-
imations for these two rules, which our numerical results
show are accurate to within 0.6 dB even at low SINRs.
In general, such an analysis is challenging due to the
functional form of the SINR obtained from using an AF
relay [7], [16]. The additional dependence of the RS rules
on the RX links further complicates our analysis.

• We present extensive numerical results to study the effect
of parameters such as the number of relays, constel-
lation size, and channel statistics on the SEP. All the
three proposed rules outperform the rules proposed in the
literature.

We note that while the optimal antenna selection (AS) rule of
[15] and our RS rule appear to have functionally similar forms,
there are significant differences between the two. In [15], a non-
cooperative CR network is considered, in which S selects one
among multiple antennas to transmit its data to D. However,
we consider a cooperative CR network that uses AF relays, in
which one among multiple relays is selected to forward S’s data
to D in addition to the direct transmission between S and D.
The different ad hoc rules considered for AS [23] and RS [13],
[14] reconfirm that these two models have been treated as being
different in the literature. The SEP analysis in our paper is more
involved than that in [15]. This is because the SINR at D in [15]
is directly proportional to the channel power gain of the link
between the selected antenna and D, while, in our problem, the
SINR at D is more involved and so is its probability density
function (PDF), which drives the SEP analysis. The proposed
IOA and linear RS rules are novel and do not follow from [15].
Further, our novel SEP approximation method, which simplifies
the SEP analysis, is not proposed in [15].

Outline: Section II develops the system model and the
problem statement. The optimal RS rule and its two variants
are given in Section III. The SEP of the IOA and linear rules
is analyzed in Section IV. Numerical results are presented in
Section V. Our conclusions follow in Section VI.

Notation: The absolute value of a complex number y is
denoted by |y|. The probability of an event A and the con-
ditional probability of A given B are denoted by Pr(A) and
Pr(A|B), respectively. For a random variable (RV) Y, fY (y)
denotes its PDF, FY (y) denotes its cumulative distribution
function (CDF), and EY [.] denotes expectation with respect to
Y . Scalar and vector variables are written in normal and bold
fonts, respectively. Y ∼ CN(0, σ2) implies that Y is a circular
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symmetric zero-mean complex Gaussian RV with variance σ2,
and 1{a} denotes the indicator function; it is 1 if a is true and

is 0 otherwise. Ek(y) �
∞∫
1

e−yt/tk dt denotes the exponential

integral function [24, (5.1.4)] and 2F1(a, b; c; z) denotes the
Gauss hypergeometric function [24, (15.1)].

II. SYSTEM MODEL AND PROBLEM STATEMENT

Our system comprises of a primary network, in which a
primary transmitter T sends data to a primary receiver X , and
an underlay secondary network, in which S transmits data
to D using L relays 1, 2, . . . , L. Each node is equipped with
a single antenna. The complex baseband channel gain from
S to X is hSX , from S to D is hSD, from S to relay i is
hSi, from relay i to D is hiD, and from relay i to X is hiX .
Let hS � [hS1, hS2, . . . , hSL],hD � [h1D, h2D, . . . , hLD],
hX � [h1X , h2X , . . . , hLX ], and h � [hS ,hD,hP ]. Further,
the complex baseband channel gain from T to relay i is hTi

and from T to D is hTD. All channels are frequency-flat,
block fading channels that remain constant over the duration
of at least two transmissions. The direct S-to-D (SD) link is
independent of all other links.

A. Data Transmissions

The transmission occurs over two slots. In the first time
slot, S transmits a data symbol xs that is drawn with equal
probability from MPSK constellation of size M . Let xp denote
the symbol transmitted by T drawn from MPSK or MQAM
constellation. After accounting for the interferences caused by
the transmissions by T at the relay and destination, the received
signals ySi at relay i and ySD at D are given by

ySi =
√

EshSixs + ni +
√

EphTixp, 1 ≤ i ≤ L, (1)

ySD =
√

EshSDxs + nD +
√

EphTDxp. (2)

Here, Es and Ep are the transmit powers of S and T , respec-
tively, E

[
|xs|2
]
= E
[
|xp|2
]
= 1. The noises at relay i and D

are ni ∼ CN(0, σ2
0) and nD ∼ CN(0, σ2

0), respectively.
In the second time slot, the selected relay β ∈

{1, . . . , L} amplifies the signal ySβ by a factor αβ =√
Er

Es|hSβ |2+σ2
0+Ep|hTβ |2 [25] to ensure that its transmission

power is fixed at Er, and forwards it to D. The source does not
transmit in the second time slot. The received signal yβD at D
in the second time slot is given by

yβD = ySβαβhβD + n′
D +
√

EphTDx′
p, (3)

where n′
D ∼ CN(0, σ2

0) is the noise at D,x′
p is the transmitted

symbol by T in the second time slot, and E
[
|x′

p|2
]
= 1. We

use the fixed-power relaying model, in which the relay transmit
power does not depend on the instantaneous channel gains
of any of the links. This enables the use of energy-efficient
power-amplifiers, which facilitates the design of cheap, low
complexity relays. To make the problem analytically tractable,

we make the following two assumptions and explain their
specific roles.

A1. Conditioned on hTi, the interference from T to relay i,√
EphTixp, is approximated to be Gaussian; and conditioned

on hTD, the interference from T to D,
√

EphTDxp, is ap-
proximated to be Gaussian. Without this, even maximal ratio
combining (MRC) at D need no longer be maximum-likelihood
(ML)-optimal. Even the utility of SINR diminishes since the
classical SEP expression for MPSK [22, (8.23)] is no longer
applicable [21, Chapter 6.1.1].3 The output yMRC at D after
MRC is given by

yMRC = w1ySD + w2yβD, (4)

where the weights can be shown to be w1 =
√
Esh

∗
SD

σ2
0+Ep|hTD |2 and

w2 =

√
ErEs

Es|hSβ |2+σ2
0
+Ep|hTβ |2

h∗
Sβ

h∗
βD

σ2
0+Ep|hTD |2+

Er|hβD|2(σ2
0
+Ep|hTβ |2)

Es|hSβ |2+σ2
0
+Ep|hTβ |2

.

A2. The selected relay β is assumed to know the channel
power gains |hSβ |2 and |hTβ |2 to compute its gain αβ . In
practice, the relay can estimate these using a training protocol
[29]. The destination is assumed to know the baseband channel
gains hSD, hSβ , and hβD, and the channel power gains |hTD|2
and |hTβ |2 to compute the weights w1 and w2 for coherent
demodulation. Note that the selected relay β does not need to
know the channel power gains from S and T to any of the other
relays. Further, the relays are assumed to know E

[
|hTD|2

]
, but

they need not know the instantaneous value |hTD|2. This can be
communicated to them by the destination over a much longer
time scale [9]. Phases of the baseband channel gains are not
required at the relays.

Therefore, from A1, A2, and (4), the instantaneous SINR at
D after MRC is given by

γMRC = γSD + γβ , (5)

where γSD = Es|hSD |2
σ2
0+Ep|hTD |2 is the SINR of the SD link and

γβ =
γSβγβD

γSβ+γβD+1 is the end-to-end SINR of the selected relay

link at the destination, with γSβ =
Es|hSβ |2

σ2
0+Ep|hTβ |2 and γβD =

Er |hβD |2
σ2
0+Ep|hTD |2 being the SINRs of the first and second hops,

respectively, for β ∈ {1, . . . , L}.
To evaluate the impact of these assumptions, Fig. 1 plots

the SEPs from Monte Carlo simulations as a function of the
average SINR of an interference-unconstrained cooperative
system consisting of a source S, a fixed-power AF relay β, and
a destination D. The relay β and D are affected by the inter-
ference from T , which transmits symbols drawn from 8PSK
or 64QAM constellations. S transmits symbols drawn from
8PSK constellation. All channels, including the interference

3We note that the Gaussian interference approximation has been widely made
in the analysis of SEP, capacity, or outage probability. For example, the SEP
analysis in [25, (6)] is valid only with this approximation. In [9, (9)], [26, (1)]
the interference power from the primary transmitter to relay i is added to the
noise power in the expression for the instantaneous mutual information. This
holds only for Gaussian interference. In [27], [28], the approximation is used
because it provides a worst case, but tractable, model for the interference.
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Fig. 1. SEP as a function of average SINR when the primary interference is
approximated as Gaussian and T transmits 8PSK and 64QAM symbols (Es =
Er = E = 10 dB, σ2

1 = σ2
2 = σ2 = 1.98 dB, σ2

0 = 2 dB, and mean channel
power gains of SD, SR, RD, and RX links are μ).

channels, undergo Rayleigh fading. These simulations do not
make the Gaussian interference approximation. Also plotted
is the SEP based on the above assumptions and the following
assumption A3. In the above expressions for the instantaneous
SINRs of the first hop, second hop, and the SD link, the
terms Ep|hTβ |2 and Ep|hTD|2 are replaced with their average
values σ2

1 and σ2
2 , respectively, to simplify the optimization

and analysis. Therefore, γSβ =
Es|hSβ |2
σ2
0+σ2

1
, γβD =

Er |hβD |2
σ2
0+σ2

2
, and

γSD = Es|hSD |2
σ2
0+σ2

2
. We see that the SEP curves, with and without

the assumptions A1 and A3, are close to each other over a wide
range of SINRs when T transmits 8PSK or 64QAM symbols.
Thus, the above assumptions are justified for our problem even
with one primary transmitter. With a large number of primary
transmitters, the central limit theorem justifies the Gaussian
interference approximation [30].

B. Relay Selection

The RS rule selects one among the L available relays.
Further, no relay may be selected to avoid interference with
X , which is denoted by a virtual relay 0, with hS0 = h0D =
h0X � 0. Therefore, a RS rule φ is a mapping

φ : (R+)L × (R+)L × (R+)L → {0, 1, . . . , L}, (6)

that selects one out of the L+ 1 relays for every realization of{
|hSi|2

}L
i=1

,
{
|hiD|2

}L
i=1

, and
{
|hiX |2

}L
i=1

. Since the relays
do not know the channel power gain of the SD link, the RS rule
does not take |hSD|2 into account.

C. Optimal RS Rule Problem Statement

Using A1, the instantaneous SEP for MPSK when relay β is
selected is given by [22, (8.23)]

SEP
(
|hSD|2, |hSβ |2, |hβD|2

)
=

1

π

mπ∫
0

e−
q(γSD+γβ)

sin2 θ dθ, (7)

where q = sin2(π/M),m = (M − 1)/M , and using A3,

γSD = Es|hSD |2
σ2
0+σ2

2
and γβ =

γSβγβD

γSβ+γβD+1 , with γSβ =
Es|hSβ |2
σ2
0+σ2

1

and γβD =
Er |hβD |2
σ2
0+σ2

2
. Averaging over the RV γSD, which is

independent of γβ , we get the following expression for the SD
link-averaged SEP, which is denoted by SEP(|hSβ |2, |hβD|2):

SEP
(
|hSβ |2, |hβD|2

)
=

1

π

mπ∫
0

MγSD

( q

sin2 θ

)
e−

qγβ

sin2 θ dθ.

(8)

Here, MγSD
(.) denotes the moment generating function (MGF)

of γSD. For example, for Rayleigh fading, MγSD
(x) = (1 +

xγSD)−1, where γSD = E[γSD].
We define a feasible RS rule φ to be a rule whose average

interference to X is less than or equal to a threshold Iavg.
Our goal is to find an optimal RS rule φ∗ that minimizes the
SEP of the secondary system while ensuring that the average
interference caused to X is below a threshold Iavg.4 Therefore,
our problem can be mathematically stated as the following
mixed-integer, stochastic, constrained optimization problem:

min
φ

Eh

[
SEP
(
|hSβ |2, |hβD|2

)]
,

s.t. Eh

[
Eβ |hβX |2

]
≤ Iavg, (9)

β = φ(h).

We note that the above problem formulation can be easily
generalized to other constellations such as MPAM, MQAM,
MDPSK, and MFSK, whose SEP upper bound is an exponen-
tially decaying function of the SINR [21, (6.1)], [22, (8.1)].

III. OPTIMAL RS RULE AND SIMPLER VARIANTS

Let us first consider the conventional RS rule that minimizes
the SEP at D when the average interference constraint in (9) is
not active. From the expression for the instantaneous SD link-
averaged SEP in (8), the optimal rule selects the relay with the
highest end-to-end SINR [7]. Thus,

β = argmax
i∈{1,...,L}

{γi}. (10)

We shall refer to this as the unconstrained rule. In this case, the
average interference Iun caused to X is Iun = ErE

[
|hβX |2

]
.

However, when Iun > Iavg, the unconstrained rule is not feasi-
ble, and, thus, cannot be optimal.

4The interference caused to X due to transmissions by S can also be
accounted for in our model as follows. In the per slot constraint [8], the
average interference in slot 1 due to transmissions by S and that in slot 2
due to transmissions by the selected relay β are considered separately.
Here, EsEhSX

[|hSX |2] ≤ Iavg and Eh[Eβ |hβX |2] ≤ Iavg . The above

formulation then requires Es ≤ Iavg
EhSX

[|hSX |2] . In the slot-averaged con-

straint, the average interference resulting from both slots is constrained,
i.e., (EsEhSX

[|hSX |2] + Eh[Eβ |hβX |2])/2 ≤ I′avg. This is equivalent to
Eh[Eβ |hβX |2] ≤ Iavg , where Iavg = 2I′avg − EsEhSX

[|hSX |2].
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The optimal RS rule for our model is as follows.
Result 1: The selected relay β∗ = φ∗(h), where φ∗ is an

optimal rule, is given as follows:

β∗ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
argmaxi∈{1,...,L}{γi}, Iun ≤ Iavg,

argmini∈{0,...,L}

{
1
π

mπ∫
0

MγSD

(
q

sin2 θ

)
e−

qγi
sin2 θ dθ

+λEi|hiX |2
}
, Iun > Iavg,

(11)

where Ei = 0, for i = 0, and Ei = Er, for 1 ≤ i ≤ L. Here,
λ = 0 when Iun ≤ Iavg, and is a strictly positive constant when
Iun > Iavg. It is chosen such that the average interference
constraint is satisfied with equality, and such a choice exists.

Proof: The proof is relegated to Appendix A. �
The constant λ is computed numerically, as is typical in

several constrained optimization problems in wireless commu-
nications [21]. It is a function of the mean channel power gains
and the RS rule, and it needs to be computed only once. In
general, the smaller the value of Iavg, the larger the value of λ.
We, therefore, treat λ as a system parameter henceforth.

A. Two Simpler Insightful Variants

While the above RS rule is optimal, its single integral form
can be difficult to implement as it entails numerical integration.
We now derive two simpler and insightful variants, called the
IOA and linear rules, by simplifying (11). As we shall see in
Section V, the performance of the IOA rule closely matches
that of the optimal rule and is better than the linear rule. Both
outperform several existing RS rules.

1) IOA Rule: Applying the Chernoff upper bound to
SEP
(
|hSβ |2, |hβD|2

)
in (8) and then upper bounding further

using the inequality e−x ≤ 1/(1 + x), for x ≥ 0, we get

SEP
(
|hSβ |2, |hβD|2

)
≤ mMγSD

(q)e−qγβ ≤ mMγSD
(q)

1 + qγβ
.

(12)

Using this bound in (11), we get the equivalent rule

β =

{
argmaxi∈{1,...,L}{γi}, Iun ≤ Iavg,

argmini∈{0,...,L}

{
1

1+qγi
+ λEi|hiX |2

}
, Iun > Iavg.

(13)

We call it the IOA rule because its first term 1/(1 + qγi) is
the inverse of an affine function of γi.

2) Linear Rule: Another variant of the optimal RS rule can
be obtained from (12) by using the approximation e−qγi ≈ 1−
qγi, which is accurate for small values of qγi. We get

β =

{
argmaxi∈{1,...,L}{γi}, Iun ≤ Iavg,

argmaxi∈{0,...,L}
{
γi − λEi|hiX |2

}
, Iun > Iavg.

(14)

In both these rules, the constant λ, as before, is strictly
positive when Iun > Iavg, and is chosen such that the average
interference constraint is satisfied with equality. When Iun ≤

Iavg, λ = 0. Therefore, all the three rules reduce to the conven-
tional interference-unconstrained RS rule.5

B. Optimal RS Rule for Fixed-Gain AF Relaying

While we focus on fixed-power relaying in this paper, we
note that our approach can be extended to fixed-gain AF
relaying as well. For it, using assumptions A1 and A3, the
SINR at D when the relay β is selected can be shown to be

γSD + γβ , where γSD = Es|hSD |2
σ2
0+σ2

2
, γβ =

Es|hSβ |2

σ2
0
+σ2

1

Es|hβD|2

σ2
0
+σ2

2
Es|hβD|2

σ2
0
+σ2

2

+ Es
g2(σ2

0
+σ2

1
)

,

and g is the constant relay gain. When the interference
constraint is inactive, the average interference power at
X due to the selected relay’s transmission is Iun = Esg

2

E
[
|hSβ |2|hβX |2

]
+Epg

2
E
[
|hTβ |2|hβX |2

]
+g2σ2

0E
[
|hβX |2

]
.

The optimal selected fixed-gain relay β∗ can be shown to be

β∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

argmaxi∈{1,...,L}{γi}, Iun ≤ Iavg,

argmini∈{0,...,L}

{
1
π

mπ∫
0

MγSD

(
q

sin2 θ

)
e−

qγi
sin2 θ dθ

+λg2|hiX |2
(
Es|hSi|2 + σ2

0 + Ep|hTi|2
)}

,

Iun > Iavg.
(15)

We do not delve into this further due to space constraints.

IV. SEP ANALYSIS OF IOA AND LINEAR RULES

We now analyze the performance of the IOA and linear
rules. When λ = 0, the problem reduces to the SEP analysis
of the conventional unconstrained RS rule, which has been
extensively studied in the literature, e.g., [7], [16]. We, there-
fore, focus on λ > 0 henceforth. In the analysis that follows,
we assume that the various links are mutually independent
and undergo Rayleigh fading. Thus hSi ∼ CN(0, μSR), hiD ∼
CN(0, μRD), and hiX ∼ CN(0, μRX), for i = 1, 2, . . . , L.
Similarly, hSD ∼ CN(0, μSD) and hSX ∼ CN(0, μSX).

A. IOA Rule

From (8), the fading-averaged SEP is given by
1
π

mπ∫
0

1

1+
qγSD
sin2 θ

Eh

[
e−

qγβ

sin2 θ

]
dθ, where γSD = EsμSD

σ2
0+σ2

2
is

the mean of γSD. After considerable simplification and using
the approximation γβ ≈ γSβγβD

γSβ+γβD
, the SEP can be reduced to

a three integral form with an involved integrand that contains
modified Bessel functions. To gain insights, we derive simpler
SEP bounds using the following inequalities [6]:

1

2
min {γSi, γiD} ≤ γi ≤ min {γSi, γiD}. (16)

Let γui
� min{γSi, γiD} and γli � 1

2 min {γSi, γiD}. It can
be shown that {γui

}Li=1 are i.i.d. exponential RVs with mean
γu = γSiγiD

γSi+γiD
, where γSi =

EsμSR

σ2
0+σ2

1
and γiD = ErμRD

σ2
0+σ2

2
are the

5We note that the linear rule bears a similarity in form to the ad hoc difference
antenna selection (DAS) rule, which was proposed in [31]. However, the system
models and analyses are different.



DAS et al.: RELAY SELECTION RULES FOR INTERFERENCE-CONSTRAINED COGNITIVE AF RELAY NETWORKS 4309

means of γSi and γiD, respectively. Similarly, {γli}Li=1 are i.i.d.
exponential RVs with mean γl = γu/2.

Result 2: Given λ, the SEP of the IOA rule, SEPIOA, is lower
and upper bounded by

SEPIOA ≥ SEP0J(γu) +
2Le

2
qγu

qγu

∞∑
k=0

1

k!

(
1

λErμRX

)k+1

×
[

2∑
i=1

ai(qγSD)bi−1,k(2, γu)

+

N∑
i=3

1{M>2}ai(qγSD)bi,k(2, γu)

]
, (17)

SEPIOA ≤ SEP0J(γl) +
Le

1
2qγl

2qγl

∞∑
k=0

1

k!

(
1

λErμRX

)k+1

×
[

2∑
i=1

ai(qγSD)bi,k

(
1

2
, γl

)

+

N∑
i=3

1{M>2}ai(qγSD)bi−1,k

(
1

2
, γl

)]
,

(18)

where N = 3 for M = 4, N = 4 for M > 4, and θ0 = 0,
θ1=π/4, θ2 = π/2, θ3 = 3π/4, θ4=mπ,SEP0 =

m−
(
1 + 1

qγSD

)− 1
2

[
1
2 + 1

π tan−1

(√
1−q

q+γ−1
SD

)]
, J(γ) =[

e
1
qγ

− 1
λErμRX

qγ

∞∑
k=0

1
k!

(
1

λErμRX

)k
Ek

(
1
qγ

)]L
, ai(x)=

θi−θi−1

π +

1
π

√
x

1+x

[
cot−1

(√
1+x
x tan θi

)
− cot−1

(√
1+x
x tan θi−1

)]
,

and bi,k(v, γ) =
1∫
0

xk−1Ek

(
v
qγ

+v csc2 θi

x

)
e
v csc2 θi− x

λErμRX ×[
1−e

− 1
qγ (

1
x−1)+ e

1
qγ

− x
λErμRX

qγ

∞∑
k=0

xk−1

k!(λErμRX)k
Ek

(
1

qγx

)]L−1
dx.

Proof: The proof is relegated to Appendix B. �
The first terms SEP0J(γu) in (17) and SEP0J(γl) in (18) are

due to the contributions from the direct SD link, and the second
terms in (17) and (18) are due to the contributions from the L
relay links. In (17) and (18), the series in k can be truncated up
to K + 1 terms, where K depends on 1/(λErμRX) � ν. We
have found that K = 5 for ν ≤ 1, K = �ν + 5 for 1 < ν ≤ 5,
and K = �ν + 10, for ν > 5, suffice for the SEP up to 10−4,
where �· is the floor function.

The SEP bounds are in the form of a single integral because
of bi,k(v, γ). Using Gauss-Legendre quadrature [24], it can be
evaluated accurately as a sum of a few terms as follows:

bi,k(v, γ)≈
1

2

W∑
l=1

wlz
k−1
l Ek

(
v
qγ +v csc2 θi

zl

)
e
v csc2 θi−

zl
λErμRX

×
[
1− e

− 1
qγ

(
1
zl

−1
)
+

e
1
qγ

− zl
λErμRX

qγ

×
∞∑

k=0

1

k!

zk−1
l

(λErμRX)k
Ek

(
1

qγzl

)]L−1

,

(19)

where zl � (1 + xl)/2, and xl and wl are W Gauss-Legendre
abscissas and weights, respectively. We have found that W = 6
terms are sufficient for the parameters of interest to accurately
compute the bounds over four orders of magnitude of the SEP.
As we shall see in Section V, the bounds are asymptotically
tight for large SINRs. However, they are relatively loose at low
SINRs. We, therefore, also develop an SEP approximation that
is considerably more accurate and is also asymptotically exact.

1) SEP Approximation: This approximation is based on the
observation that both the upper and lower bounds of γi in (16)
are exponential RVs. This motivates us to approximate γi as an
exponential RV γ′

i whose mean γ′ = E[γ′
i] is equal to E[γi] ≈

E

[
γSiγiD

γSi+γiD

]
. Using the PDF of γSiγiD

γSi+γiD
, which is given in [6],

it can be shown that

E

[
γSiγiD

γSi + γiD

]
=

2
√
p

15
2F1

(
3, 3;

7

2
;
1

2
− σ′

4
√
p

)
+

σ′

10
2F1

(
4, 2;

7

2
;
1

2
− σ′

4
√
p

)
, (20)

where p � EsErμSRμRD

(σ2
0+σ2

1)(σ
2
0+σ2

2)
and σ′ � EsμSR

σ2
0+σ2

1
+ ErμRD

σ2
0+σ2

2
.

Using this approximation, we show in Appendix C that

SEPIOA ≈ SEP0J(γ
′) +

Le
1

qγ′

qγ′

∞∑
k=0

1

k!

(
1

λErμRX

)k+1

×
[

2∑
i=1

ai(qγSD)bi,k(1, γ
′)

+

N∑
i=3

1{M>2}ai(qγSD)bi−1,k(1, γ
′)

]
, (21)

where N, θ0, θ1, θ2, θ3, θ4,SEP0, J(γ
′), and ai(qγSD) are de-

fined in Result 2, and bi,k(1, γ
′) is given by (19).

2) Computing λ: Using the exponential approximation of γi,
the average interference IIOA caused to X due to transmissions
by the selected relay can be shown to be

IIOA ≈ Le
1

qγ′

2λqγ′

∞∑
k=0

1

k!

(
1

λErμRX

)k+1 W∑
l=1

wlz
k
l e

− zl
λErμRX

×
[
Ek

(
1

qγ′zl

)
− Ek+1

(
1

qγ′zl

)]

×
[
1− e

− 1
qγ′
(

1
zl

−1
)
+

e
1

qγ′ −
zl

λErμRX

qγ′

×
∞∑

k=0

1

k!

(
1

λErμRX

)k

zk−1
l Ek

(
1

qγ′zl

)]L−1

.

(22)

We have found that W = 5 terms are sufficient for the param-
eters of interest to accurately compute IIOA. Since λ is the
solution of the equation IIOA = Iavg, it can be easily computed,
e.g., using fsolve in Matlab.



4310 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 8, AUGUST 2015

B. Linear Rule

The SEP bounds for the linear rule are as follows.
Result 3: Given λ, the SEP of the linear rule, SEPlin, is lower

and upper bounded by

SEPlin ≥ SEP0

(
λErμRX

γu + λErμRX

)L

+
2L

γu + 2λErμRX

×
[

2∑
i=1

a′i(1, γu)b
′
i−1(1, γu)

+
N∑
i=3

1{M>2}a
′
i(1, γu)b

′
i(1, γu)

]
, (23)

SEPlin ≤ SEP0

(
λErμRX

γl + λErμRX

)L

+
L

2γl + λErμRX

×
[

2∑
i=1

a′i(4, γl)b
′
i(4, γl)

+

N∑
i=3

1{M>2}a
′
i(4, γl)b

′
i−1(4, γl)

]
, (24)

where N, θ0, θ1, . . . , θ4, ai(x), and SEP0 are defined in Result

2, a′i(v, γ) =
ai(qγSD)

1− 2λErμRXγ

γSD(vγ+2λErμRX )

+
ai

(
2qλErμRXγ

vγ+2λErμRX

)
1− γSD(vγ+2λErμRX)

2λErμRXγ

, and

b′i(v, γ) =
L−1∑
l=0

(
L−1
l

) ( −γ
γ+λErμRX

)l
v

2

(
q

sin2 θi
+

1+ vl
2

γ

) .

Proof: The proof is relegated to Appendix D. �
Notice that the above expressions are in closed-form, unlike

those for the IOA rule. As in the IOA rule, the first term of
the SEP bound for the linear rule is the contribution from the
direct SD link and the second term is the contribution from the
relay links. As before, we present an SEP approximation that is
accurate, yet simpler in form.

1) SEP Approximation: For a given value of λ, the SEP of
the linear rule is approximately given by

SEPlin ≈ SEP0

(
λErμRX

γ′ + λErμRX

)L

+ LSEP0

×

L−1∑
l=0

(
L−1
l

) ( −γ′

γ′+λErμRX

)l (
q + l+1

γ′

)−1

γ′ + λErμRX + qλErμRXγ′ . (25)

The derivation is similar to Appendix C, and is skipped.
2) Computing λ: The average interference I lin caused to X

due to the selected relay’s transmission can be shown to be

I lin =
L

ErμRXγ′

L−1∑
l=0

(
L− 1

l

)(
−γ′

γ′ + λErμRX

)l

×
(

ErμRXγ′

γ′ − lλErμRX

)2 [
γ′

l + 1
− λErμRXγ′

γ′ + λErμRX

×
(
1 +

γ′ − lλErμRX

γ′ + λErμRX

)]
.

(26)

Therefore, λ can be computed numerically as the solution of
the equation I lin = Iavg.

C. Asymptotic SEP Analysis and Insights

To gain further insights, we consider the regime in which
μSD = μSR = μRD = μRX = μ and μ → ∞, with Es, Er,
and λ (> 0) being fixed. The SEP of the IOA rule in this regime
simplifies to

SEPIOA =

[
1− 1

M + 1
2π sin

(
2π
M

)] (
σ2
0 + σ2

2

)
2qEsμ

×
(
1− L

λErμ

)
+ o

(
1

μ3

)
. (27)

The term o(1/μ3) is due to the contributions from the relay
links. The dominant first term is due to the contribution from
the SD link. Since the SEP in this regime falls as 1/μ, the
diversity order is unity. The expression also brings out how the
SEP decreases as λ decreases or L increases or M decreases.

Similarly, in the above regime, the SEP of the linear rule

simplifies to SEPlin =
[1− 1

M + 1
2π sin( 2π

M )](σ2
0+σ2

2)

2qEsμ

(
1+ Es

2λ[Es(σ2
0
+σ2

2
)+Er(σ2

0
+σ2

1
)]

)L +

o(1/μ3). The above insights apply here as well.
It can be shown that in an alternate scaling regime, in which

μSD=μSR = μRD = μ → ∞, μRX = 1/μ → 0, Es, Er, and
λ (> 0) are fixed, a full diversity order of L+ 1 is achieved
by the linear rule and, thus, the optimal rule.

V. NUMERICAL RESULTS AND BENCHMARKING

We now present simulation results to verify our analysis and
gain quantitative insights. For the sake of illustration, we use
Es = Er = E = 10 dB, σ2

0 = 2 dB, σ2
1 = σ2

2 = σ2 = 1.98 dB.
Therefore, σ2

0 + σ2 = 5 dB. Unless mentioned otherwise, we
assume μSD = μSR = μRD = μRX = μ, and vary μ from
−5 to 25 dB. Thus, the average SINR of the various links,
Eμ/(σ2

0 + σ2), varies from 0 to 30 dB.

A. Comparison and Benchmarking of Proposed Rules

Fig. 2 compares the SEPs of the optimal, IOA, and linear
rules as a function of the average SINR Eμ/(σ2

0 + σ2). These
are computed from Monte Carlo simulations, with and without
the use of the assumptions A1 and A3. The primary transmitter
transmits 8PSK symbols. As in Fig. 1, we see that the SEP
curves, with and without these assumptions, are close to each
other, though the linear rule is more sensitive than the optimal
and IOA rules to these assumptions.

As a reference, the SEPs of the conventional non-cognitive
relay network (i.e., Iavg = ∞) and a non-cooperative network
that uses only the direct SD link (i.e., Iavg = 0) are shown.
When Eμ/(σ2

0 + σ2) ≤ 10 dB, the network is not interference-
constrained. Hence, the SEPs of all the three rules are the
same as that of the unconstrained rule. When Eμ/(σ2

0 + σ2) >
10 dB, the network is interference-constrained and the perfor-
mances of the three rules differ. The optimal rule has the lowest
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Fig. 2. Comparison of the SEPs of the optimal, IOA, linear, quotient, and max-
min rules (QPSK, L = 4, and Iavg = 15 dB).

SEP. The SEP of the IOA rule is very close to the optimal rule,
while that of the linear rule is marginally worse. Notice that
the SEPs of all the three rules increase when Eμ/(σ2

0 + σ2) in-
creases from 14 dB to 19 dB. This is because the relay transmit
power is fixed. Thus, when a relay transmits, its interference
to X increases as μ increases. Consequently, the interference
constraint forces all the relays to be shut down more often. As a
result, the communication occurs more often through the direct
SD link only, which increases the SEP compared to the situation
when a relay is selected to aid the direct transmission. This also
explains why at high SINRs (> 24 dB), the SEPs of all the three
rules approach that using the direct SD link only. The significant
reduction in the SEP compared to the direct link at low-to-mid
SINRs shows the advantage of using relays in CR. In general,
the larger the ratio Iavg/Iun, the more the reduction.

The figure also plots the SEPs of the aforementioned max-
min rule [13] and quotient rule [14], which have been adapted
to our model with the interference threshold set as Iavg. To
ensure a fair comparison, the SNR threshold used in [14] is
determined numerically to minimize the SEP. We see that all
the three proposed rules outperform the two benchmark rules
for the entire range of average SINRs.

B. Performance Analysis of Proposed Rules

Henceforth, we will focus on the interference-constrained
regime and show results using A1 and A3.

1) IOA rule: Fig. 3 plots the SEP from simulations, its
bounds in (17) and (18), and its approximation in (21) as a func-
tion of λ. When λ = 0, the system is interference-unconstrained
and the SEP is the lowest. As λ increases, the SEP increases due
to a tighter interference constraint, which forces all the relays to
be shut down more often and communication occurs only over
the SD link for the most of the part. Notice that the SEP bounds
are relatively loose at lower values of λ but become tighter as λ
increases. The SEP approximation is tight for all λ. Further, as
L increases, the SEP decreases, which is intuitive.

Fig. 4 plots the SEP from simulations, its upper and lower
bounds, and its approximation as a function of the average

Fig. 3. Effect of λ on SEP of the IOA rule: SEP as a function of λ for two
different values of L (QPSK and average SINR of 15 dB).

Fig. 4. IOA rule: SEP as a function of average SINR for different num-
ber of relays (QPSK, Iavg = 15 dB, μSD = μRX = μ, μSR = 0.75μ, and
μRD = 1.25μ).

SINR for different values of L. As L increases, the SEP
decreases. While the SEP bounds are relatively loose at lower
SINRs, they are asymptotically tight. Further, the SEP approx-
imation is within 0.6 dB of the SEP from simulations even at
lower SINRs, and is asymptotically exact. As Eμ/(σ2

0 + σ2)
increases, the SEP initially decreases but then it eventually
increases. We refer the reader to the explanation of Fig. 2 for
a detailed explanation of this.

We now study the case when the relay transmit power is
also optimized. To ensure a meaningful comparison, the relay
transmit power Er is not allowed to exceed a maximum value
Emax

r . Fig. 5 plots the SEP of the IOA rule from simulations
as a function of Emax

r for two values of Iavg and μ = 10 dB.
Results when Er is always equal to Emax

r and when it is opti-
mized are shown. Consider, for example, Iavg = 10 dB. When
Emax

r < Iavg/μ (= 0 dB), the interference constraint is not
active and the SEP monotonically decreases as Emax

r increases.
When 0 dB ≤ Emax

r ≤ 4 dB, λ is positive but small. As a result,
the SEP decreases as Emax

r increases. The optimal relay power
is Emax

r for Emax
r < 4 dB. When Emax

r ≥ 4 dB, the optimal
relay power is 4 dB, and this yields a flat SEP curve. Instead, if
the relay power is always set to Emax

r , then as Emax
r increases,

the relay interference to X increases. Consequently, the SEP
increases and approaches that of using the non-cooperative
network due to the same reason as in Fig. 2. The trends are
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Fig. 5. IOA rule: SEP as a function of maximum relay power and Iavg , with
and without optimizing Er (QPSK, Es = 10 dB, L = 4, and μ = 10 dB).

Fig. 6. Linear rule: SEP as a function of average SINR for different constel-
lation sizes (L = 4, Iavg = 15 dB, and Es = Er = E = 10 dB).

similar for Iavg = 20 dB except that the SEP is lower and the
interference constraint is active when Emax

r ≥ 10 dB. Note that
the term fixed-power relaying is still appropriate because the
relay transmits with the same fixed power for different channel
realizations of the SR, RD, and RX links.

2) Linear Rule: Fig. 6 plots the SEP of the linear rule
from simulations, its bounds in (23) and (24), and the SEP
approximation in (25) as a function of the average SINR for two
different constellation sizes M . As expected, the SEP increases
as M increases. Notice that the SEP approximation is within
0.5 dB of the SEP from simulations even at low SINRs, where
the bounds are loose. At high SINRs, the bounds and the
approximation are all tight. The other trends are similar to the
IOA rule, and are not repeated here.

VI. CONCLUSION

We proposed three novel RS rules for an average
interference-constrained CR network that uses practically ap-
pealing fixed-power AF relays. We first derived the SEP-
optimal RS rule, which turned out to be non-linear in form,
and was different from the RS rules available in the literature.
The IOA and linear rules were simpler, low implementation
complexity variants of the optimal rule. The performance of the
IOA rule was very close to that of the optimal rule, while the

more tractable linear rule had a marginally worse performance.
We saw that relay selection was beneficial for underlay CR
for low-to-mid SINR values. An interesting avenue for future
work is to develop corresponding optimal RS rules for other
cooperative relaying protocols.

APPENDIX

A. Proof of Result 1

When Iun ≤ Iavg: The unconstrained rule in (10) is feasible.
Since it yields the lowest SEP, it is also the optimal rule.

When Iun > Iavg: The set of all feasible selection rules, Z ,
is a non-empty set because a selection rule in which no relay
transmits causes zero relay interference to X and is feasible.
Let φ ∈ Z be a feasible rule. For a constant λ > 0, define an
auxiliary function Lφ(λ) associated with φ as

Lφ(λ) � Eh

[
SEP
(
|hSβ |2, |hβD|2

)
+ λEβ |hβX |2

]
. (28)

Note that Lφ(λ) is a function of φ and λ. Further, define a
new rule φ∗ in terms of the relay β∗ it selects as follows:

β∗ = argmin
i∈{0,...,L}

{
SEP
(
|hSi|2, |hiD|2

)
+ λEi|hiX |2

}
, (29)

where λ is chosen such that Eh[Eβ∗ |hβ∗X |2] = Iavg.6 Thus, φ∗

is a feasible rule.
We now prove that φ∗ is the derived optimal RS rule. From

(29), it follows that Lφ∗(λ) ≤ Lφ(λ). Therefore,

Eh

[
SEP
(
|hSβ∗ |2, |hβ∗D|2

)]
≤ Eh

[
SEP
(
|hSβ |2, |hβD|2

)]
+λ
(
Eh

[
Eβ |hβX |2

]
−Iavg

)
.

(30)

Since φ is a feasible rule, Eh[Eβ |hβX |2] ≤ Iavg. Thus,

Eh

[
SEP
(
|hSβ∗ |2, |hβ∗D|2

)]
≤ Eh

[
SEP
(
|hSβ |2, |hβD|2

)]
.

(31)

Hence, φ∗ yields the lowest average SEP among all feasible
rules. It is, therefore, optimal.

B. Proof of Result 2

First, we derive the SEP lower bound. The SEP, Pr(Err|
hSD,h), conditioned on hSD,h can be written as

Pr(Err|hSD,h) = Pr(β = 0,Err|hSD,h)

+
L∑

i=1

Pr(β = i,Err|hSD,h). (32)

Averaging over hSD,h and using the chain rule, we get

SEP = EhSD,h [Pr(Err|hSD,h)] = T1 + LT2, (33)

6Such a unique choice of λ exists can be proved using the intermediate
value theorem by observing that 0 ≤ Iavg < Iun, and proving that the average
interference is a continuous and monotonically decreasing function of λ ≥ 0.
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where T1=EhSD,h[Pr(β=0|hSD,h) Pr(Err|β = 0, hSD,h)]
and T2 = EhSD,h[Pr(β = 1|hSD,h) Pr(Err|β = 1, hSD,h)].
The factor L arises because the L relays are statistically
identical.

1) Evaluating T1: As Pr(β = 0|hSD,h) is function of h
only, and Pr(Err|β = 0,h) is a function of hSD only, we get

T1 = Pr(β = 0)EhSD

⎡⎣ 1
π

mπ∫
0

e−
qγSD
sin2 θ dθ

⎤⎦=Pr(β = 0)SEP0.

(34)

Here, SEP0 = 1
π

mπ∫
0

(
1 + qγSD

sin2 θ

)−1

dθ, and is given in closed-

form in the result statement.
Let yi � 1/(1 + qγi) and gi � Er|hiX |2, 1 ≤ i ≤ L. Then,

{gi}Li=1 are i.i.d. exponential RVs with mean ErμRX , and
{yi}Li=1 are also i.i.d. RVs. Therefore, from (13), we get

Pr(β=0)=Pr(y1+λg1>1, y2 + λg2>1, . . . , yL+λgL> 1),

= [Pr (y1 + λg1 > 1)]L . (35)

Let yli � 1/(1 + qγui
), 1 ≤ i ≤ L. Then {yli}Li=1 are

i.i.d. RVs, whose PDF can be shown to be fyli
(y) =

1
qγuy

2 e
− 1

qγu
( 1
y−1)

, 0 ≤ y ≤ 1. Since yli ≤ yi, (35) implies that

Pr(β = 0) ≥ [Pr(yl1 + λg1 > 1)]L. Substituting the PDFs of
g1 and yl1 , integrating over g1, and using t = 1/yl1 , we get

Pr(β = 0) ≥

⎛⎝e
1

qγu
− 1

λErμRX

qγu

∞∫
1

e
1

λErμRXt−
t

qγu dt

⎞⎠L

.

(36)

Expanding e
1

λErμRXt as
∞∑

k=0

1
k! (

1
λErμRXt )

k, interchanging the

order of integration and summation using the dominated con-
vergence theorem (DCT) [32], and substituting (36) into (34)
yields the first term of the SEP lower bound in (17).

2) Evaluating T2: Since Pr(β = 1|hSD,h) is only a func-
tion of h, we get

T2 = EhSD,h

⎡⎣Pr(β = 1|h) 1
π

mπ∫
0

e−
q(γSD+γ1)

sin2 θ dθ

⎤⎦ . (37)

Let y � [y1, y2, . . . , yL] and g � [g1, g2, . . . , gL]. Interchang-
ing the order of the finite integral and expectation, averaging
over hSD, and from the law of total expectation, we get

T2 =

mπ∫
0

Ey1,g1

[
e
−
(

1
y1

−1
)
csc2 θ

Pr(β = 1|y1, g1)
]

π
(
1 + qγSD

sin2 θ

) dθ. (38)

Now, the conditional probability that Relay 1 is selected is

Pr(β = 1|y1, g1) = Pr (1 > y1 + λg1, y2 + λg2 > y1 + λg1,

. . . , yL + λgL > y1 + λg1|y1, g1) ,

=[1−Fy2+λg2 (y1 + λg1)]
L−1 1{y1+λg1<1}.

Let yui
� 1/(1 + qγli), 1 ≤ i ≤ L. Clearly, yui

≥ yi. Since
the CDF is a monotonically non-decreasing function, we get

Pr(β=1|y1, g1)≥
[
1−Fyl2

+λg2 (yu1
+λg1)

]L−1
1{yu1

+λg1<1}.
(39)

Substituting the PDFs of g2 and yl2 , and simplifying further,

Fyl2
+λg2(yu1

+ λg1) = e
− 1−(yu1

+λg1)

qγu(yu1
+λg1) − e

1
qγu

− yu1
+λg1

λErμRX

qγu(yu1
+ λg1)

×
∞∑

k=0

1

k!

(
yu1

+ λg1
λErμRX

)k

Ek

(
1

qγu(yu1
+ λg1)

)
. (40)

From (16), it can be shown that yu1
= 2yl1/(yl1 + 1). Sub-

stituting (40) into (39) and simplifying further, we get the
following lower bound from (38):

T2 ≥ 2e
1

qγu

πλErμRXqγu

mπ∫
0

1∫
0

∞∫
1
x

κ(x)L−1

1 + qγSD

sin2 θ

e
−
(

x
λErμRX

−csc2 θ
)

× e
1

λErμRXt e
−(2t−1)

(
csc2 θ+ 1

qγu

)
dt dx dθ, (41)

where κ(x)=1−e
− 1

qγu
( 1

x−1)+ e
1

qγu
− x

λErμRX

qγu

∞∑
k=0

1
k!(λErμRX)k

× xk−1Ek

(
1

qγux

)
. As before, expanding e

1
λErμRXt in (41)

as
∞∑

k=0

1
k!

(
1

λErμRXt

)k
, interchanging the order of summation

and integral over t using DCT, integrating over t, and, finally,
interchanging the order of summation and finite integrals over
x and θ, we get

T2 ≥ 2e
2

qγu

πqγu

∞∑
k=0

1

k!

(
1

λErμRX

)k+1
mπ∫
0

1∫
0

Ek

(
2 csc2 θ+ 2

qγu

x

)

× xk−1κ(x)L−1e
−
(

x
λErμRX

−2 csc2 θ
)

1 + qγSD

sin2 θ

dx dθ. (42)

The double integral above can be lower bounded by par-
titioning the region of integration over θ into sub-intervals
[θ0, θ1], . . . , [θ3, θ4], where θ0 = 0, θ1 = π/4, θ2 = π/2, θ3 =
3π/4, and θ4 = mπ. In each sub-interval [θi−1, θi], we replace

θ in the term e2 csc
2 θEk

(
2 csc2 θ+ 2

qγu

x

)
in (42) by θi−1 for

1 ≤ i ≤ 2, and by θi for 3 ≤ i ≤ 4, to get a lower bound, and

finally integrate
(
1 + qγSD

sin2 θ

)−1

over θ. This yields the second

term of the SEP lower bound in (17).
The derivation of the SEP upper bound is similar except that

γu is replaced by γl = γu/2.

C. Derivation of SEP Approximation for IOA Rule

Let y′i � 1/(1 + qγ′
i), 1 ≤ i ≤ L. Clearly, {y′i}Li=1 are i.i.d.

RVs. Their PDF can be shown to be fy′
i
(y) = e

− 1
qγ′ (

1
y−1)

/

(qγ′y2), for 0 ≤ y ≤ 1.
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The SEP of the IOA rule is then approximately equal to

SEPIOA ≈ T̃1 + LT̃2, (43)

where T̃1 = SEP0[Pr(y
′
1 + λg1 > 1)]L and T̃2 =

1
π

mπ∫
0

1

1+
qγSD
sin2 θ

Ey′
1,g1

[
e
−( 1

y′
1

−1) csc2 θ
Pr(β = 1|y′1, g1)

]
dθ.

1) Evaluating T̃1: Substituting the PDFs of g1 and y′1 in the
expression for T̃1, integrating over g1, and using t = 1/y′1,

T̃1 = SEP0

⎡⎣ 1

qγ′ e
1

qγ′ − 1
λErμRX

∞∫
1

e
1

λErμRXt−
t

qγ′ dt

⎤⎦L . (44)

As before, expanding e
1

λErμRXt in (44) and interchanging the
order of integration and summation yields the first term in (21).

2) Evaluating T̃2: As in Appendix B, Pr(β = 1|y′1, g1) =[
1− Fy′

2+λg2(y
′
1 + λg1)

]L−1
1{y′

1+λg1<1}. Substituting
the PDFs of g2 and y′2, and simplifying further, we get

Fy′
2+λg2(y

′
1 + λg1) = e

−
1−(y′

1
+λg1)

qγ′(y′
1
+λg1) − e

1
qγ′ −

(y′
1
+λg1)

λErμRX

qγ′(y′
1+λg1)

×
∞∑

k=0

1
k!

(
y′
1+λg1

λErμRX

)k
Ek

(
1

qγ′(y′
1+λg1)

)
. Substituting this into

Pr(β = 1|y′1, g1) and simplifying further, T̃2 is given by

T̃2 =
e

1
qγ′

πλErμRXqγ′

mπ∫
0

1∫
0

∞∫
1
x

ζ(x)L−1

1 + qγSD

sin2 θ

e
−
(

x
λErμRX

−csc2 θ
)

× e
1

λErμRXt e
−t
(
csc2 θ+ 1

qγ′
)
dtdxdθ, (45)

where ζ(x)=1−e
− 1

qγ′ ( 1
x−1)+ e

1
qγ′ − x

λErμRX

qγ′

∞∑
k=0

1
k!(λErμRX)k

× xk−1Ek

(
1

qγ′x

)
. Expanding e

1
λErμRXt in (45), interchanging

the order of summation and integral over t, integrating over t,
and simplifying further yields

T̃2 =
e

1
qγ′

πqγ′

∞∑
k=0

1

k!

(
1

λErμRX

)k+1
mπ∫
0

1∫
0

Ek

(
csc2 θ + 1

qγ′

x

)

× xk−1ζ(x)L−1e
−
(

x
λErμRX

−csc2 θ
)

1 + qγSD

sin2 θ

dxdθ. (46)

As in Appendix B, we integrate θ over sub-intervals
[θ0, θ1], . . . , [θ3, θ4], after replacing θ by θi for 1 ≤ i ≤ 2, and

by θi−1 for 3 ≤ i ≤ 4, in the term ecsc
2 θEk

(
csc2 θ+ 1

qγ′

x

)
in

(46). This yields the second term in (21).

D. Proof of Result 3

We first derive the lower bound of the SEP. As before, the
SEP is equal to T ′

1 + LT ′
2, where T ′

1 = SEP0 Pr(β = 0) and

T ′
2 = 1

π

mπ∫
0

1

1+
qγSD
sin2 θ

Eh

[
e−

qγ1
sin2 θ Pr(β = 1|h)

]
dθ.

1) Evaluating T ′
1: From the linear rule in (14), we get

T ′
1=SEP0 [Pr(γ1−λg1<0)]L≥SEP0 [Pr(γu1

− λg1 < 0)]L .

Substituting the PDFs of γu1
and g1 in the above inequality,

we get the first term of the SEP lower bound in (23).
2) Evaluating T ′

2: Using the law of total expectation,

T ′
2 =

1

π

mπ∫
0

1

1 + qγSD

sin2 θ

Eγ1,g1

[
e−

qγ1
sin2 θ Pr(β = 1|γ1, g1)

]
dθ.

(47)

Now,

Pr(β = 1|γ1, g1) = [Fγ2−λg2(γ1 − λg1)]
L−1 1{γ1−λg1>0},

≥
[
Fγu2

−λg2(γl1 − λg1)
]L−1

1{γl1
−λg1>0}.

Since γl1 = γu1
/2, it can be shown that Pr(β = 1|γ1, g1) ≥⎛⎜⎝1− γue

−
(

γu1
2

−λg1)
γu

γu+λErμRX

⎞⎟⎠
L−1

1{ γu1
2 −λg1>0}. Substituting this

inequality into (47) and using γu1
≥ γ1, we get

T ′
2 ≥ 1

πErμRXγu

mπ∫
0

∞∫
0

γu1
2λ∫
0

⎡⎢⎣1− γue
− (

γu1
2

−λg1)
γu

γu + λErμRX

⎤⎥⎦
L−1

× e
−
( qγu1

sin2 θ
+

g1
ErμRX

+
γu1
γu

)
1 + qγSD

sin2 θ

dg1dγu1
dθ. (48)

Substituting γu1
/2− λg1 = x in (48), integrating over g1,

and integrating θ over sub-intervals [θ0, θ1], . . . , [θ3, θ4] yields
the second term of the SEP lower bound in (23).

The derivation of the upper bound is along similar lines.
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