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Abstract—Opportunistic selection is a key technique to im-
prove the performance of wireless systems. In it, one among the
available users is selected on the basis of their channel gains or
local parameters such as battery energy state. Formally, each user
possesses a real-valued metric that only it knows, and the goal is
to select the best user, which has the highest metric. The splitting
algorithm is a popular, fast, and scalable algorithm to implement
opportunistic selection; it is distributed and guarantees selection
of the best user. We show that this algorithm, which has thus
far been designed assuming that the metrics are independent and
identically distributed, is no longer scalable when the metrics are
correlated. We then propose a novel correlation-aware splitting
algorithm (CASA) and show how it can be applied to practically
motivated probability distributions and correlation models. We
present computationally feasible techniques for pre-computing
the thresholds that CASA specifies, thereby ensuring that CASA
can be implemented in practice. We benchmark the performance
of CASA with the conventional algorithm, and show that it
reduces the average selection time significantly as the number
of users or the correlation among them increases.

Index Terms—Opportunistic selection, splitting algorithm, cor-
relation, multiple access protocols.

I. INTRODUCTION

Opportunistic selection is a key technique that exploits spatial
or multi-user diversity to improve the performance of many
different wireless systems [1]–[8]. In it, one user is selected
from a set of available users based on their instantaneous
channel conditions, measurements, or battery energy states.
For example, in opportunistic scheduling in cellular systems,
the base station selects or schedules users based on their
instantaneous channel conditions for downlink transmission [1,
Chap. 14]. A relay-aided cooperative communication system
exploits spatial diversity by opportunistically selecting one
relay from among a set of geographically separated relays
based on their instantaneous channel conditions to forward
data from a source to a destination [2], [3]. In ad hoc wireless
networks, opportunistic routing schemes select a group of
next-hop forwarders dynamically at each hop based on their
instantaneous link qualities [4], [5]. In wireless sensor networks
(WSNs), selecting the sensor that transmits based on its
measurement or battery energy state increases the network
lifetime [6]–[10].
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In all the above systems, the process of selection can be
formally stated as follows. Each user possesses a real-valued
metric that quantifies how useful the user would be if selected.
The best user is defined as the one with the highest metric,
and is the one that is selected. For example, in opportunistic
scheduling, the metric of a user is its downlink signal-to-noise
ratio (SNR) [1, Chap. 14]. Fairness can also be incorporated in
this framework by suitably defining the metric [11]. In amplify-
and-forward cooperative relaying, the metric of a relay is the
harmonic mean of its source-relay (SR) and relay-destination
(RD) channel power gains [2]. In WSNs, the metric of a sensor
is its measurement, remaining battery energy, or channel gain
to the fusion node [6]–[9].

While opportunistic selection is appealing, a key challenge
in it is that the users are geographically separated from each
other, and the metric of a user is known only to it. Hence, a
selection algorithm to discover the best user, which no user
knows a priori, is essential. A simple and popular example of a
selection algorithm is polling, in which a controller sequentially
receives the metric from each user and then selects the best
one. However, polling is not scalable since its selection time
increases linearly with the number of users. This also makes
the system sensitive to Doppler spread. Distributed selection
algorithms, such as the timer algorithm [2], [12] and the
splitting algorithm, see [10], [13]–[18] and the references
therein, solve this problem.

The splitting algorithm traces its roots to the first-come
first-serve (FCFS) medium access control (MAC) protocol [19,
Chap. 4]. It is a time-slotted algorithm in which each user
locally decides to transmit in a slot to a coordinating user
called sink if its metric lies between two thresholds. At the end
of each slot, the sink feeds back to all the users whether an
idle (no user transmitted), a success (one user transmitted), or a
collision (multiple users transmitted) event occurred in that slot.
On receiving an idle or a collision feedback, the thresholds are
updated at each user and the algorithm continues. A success
feedback implies that the best user has been selected; hence,
the algorithm terminates. The metrics are assumed to remain
constant over the time slots required to select the best user.

Two properties of the splitting algorithm make it stand
out. First, it is guaranteed to select the best user, unlike the
timer algorithm. Second, it is remarkably fast and scalable
as it can select the best user in 2.467 slots, on average,
even when the number of users tends to infinity [14]. The
average selection time is an important performance measure
of a selection algorithm because reducing it implies that more
time is available for data transmission and the system is less
sensitive to Doppler spread. We focus on this algorithm in this
paper.
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The rules used to update the thresholds are key to ensuring
the splitting algorithm’s excellent performance. In [13], [14],
they depend on the phase the algorithm operates in. The
algorithm begins with a pre-collision phase and stays in it until
a collision occurs, in which case it switches to a post-collision
phase. The thresholds are updated at each user depending on the
feedback of the previous slot and the phase. In the pre-collision
phase, both thresholds are lowered so that one user, on average,
transmits in the next slot. Whereas, in the post-collision phase,
they are updated so that, on average, half of the users involved
in the last collision transmit. The threshold-update rules in
the most-informative-first-serve splitting algorithm proposed
in [10] for decentralized detection in WSNs exploit, in addition,
the statistical information of the sensor data.

A critical and common assumption that has been made in the
design of the conventional splitting algorithm in [13], [14], [19]
is that the metrics are independent and identically distributed
(i.i.d.). We shall, therefore, refer to the above algorithm as
the i.i.d. based splitting algorithm (IIDSA). Unfortunately, this
i.i.d. assumption is not valid in several practical systems and
scenarios of interest, as we discuss below.

Practical scenarios with correlated metrics: In a WSN, the
metric of a sensor node can be the observation itself or some
function of it. For example, in [7], [8], the metric of a node
is the absolute value of its log-likelihood ratio (LLR), which
is a function of the observation. The observations recorded
by the sensors, such as the temperature or any other physical
phenomenon, can be correlated [9], [20].

In a cooperative relay system, the metrics of the relays are
their SR or RD SNRs, which are exponential random variables
(RVs) due to Rayleigh fading. The SR (and RD) SNRs can be
correlated if the relays are relatively close to each other, as can
happen in a relay cluster, or due to common scatterers [21].
In [22], [23], the metrics are the instantaneous SNRs of the
channels, and are assumed to be equally correlated [24].

Another example is lognormal shadowing in cellular systems,
indoor WLANs [25], and other multi-hop networks [26], [27].
Here, the metric of a user is its SNR, which is proportional to
the shadowing. The shadowing of the links of different users
can be correlated since some obstructions are common across
users [28, Chap. 20]. The correlation coefficient between the
SNRs can be as high as 0.95 [25].

A. Contributions

We make the following contributions in this paper:
1. Performance of IIDSA: In the presence of correlation, we

show that IIDSA performs poorly and is no longer as scalable.
Specifically, its average selection time increases substantially
as the correlation and the number of users increase. Intuitively,
the reason behind this is that the average number of users that
are involved in a collision increases as the correlation among
the users increases. This leads to more slots being required to
select the best user in the post-collision phase.

2. Redesigned splitting algorithm: We propose a novel
correlation-aware splitting algorithm (CASA) for selecting the
best user when the metrics are correlated and non-identical.
While correlation has been considered previously in the design

of MAC protocols [9], to the best of our knowledge, CASA
is the first splitting algorithm designed for correlated metrics.
We propose a new and common design rule that specifies the
thresholds in each slot as solutions of equations involving the
joint cumulative distribution function (CDF) of the metrics.
This captures their non-identical behavior as well as correlation.
As per this rule, the thresholds are chosen in both pre-collision
and post-collision phases such that q users, on average, transmit
in each slot. Here, q is a parameter that we shall optimize.1

We shall see that computing the thresholds in CASA requires a
more sophisticated approach than for the i.i.d. case. However,
the thresholds can be pre-computed just once and stored in the
users when the system commences operation.

3. Instantiation of CASA using computationally efficient
approaches: We show how CASA can be applied to the
following two probability distribution models for the metrics:
(i) exponential RVs with a generalized correlation structure, in
which the correlation coefficient between any two RVs is given
by ρkj = λ2

kλ
2
j , for k 6= j [29]. This includes as a special case

the constant correlation model [24], in which any two metrics
have a correlation coefficient ρ; and (ii) lognormal RVs with
an arbitrary covariance matrix. For both models, we discuss
computationally efficient methods to evaluate the joint CDFs
of the metrics and, therefore, the thresholds. We also propose
a novel hybrid approach that reduces the computational and
storage burden further by leveraging the simplicity of IIDSA
once the algorithm has run for sufficiently many slots.

4. Analysis of selection time and performance benchmarking:
We derive an expression for the CDF of the time taken in slots
to select the best user by CASA. From this, performance
measures, such as mean and variance of the selection time, can
be directly computed. Our benchmarking results show that in
the presence of correlation, the average selection time of CASA
is much less than that of IIDSA and the polling algorithm. The
higher the correlation among the metrics, the more significant is
the reduction. We observe that as the number of users increases,
the average selection time of CASA increases at a rate smaller
than that of IIDSA.

B. Organization and Notations

The paper is organized as follows. Section II describes the
general form of the splitting algorithm and the design of CASA.
Section III presents two different models to which CASA
applies, techniques to efficiently pre-compute its thresholds,
and the analysis of its selection time. Section IV presents
the simulation results and performance comparisons, and is
followed by our conclusions in Section V.

Notations: The probability of an event A is denoted by
Pr(A) and the probability of A conditioned on event B is
denoted by Pr(A|B). The indicator function 1{A} equals 1
if A occurs and is 0 otherwise. The expectation of an RV
X is denoted by E[X] and the expectation of X condi-
tioned on A is denoted by E[X|A]. The covariance of two

1Although a similar approach was followed in the pre-collision phase of
IIDSA in [14], our approach is different as we use the same rule in the
post-collision phase as well and also because we account for the correlation
among the metrics.
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Fig. 1. (a) A system consisting of a sink and N users, in which the metric
of user i is Xi; (b) An illustration of how the thresholds are updated in each
slot by the splitting algorithm for N = 5 users. The metric of each user is
indicated by a marker × and the transmission interval in each slot by [—].

RVs Xk and Xj is denoted by cov(Xk, Xj). The notation
X ∼ N (µ, σ2) implies that X is a Gaussian RV with mean
µ and variance σ2. The magnitude of X is denoted by |X|,
and (·)T denotes transpose. The joint CDF of a random vector
X = (X1, . . . , XN ) evaluated at x = (x1, . . . , xN ) is denoted
by FX(x) = Pr(X1 ≤ x1, . . . , XN ≤ xN ).

II. SPLITTING ALGORITHM BASICS AND DESIGN OF CASA
We consider a time-slotted system with N users and a

sink, as shown in Figure 1a. Each user i possesses a real-
valued metric Xi, which is an RV and is known only to
it. For a given realization x1, . . . , xN of the metrics, our
goal is to select the user with the highest metric, which is
argmax1≤i≤N {x1, . . . , xN}. The metrics remain constant over
the time slots taken by the algorithm to select the best user [13],
[14].

A. General Form of Splitting Algorithm and Review of IIDSA

We first formally state the splitting algorithm in a general
form. It uses two functions lower(·) and split(·, ·) to update
the thresholds. We then present the specific forms of lower(·)
and split(·, ·) that IIDSA uses and explain the rationale behind
them. In Section II-B, we use this general form to specify
CASA.

Let the metrics be distributed between L and H . In each slot
k ≥ 1, every user maintains the variables C(k), Hm(k), Hl(k),
and Hh(k), such that L ≤ Hm(k) < Hl(k) < Hh(k) ≤ H .
Here, Hm(k), Hl(k), and Hh(k) are the minimum, lower, and
higher thresholds, respectively. The metric of the best user
is known to lie in (Hm(k), Hh(k)] at the beginning of slot
k. The phase of the algorithm at the beginning of slot k is
given by C(k); it is 0 in the pre-collision phase and is 1 in the
post-collision phase. A user i will transmit to the sink in the

kth slot only if its metric Xi lies in the transmission interval
(Hl(k), Hh(k)]. At the end of slot k, the sink broadcasts a two-
bit feedback f(k) to all the users to communicate one among
the following three outcomes: idle (0) if no user transmitted
in that slot, success (1) if exactly one user transmitted, or
collision (e) if two or more users transmitted and it could not
decode any transmission.

Threshold-update rules: The threshold-update rules are given
in terms of the functions lower(·) and split(·, ·). The variables
in the first slot are initialized to Hm(1) = L, Hh(1) = H ,
Hl(1) = lower(H), and C(1) = 0. Based on the feedback and
the phase of the (k − 1)th slot, every user updates its phase
and thresholds for the kth slot as follows:

1) If f(k−1) = idle and C(k−1) = 0, then set C(k) = 0,
Hh(k) = Hl(k−1), Hm(k) = Hm(k−1), and Hl(k) =
lower(Hl(k − 1)).

2) If f(k − 1) = collision, then set C(k) = 1, Hh(k) =
Hh(k − 1), Hm(k) = Hl(k − 1), and Hl(k) =
split(Hl(k − 1), Hh(k − 1)).

3) If f(k−1) = idle and C(k−1) = 1, then set C(k) = 1,
Hh(k) = Hl(k−1), Hm(k) = Hm(k−1), and Hl(k) =
split(Hm(k − 1), Hl(k − 1)).

4) If f(k − 1) = success, then the best user has been
selected; hence, the algorithm terminates.

Specific forms of lower(·) and split(·, ·) in IIDSA: For i.i.d.
metrics, let the complementary CDF of Xi be denoted by
F̄ (x) = Pr(Xi > x). Then, in IIDSA, lower(·) and split(·, ·)
are defined in terms of F̄ (·) as follows [13]:

lower(h) = F̄−1

(
F̄ (h)

(
1− 1

N

)
+

1

N

)
, (1)

split(l, h) = F̄−1

(
F̄ (l) + F̄ (h)

2

)
. (2)

To understand the rationale behind these definitions, consider
the insightful special case in which the metrics are independent
and uniformly distributed between 0 and 1. Then, (1) and (2)
simplify to lower(h) = h(1 − (1/N)) and split(l, h) = (l +
h)/2.

Since the average number of users that transmit in a slot is
N(Hh(k)−Hl(k)), lower(·) ensures that one user, on average,
transmits in the pre-collision phase. Doing so can be shown
to maximize the probability of success in the next slot. On
the other hand, in the post-collision phase, split(·, ·) ensures
that, on average, half of the users involved in the last collision
transmit [13], [14].

Brief explanation of the threshold-update rules: The algo-
rithm is based on the classical collision model that is widely
used in the MAC literature [19, Chap. 4]. The logic behind
the threshold-update rules above is as follows:

1) If the feedback of the (k − 1)th slot is idle and the
algorithm is in the pre-collision phase (C(k− 1) = 0), it
implies that the metrics of all the users are less than or
equal to Hl(k − 1). Hence, the algorithm continues to
be in the pre-collision phase in the kth slot, i.e., C(k) =
0, and the new higher threshold Hh(k) is updated to
Hl(k − 1). Since the best user is now known to lie in
(Hm(k − 1), Hl(k − 1)] at the beginning of the kth slot,
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Hm(k) is set as Hm(k − 1). The new lower threshold
Hl(k) is given by lower(Hl(k − 1)).

2) Regardless of the phase of the algorithm in the (k− 1)th

slot, if the feedback of the (k−1)th slot is collision, then
the algorithm will be in the post-collision phase in the
kth slot, i.e., C(k) = 1. A collision feedback implies that
the metric of the best user lies in the interval (Hl(k −
1), Hh(k−1)] along with at least one other user’s metric.
Therefore, Hm(k) is updated to Hl(k − 1) and Hh(k)
is set as Hh(k − 1). The interval (Hl(k − 1), Hh(k −
1)], or equivalently (Hm(k), Hh(k)], is split into two
sub-intervals (Hm(k), Hl(k)] and (Hl(k), Hh(k)], and
the upper sub-interval (Hl(k), Hh(k)] is chosen as the
transmission interval for the kth slot. The value of Hl(k)
is given by split(Hl(k − 1), Hh(k − 1)).

3) If the feedback of the (k − 1)th slot is idle and the
algorithm is in the post-collision phase (C(k − 1) = 1),
it implies that the metric of the best user lies in the
interval (Hm(k − 1), Hl(k − 1)] along with at least one
other user’s metric. Thus, Hh(k) is updated to Hl(k−1)
and Hm(k) is set as Hm(k−1). Similar to the above case,
Hl(k) is determined by splitting the interval (Hm(k −
1), Hl(k − 1)], or equivalently (Hm(k), Hh(k)], and its
value is given by split(Hm(k − 1), Hl(k − 1)).

4) If the feedback of the (k − 1)th slot is success, it
implies that exactly one user, which is the best user,
transmitted and is successfully decoded. Hence, the
algorithm terminates.

Figure 1b illustrates how the thresholds are updated by the
splitting algorithm for 5 users. Slot 1 results in an idle outcome
because there are no users whose metrics lie in [Hl(1), Hh(1)).
Therefore, both higher and lower thresholds are lowered. In
slot 2, four users whose metrics lie in [Hl(2), Hh(2)) transmit,
resulting in a collision. Hence, the algorithm switches to the
post-collision phase and this interval is split. In slot 3, an idle
occurs because no user’s metric lies in [Hl(3), Hh(3)). Now,
the interval [Hm(3), Hl(3)) is split. In slot 4, only the best
user transmits and success occurs.

B. Redesign of lower(·) and split(·, ·) in CASA

In order to handle correlated metrics, we propose the
following common design rule for both phases to define
lower(·) and split(·, ·) in CASA.

Design rule: Choose the thresholds such that the expected
number of users that transmit in a slot, conditioned on the
feedback and the phase of the previous slot, is q.

Here, q > 0 is a system parameter, which we shall optimize.
It is analogous to the contention-load parameter discussed
in [14]. However, it was used only in the pre-collision phase
in [14] and only for i.i.d. metrics. Instead, in CASA, we use
it in both phases.

Let n(k) denote the number of users that transmit in the
kth slot. This happens if and only if the metrics of these users
lie in (Hl(k), Hh(k)]. Hence,

n(k) =
N∑
i=1

1{Xi∈(Hl(k),Hh(k)]}. (3)

The design rule can then be mathematically stated as

E [n(k) | f(k − 1), C(k − 1)] = q. (4)

Based on the above rule, we now derive
expressions for lower(·) and split(·, ·) in terms of
the joint CDF FX(·) of the metrics. Let X(i) =
(X1, . . . , Xi−1, Xi+1, . . . , XN ) and FXi,X(i)(a, b, . . . , b) =
Pr(Xi ≤ a,X1 ≤ b, . . . ,Xi−1 ≤ b,Xi+1 ≤ b, . . . ,XN ≤ b) .
Note that X1, . . . , XN need not be identical or independent,
unlike the assumptions in IIDSA.

1) lower(·): Using the above design rule, we have the
following result for lower(·).

Result 1: When f(k − 1) = idle and C(k − 1) = 0, the
lower threshold Hl(k), which is given by lower(Hl(k− 1)), is
the solution of the following equation that is written in terms
of the lower threshold of the (k − 1)th slot:∑N

i=1 FXi,X(i)(Hl(k), Hl(k − 1), . . . ,Hl(k − 1))

FX(Hl(k − 1), . . . ,Hl(k − 1))
= N − q.

(5)
Proof: The proof is relegated to Appendix A.

Setting C(0) = 0, f(0) = idle, and Hl(0) = H ensures that
Hl(1) = lower(H).

2) split(·, ·): The value of Hl(k) is given by split(·, ·) when:
(i) the algorithm is in the post-collision phase in the (k − 1)th

slot and the feedback of the (k − 1)th slot is idle, in which
case it is Hl(k) = split(Hm(k − 1), Hl(k − 1)), or (ii) the
feedback of the (k − 1)th slot is collision, in which case it
is Hl(k) = split(Hl(k − 1), Hh(k − 1)). In both cases, Hl(k)
can be compactly represented as Hl(k) = split(Hm(k), Hh(k))
since Hm(k) and Hh(k) are directly specified in terms of the
thresholds of the (k − 1)th slot, as we saw in Section II-A.
Using the above design rule, we have the following result.

Result 2: When (i) f(k − 1) = idle and C(k − 1) = 1, or
(ii) f(k − 1) = collision, the lower threshold Hl(k), which is
given by split(Hm(k), Hh(k)), is the solution of the following
equation:

Φ1(Hl(k))

Φ2(Hl(k))
= q, (6)

where

Φ1(Hl(k)) = NFX(Hh(k), . . . ,Hh(k))

−
N∑
i=1

FXi,X(i)(Hl(k), Hh(k), . . . ,Hh(k))

−
N∑
i=1

FXi,X(i)(Hh(k), Hm(k), . . . ,Hm(k))

+
N∑
i=1

FXi,X(i)(Hl(k), Hm(k), . . . ,Hm(k)),

(7)

Φ2(Hl(k)) = FX(Hh(k), . . . ,Hh(k))

− FX(Hm(k), . . . ,Hm(k))

−
N∑
i=1

FXi,X(i)(Hh(k), Hm(k), . . . ,Hm(k))

+NFX(Hm(k), . . . ,Hm(k)). (8)
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Proof: The proof is relegated to Appendix B.
The above two results specify Hl(k) as solutions of equations

that are written in terms of the joint CDF FX(·) of the metrics.
Note that these thresholds need not be computed on the fly by
the users in each slot. Instead they can be pre-computed and
broadcast to the users just once when the system commences
operation.

III. IMPLEMENTATION AND ANALYSIS OF CASA

We now consider two practically motivated and theoretically
interesting models for the metrics. We discuss computationally
efficient methods to compute their joint CDFs and, therefore,
the thresholds of CASA. We then propose in Section III-C a
hybrid approach, which reduces the computational burden as
well as the memory storage requirements for executing CASA.

A. Correlated Exponential RVs

In this model, the metric Xk of user k is given by Xk =
|Gk|2, where

Gk = σk

(√
1− λ2

kyk + λky0

)
+
√
−1σk

(√
1− λ2

kzk + λkz0

)
, (9)

λk ∈ (−1, 1) \ {0} and y0, . . . , yN , z0, . . . , zN are i.i.d. zero-
mean Gaussian RVs with variance 1/2 [29]. Then, Gk, for
1 ≤ k ≤ N , is a zero-mean circularly symmetric complex
Gaussian RV with variance σ2

k. It follows that Xk, for 1 ≤
k ≤ N , is an exponential RV with mean σ2

k, and the correlation
coefficient ρkj between Xk and Xj , for k 6= j, is given by
ρkj = λ2

kλ
2
j . This includes as a special case the constant

correlation model [24], for which λ1 = · · · = λN = λ.
Furthermore, the joint CDF FX(x) of X = (X1, . . . , XN )

has the following single-integral form [29]:

FX(x) =

∫ ∞
0

e−t
N∏
k=1

[
1−Q1

(√
t
√
σ2
kλ

2
k

βk
,

√
xk
βk

)]
dt,

(10)
where β2

k = σ2
k(1−λ2

k)/2 and Q1(·, ·) is the first order Marcum
Q-function [30, Chap. 5]. It can be written in an integral-free
form as

FX(x) ≈
n∑
i=1

wi

N∏
k=1

[
1−Q1

(√
ti
√
σ2
kλ

2
k

βk
,

√
xk
βk

)]
, (11)

where ti and wi are the abscissas and weights, respectively,
of the Gauss-Laguerre quadrature method [31, (25.4.45)]. The
error in the approximation decreases to zero as n increases. This
sum can be easily computed numerically since n is typically
small.

We note that a similar approach can be applied even for other
Gaussian-class multi-variate distributions, such as Rayleigh,
Rician, Weibull, and Nakagami-m, which have the above
general correlation structure [29].

B. Correlated Lognormal RVs

In this model, the metric Xk of user k is a lognormal
RV. Hence, Xk = eZk , where Zk ∼ N (µk, σ

2
k). Furthermore,

Z1, . . . , ZN are jointly Gaussian RVs with a covariance matrix
Σ. It can be shown that the mean of Xk is eµk+(1/2)σ2

k and
cov(Xk, Xj) = eµk+µj+(1/2)(σ2

k+σ2
j )(eΣkj − 1), where Σkj

denotes the (k, j)th element of Σ. The correlation coefficient
ρkj between Xk and Xj , for k 6= j, is given by

ρkj =
eΣkj − 1√

(eσ
2
k − 1)(eσ

2
j − 1)

. (12)

The joint CDF FX(x) of X is given by

FX(x) = FZ(ln(x))

=
1√

|Σ|(2π)N

∫ b1

−∞
· · ·
∫ bN

−∞
e−

1
2θ

T Σ−1θdθ, (13)

where bk = ln(xk) − µk, for 1 ≤ k ≤ N , and | · | is the
determinant. To efficiently compute this integral, we use the
randomized quasi-Monte Carlo (QMC) method, which we
summarize below. We refer the reader to [32, Chap. 4] for a
detailed discussion of the steps.

Randomized QMC method: It first performs the following
transformations to convert the integral in (13) into an integral
over a unit hyper-cube.

1) It starts with the transformation y = L−1θ, where
LLT is the Cholesky decomposition of Σ. After this
transformation, (13) becomes

FX(x)

=
1√

(2π)N

∫ b′1

−∞
e−

y2
1
2

∫ b′2

−∞
e−

y2
2
2 · · ·

∫ b′N

−∞
e−

y2
N
2 dy,

(14)

where b′k = (bk −
∑k−1
j=1 lkjyj)/lkk, for 1 ≤ k ≤ N .

2) Next, it employs the transformation wk = Φ(yk)/Φ(b′k),
where Φ(y) = (1/

√
2π)

∫ y
−∞ e−(1/2)θ2dθ. After this

transformation, we get the following integral over a unit
hyper-cube:

FX(x) =

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

f(w)dw, (15)

where f(w) =
∏N
k=1 ek and ek = Φ((bk −∑k−1

j=1 lkjΦ
−1(wjej))/lkk), for 1 ≤ k ≤ N .

3) To improve convergence, f(w) is replaced with (f(w)+
f(1−w))/2 and w with |2w − 1|.2

The N -dimensional integral in (15) is then computed as
follows:

FX(x) ≈ 1

M

M∑
i=1

1

2P

P∑
q=1

f(|2{sq + ui} − 1|)

+ f(1− |2{sq + ui} − 1|), (16)

2In order to speed up convergence, the integration variables in (13) are also
reordered so that the inner integrals have values close to 1 [32, Chap. 4.1.3].
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Fig. 2. Tree-based representation of the splitting algorithm.

where {t} denotes the remainder of each of the elements of
the vector t modulo 1, M is the number of random shifts,
and ui1, . . . , uiN are i.i.d. uniform RVs that are distributed
between 0 and 1. The set of vectors s1, . . . , sP is called a
low-discrepancy sequence. An example of such sequence is
the Kronecker sequence. In it, sq , for 1 ≤ q ≤ P , is given by
sq =

{
q
√

p
}

, where p = (2, 3, 5, . . .) consists of the first N
prime numbers. M is typically between 8 and 12, and is, thus,
small. It is shown in [32, Chap. 4] that the use of the low-
discrepancy sequence results in a convergence rate of O(1/P ),
which is better than the convergence rate of O(1/

√
P ) of

conventional Monte Carlo methods.
We note that the above approach can also be applied to

metrics that are jointly Gaussian RVs, which arise, for example,
in WSNs [20].

C. A Hybrid Approach to Reduce Computational Complexity
and Memory Storage

The number of slots for which the thresholds need to be
pre-computed also affects the computational complexity and
the memory storage requirements of CASA. We propose a
hybrid approach that leverages the simplicity of IIDSA to
address this issue. To describe it, we use an alternate tree-
based representation of the splitting algorithm, which is shown
in Figure 2.

Each level of the tree indicates the slot number k. The root
node is at level 1, its children are at level 2, and so on. Each
node of the tree is associated with a threshold triplet, which
denotes the set of the minimum, lower, and higher thresholds
at the beginning of slot k. The algorithm begins from the root-
node and traverses down the tree depending on the feedback
received at the end of each slot. It chooses the left path (0) in
case of an idle feedback, and the right path (e) in case of a
collision feedback. If it receives a success feedback, then it
terminates. Therefore, this is not shown in the figure.

We define a path s to a node to be the sequence of feedback
events that led to that node. The threshold triplet associated
with a node in level k depends on the path s that led to it,
and is denoted as (Hs

m(k), Hs
l (k), Hs

h(k)). For the root node,
it is denoted as (Hφ

m(1), Hφ
l (1), Hφ

h (1)). Let Sk be the set of
all paths that start from the root-node and end at any node
in level k; there are 2k−1 such paths. For example, S1 = φ,
S2 = {0, e}, S3 = {00, 0e, e0, ee}, and so on. As a result, the
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Fig. 3. Average number of users that collide in each slot if a collision occurs
in that slot using CASA (q = 1).

total number of threshold triplets that need to be pre-computed
and stored up to level U is 2U − 1.

In the hybrid approach that we propose, the threshold
triplets at each node of the tree are pre-computed using the
rules given in Section II-B only up to a particular slot U ,
which we shall refer to as the pre-compute tree depth. The
thresholds for the subsequent slots, which come into play
if no user has been selected until then, are determined as
per IIDSA, and are given in (1) and (2). For example, if
the metrics are exponential RVs as in Section III-A, these
simplify to lower(h) = −γ ln(e−h/γ(1 − (1/N)) + (1/N))
and split(l, h) = −γ ln((e−l/γ + e−h/γ)/2), where γ is the
mean of the exponential RVs. These can be computed easily
by the users themselves, and, therefore, need not be stored in
them a priori.

The above approach is justified due to the following reasons.
First, the average number of users that collide in slot k if a
collision occurs decreases as k increases. To illustrate this,
we consider the case of exponential metrics with a constant
correlation coefficient ρ. Figure 3 plots the average number of
users that collide in each slot if a collision occurs in that slot
using CASA, for different values of ρ and N , when q = 1. To
obtain this plot, 105 realizations of the vector of metrics X
are generated using (9) with σ2

k = 2 and λk = ρ1/4, for all k.
We use n = 8 terms in (11) to compute FX(x).

We observe that if a collision has occurred in a slot, then the
average number of users that collide decreases with each slot.
For example, it decreases from 16.35 in slot 1 to 2.42 in slot
8, for N = 70 and ρ = 0.8. Consequently, if the correlation
is ignored, it makes sense to split the interval of the 8th slot
such that, on average, half of the users that collided previously
transmit in the 9th slot. This is what the function split(·, ·) of
IIDSA does in the post-collision phase.

Second, the probability that the algorithm will be in the pre-
collision phase in slot k decreases as k increases. For example,
for N = 50 and ρ = 0.7, the above simulations show that the
probability that the algorithm is in the pre-collision phase in
the 6th, 7th, and 8th slots is 0.10, 0.06, and 0.04, respectively.
Consequently, replacing lower(·) with that of IIDSA after slot
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8 has a negligible impact. We numerically evaluate the efficacy
of this approach and determine U in Section IV-A.

D. Analysis of Selection Time

The number of slots T taken by CASA to select the best
user is an RV because it is a function of the realizations of the
metrics of the users. We, therefore, derive its CDF below. For
this, we utilize the tree-based representation of the splitting
algorithm that was described in Section III-C.

Result 3: The CDF FT (t) of the selection time T is given
by

FT (t) = Pr(T ≤ t) =
t∑

k=1

∑
s∈Sk

Pr(T = k, s) , (17)

where Pr(T = k, s) is the probability that the best user is
selected in the kth slot after traversing the path s ∈ Sk. It is
given in terms of the joint CDF of the metrics by

Pr(T = k, s) =

N∑
i=1

FXi,X(i)(Hs
h(k), Hs

l (k), . . . ,Hs
l (k))

−NFX(Hs
l (k), . . . ,Hs

l (k))

−
N∑
i=1

FXi,X(i)(Hs
h(k), Hs

m(k), . . . ,Hs
m(k))

+
N∑
i=1

FXi,X(i)(Hs
l (k), Hs

m(k), . . . ,Hs
m(k)).

(18)

Proof: The proof is relegated to Appendix C.
The expression in (18) can be numerically computed easily

using (11) for correlated exponential RVs and the randomized
QMC method in Section III-B for correlated lognormal RVs.
From the CDF, other performance measures, such as the
expectation and variance of the selection time, can be directly
computed. For example, the expected selection time is given
by E [T ] =

∑∞
t=1(1− FT (t)).

IV. SIMULATION RESULTS AND COMPARISONS

We now present Monte Carlo simulation results that are
averaged over 105 realizations of the metrics X. We benchmark
the performance of CASA against IIDSA and the polling
algorithm for the two models considered in Sections III-A
and III-B.

A. Correlated Exponential RVs

We first consider the constant correlation model [24], in
which the correlation coefficient between any two metrics is
equal to ρ. This model helps us study the implications of corre-
lation by varying the parameter ρ. The metrics X1, . . . , XN are
generated as follows. We first generate the RVs G1, . . . , GN as
per (9) with λ1 = · · · = λN = ρ1/4 and σ2

1 = · · · = σ2
N = 2.

Then, Xk = |Gk|2, for 1 ≤ k ≤ N , is an exponential RV with
mean 2 and the correlation coefficient between Xk and Xj ,
for k 6= j, is ρ. We use n = 8 in (11).

Determining the pre-compute tree depth U of the hybrid
approach: Figure 4 plots the average selection time of CASA
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Fig. 4. Average selection time of CASA as a function of the number of users
for different choices of U for exponential RVs with a constant correlation
coefficient ρ (q = 1).

as a function of N for different choices of U and ρ, for q = 1.
For any ρ, U = 0 corresponds to the average selection time
when IIDSA is used. For ρ = 0 (the i.i.d. case), the curves
overlap for all values of U . However, for ρ > 0, the average
selection time decreases as U increases, for all N . This is
because the design of CASA takes correlation into account for
more slots U . For any ρ and N , the curves are close to each
other for U ≥ 8. We, therefore, set U = 8 in our simulations
henceforth. For small ρ (e.g., ρ ≤ 0.5), U = 5 is sufficient.

Figure 4 also benchmarks the performance of CASA with
IIDSA (U = 0) and the polling algorithm. The average selection
time of the polling algorithm increases linearly with N for all
ρ. It performs much worse than both CASA and IIDSA. When
ρ = 0, the average selection times of CASA and IIDSA both
saturate at 2.47 slots even when N tends to infinity. However,
for ρ > 0, the average selection time of CASA is less than that
of IIDSA. For example, when N = 50, the average selection
time of CASA is 21.91% to 62.75% less than that of IIDSA
as ρ increases from 0.3 to 0.9. Similarly, when ρ = 0.9, it
is 21.05% to 75.59% less than that of IIDSA as N increases
from 10 to 100. While the average selection time of CASA
also increases as ρ or N increases, it does so at a smaller rate
than for IIDSA. For example, when ρ = 0.7, as N increases
from 10 to 100, it increases by 3.59 times for IIDSA, but by
only 1.46 times for CASA.

CDF of average selection time: An alternate way to visualize
and compare the performances of the selection algorithms is
to compare the CDF FT (t) of their selection times. Figure 5
compares FT (t) of IIDSA and CASA for different ρ with
N = 20 and q = 1. We observe that the CDF of CASA is to
the left of IIDSA. This implies that the probability that the
best user has been selected by a given slot is greater for CASA.
For example, for N = 20 and ρ = 0.7, FT (7) is 0.932 for
CASA, but only 0.689 for IIDSA. We also observe that the
CDF curves of both algorithms shift downward as ρ increases
from 0 to 0.7. This implies that the number of slots required to
select the best user, on average, increases for both algorithms
as ρ increases. The separation between the CDF curves of the
two algorithms increases as ρ increases, which is consistent
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with the trends observed in Figure 4. Also shown in the figure
are the results from the analytical expression in (17). These
match the simulation results well.

Optimizing q: Next, we optimize the loading parameter q
in order to reduce the average selection time further. Figure 6
plots the average selection time of CASA as a function of q
for N = 20. The results are generated numerically by varying
q from 0.3 to 2.0.

For any ρ and N , we observe that the average selection time
initially decreases as q increases. It reaches a minimum value
and then starts increasing as q is increased further. This is
because when q is small, the algorithm wastes more idle slots
in the pre-collision phase. On the other hand, if q is large (e.g.,
q ≥ 2), the algorithm wastes more slots resolving collisions in
the post-collision phase because many more than two users are
likely to transmit in these slots. The optimal value of q, thus,
lies between 1 and 2, and is determined numerically from the
figure. When ρ = 0.8 and N = 20, the optimal value of q is
1.3. Compared to q = 1, the average selection time is 3.72%
lower. Similarly, for ρ = 0.8 and N = 30, the optimal value of
q is 1.45, for which the average selection time is 9.9% lower
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Fig. 7. Comparison of average selection times of CASA and IIDSA as a
function of the number of users for exponential RVs with arbitrary correlation
(q = 1 and U = 8).

than for q = 1.
Arbitrary correlation model: In order to illustrate the general-

ity of the design of CASA, we now present results for the case
when the correlation coefficients are different for different pairs
of users. To do this, we generate the RVs G1, . . . , GN as per (9)
with σ2

1 = · · · = σ2
N = 2. The values of λk, for 1 ≤ k ≤ N ,

are evenly spaced in the interval [a − (d/2), a + (d/2)] as
follows: λk = a − (d/2) + d(k − 1)/(N − 1), where d < 2
and −(1− (d/2)) < a < (1− (d/2)). Intuitively, the larger the
ratio d/a, the more spread out are the correlation coefficients.
As before, the metric of user k is Xk = |Gk|2.

Figure 7 compares the average selection times of CASA and
IIDSA as a function of N for different values of a and d, for
U = 8 and q = 1. We observe that CASA again outperforms
IIDSA. For example, when a = 0.7 and d = 0.4, the average
selection time of CASA is 7.75% to 40.78% less than that of
IIDSA as N increases from 10 to 100. The average selection
time of CASA increases as a increases, which is similar to the
behavior with respect to ρ in Figure 4.

B. Correlated Lognormal RVs

We first generate the RVs Z1, . . . , ZN , such that Zk ∼
N (0, 1), for 1 ≤ k ≤ N , and the correlation coefficient
between Zk and Zj , for k 6= j, is ln(1 + ρ(e − 1)). The
metric of user k is Xk = eZk . Thus, from (12), any two
metrics have a constant correlation coefficient of ρ [24]. Here,
ρ is a parameter that we vary to study the impact of correlation.
To compute the joint CDF FX(x) using (16), M and P are
chosen as 12 and 500, respectively.

Figure 8 compares the average selection times of CASA
(dashed line), IIDSA (solid line), and the polling algorithm
(dotted line) as a function of N for different values of ρ. As
before, for ρ = 0, the curves of IIDSA and CASA overlap
with each other. However, for ρ > 0, the average selection
time of CASA is less than that of IIDSA, which mirrors the
trends of Figure 4. For example, when N = 50, the average
selection time of CASA is 33.06% to 58.95% less than that of
IIDSA as ρ increases from 0.3 to 0.9. Similarly, for ρ = 0.7,
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it is 27.81% to 68.16% less than that of IIDSA as N increases
from 10 to 70.

C. System-level Throughput Implications

In order to gain a different insight about CASA, we study its
efficacy in implementing relay selection in a cooperative system.
In it, a source broadcasts a message of B bits to a set of N
decode-and-forward (DF) relays for Ts slots, where each slot is
of duration tslot seconds. A relay i decodes the source’s message
only if B ≤ WTstslot log2(1 + (Pshi)/(N0W )), where W is
the transmission bandwidth, Ps is the transmit power, hi is
the SR channel power gain, and N0 is the power spectral
density of noise. This is followed by the relay selection phase
of duration Tr slots, in which CASA is employed to select
one relay. If relay i is selected, it will forward the message
to the destination for Ts slots. The destination will decode
this message only if B ≤WTstslot log2(1 + (Psgi)/(N0W )),
where gi is the RD channel power gain.

In the relay selection phase, only those relays that decode
the source’s message and whose RD channel power gains are
high enough to enable the destination to decode the relay’s
transmission participate in the relay selection phase. Hence,
the metric of relay i in the selection phase is set as [33]

Xi =


gi, if hi ≥ (2

B
WTstslot − 1)N0W

Ps
and

gi ≥ (2
B

WTstslot − 1)N0W
Ps

,

0, otherwise.

(19)

If no relay is selected, an outage occurs. The throughput for
this system is given by

η =
BPr(Tr)

(2Ts + Tr)tslot
, (20)

where Pr(Tr) is the probability that the destination successfully
decodes the source’s message, which is the same as the
probability that CASA selects a relay within Tr slots. Too
small a value for Tr reduces η because Pr(Tr) becomes small.
Too large a value of Tr also reduces η because of its presence
in the denominator in (20). Therefore Tr needs to be optimized.

We use the following parameters in our simulations. The
SR (and RD) channel power gains are exponential RVs with
mean 1 and have a constant correlation coefficient of ρ.
We set B/(WTstslot) = 1 bits/s/Hz, Ts = 40 slots, and
Ps/(N0W ) = 3 dB. For N = 20 and ρ = 0.3, the maximum
normalized throughput η/W with CASA turns out to be
0.40 bits/s/Hz and occurs at Tr = 15 slots. It is greater than
the optimal normalized throughput with IIDSA, which turns
out to be 0.38 bits/s/Hz and occurs at Tr = 20 slots. When ρ is
increased to 0.7, the optimal throughput with CASA decreases
to 0.37 bits/s/Hz at Tr = 17 slots. It is greater than that
with IIDSA, which decreases to 0.33 bits/s/Hz and occurs at
Tr = 29 slots.

V. CONCLUSIONS

We saw that in the presence of correlation, the design of the
splitting algorithm is more sophisticated than for the i.i.d. case.
We developed a novel splitting-based opportunistic selection
algorithm CASA for correlated and non-identical metrics. It
used a new design rule, which redefined the functions lower(·)
and split(·, ·) that were used to update the thresholds. These
functions were specified as solutions of equations involving
the joint CDF of the metrics. For two practically motivated
models, we discussed techniques to compute their joint CDFs
with lower complexity, which enabled the thresholds to be
pre-computed and broadcast to the users once when the system
commenced operation. We also proposed a hybrid approach
that further reduced the computational and memory storage
burden. We saw that in the presence of correlation, IIDSA was
no longer as scalable and that CASA significantly reduced the
average selection time.

An interesting avenue for future work is to investigate
the impact of imperfect knowledge of correlation statistics
on CASA. An in-depth study on the system-level trade-offs
associated with opportunistic selection in the presence of
correlation is another important problem to be studied.

APPENDIX

A. Proof of Result 1

Let ξ(h) be the event that all the metrics are less than or
equal to h. Since the algorithm is in the pre-collision phase in
the (k− 1)th slot and the feedback of the (k− 1)th slot is idle,
we know that the event ξ(Hl(k − 1)) has occurred. From the
design rule in (4), then Hl(k) is set such that

E [n(k) | ξ(Hl(k − 1))] = q. (21)

Substituting the expression for n(k) from (3), and using the
linearity of expectation, we get

E [n(k) | ξ(Hl(k − 1))]

=
N∑
i=1

Pr(Xi ∈ (Hl(k), Hl(k − 1)] | ξ(Hl(k − 1))) . (22)
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Applying Bayes’ rule and writing in terms of the joint CDF
FX(·), we get

E [n(k) | ξ(Hl(k − 1))]

= N −
∑N
i=1 FXi,X(i)(Hl(k), Hl(k − 1), . . . ,Hl(k − 1))

FX(Hl(k − 1), . . . ,Hl(k − 1))
.

(23)

Equating (23) to q yields the desired result.

B. Proof of Result 2

Let A0(u, v), A1(u, v), and A2(u, v) denote the events that
there are zero, one, and at least two users, respectively, whose
metrics lie in the interval (u, v]. From the threshold-update
rules, it can be observed that whenever split(·, ·) is used, the
events ξ(Hh(k)) and A2(Hm(k), Hh(k)) have both occurred.
Thus, as per the design rule, in the post-collision phase, the
lower threshold Hl(k) is set such that

E [n(k) | ξ(Hh(k)), A2(Hm(k), Hh(k))] = q. (24)

We first derive a simpler, intermediate expression for
E [n(k) | ξ(Hh(k)), A2(Hm(k), Hh(k))] in the following
lemma.

Lemma 1: The average number of users that transmit
in the kth slot, conditioned on the events ξ(Hh(k)) and
A2(Hm(k), Hh(k)), is given by

E[n(k) | ξ(Hh(k)), A2(Hm(k), Hh(k))]

=
E [n(k) | ξ(Hh(k))]− P1

P2
, (25)

where

P1 = Pr(A1(Hl(k), Hh(k)), A1(Hm(k), Hh(k)) | ξ(Hh(k))) ,

(26)
P2 = Pr(A2(Hm(k), Hh(k)) | ξ(Hh(k))) . (27)

Proof: The events A0(Hm(k), Hh(k)),
A1(Hm(k), Hh(k)), and A2(Hm(k), Hh(k)) are mutually
exclusive and exhaustive. Hence, from the law of total
expectation, it follows that

E[n(k) | ξ(Hh(k))]

=
2∑
i=0

E [n(k) | ξ(Hh(k)), Ai(Hm(k), Hh(k))]

× Pr(Ai(Hm(k), Hh(k)) | ξ(Hh(k))) . (28)

We consider each term of (28) separately below.

1. When i = 0: Given that A0(Hm(k), Hh(k)) has occurred
and since Hm(k) < Hl(k) < Hh(k), it follows that

E [n(k) | ξ(Hh(k)), A0(Hm(k), Hh(k))] = 0. (29)

2. When i = 1: Given that A1(Hm(k), Hh(k)) has occurred,
it implies that either A0(Hl(k), Hh(k)) or A1(Hl(k), Hh(k))
has occurred. If A0(Hl(k), Hh(k)) has occurred, then n(k) =

0. Else, if A1(Hl(k), Hh(k)) has occurred, then n(k) = 1.
Hence, it follows that

E [n(k) | ξ(Hh(k)), A1(Hm(k), Hh(k))]

= Pr(A1(Hl(k), Hh(k)) | ξ(Hh(k)), A1(Hm(k), Hh(k))) .
(30)

Substituting (29) and (30) in (28) yields

E [n(k) | ξ(Hh(k))]

= Pr(A1(Hl(k), Hh(k)) | ξ(Hh(k)), A1(Hm(k), Hh(k)))

× Pr(A1(Hm(k), Hh(k)) | ξ(Hh(k)))

+ E [n(k) | ξ(Hh(k)), A2(Hm(k), Hh(k))]

× Pr(A2(Hm(k), Hh(k)) | ξ(Hh(k))) . (31)

By Bayes’ rule, the first term in (31) reduces to
Pr(A1(Hl(k), Hh(k)), A1(Hm(k), Hh(k)) | ξ(Hh(k))).
Thus, (31) reduces to

E[n(k) | ξ(Hh(k))] = P1 + P2

× E [n(k) | ξ(Hh(k)), A2(Hm(k), Hh(k))] , (32)

where P1 and P2 are as specified in (26) and (27), respectively.
Rearranging the terms in (32) yields the desired result.

The expression for E [n(k)|ξ(Hh(k))] in (25) is already
derived in (23). Next, we derive expressions for P1 and P2.

1) Expression for P1: Applying Bayes’ rule, (26) can be
written as

P1 =
Pr(A1(Hl(k), Hh(k)), A1(Hm(k), Hh(k)), ξ(Hh(k)))

Pr(ξ(Hh(k)))
.

(33)
The intersection of the events A1(Hl(k), Hh(k)),
A1(Hm(k), Hh(k)), and ξ(Hh(k)) implies that there is
exactly one user whose metric lies in (Hl(k), Hh(k)] and the
metrics of the remaining (N − 1) users are less than or equal
to Hm(k). Thus, (33) can be written in terms of the joint
CDF as follows:

P1 =

∑N
i=1 FXi,X(i)(Hh(k), Hm(k), . . . ,Hm(k))

FX(Hh(k), . . . ,Hh(k))

−
∑N
i=1 FXi,X(i)(Hl(k), Hm(k), . . . ,Hm(k))

FX(Hh(k), . . . ,Hh(k))
. (34)

2) Expression for P2: Since A0(Hm(k), Hh(k)),
A1(Hm(k), Hh(k)), and A2(Hm(k), Hh(k)) are mutually
exclusive and exhaustive, we have

P2 = 1− Pr(A0(Hm(k), Hh(k)) | ξ(Hh(k)))

− Pr(A1(Hm(k), Hh(k)) | ξ(Hh(k))) . (35)

Using Bayes’ rule, we get

Pr(A0(Hm(k), Hh(k)) | ξ(Hh(k)))

=
Pr(A0(Hm(k), Hh(k)), ξ(Hh(k)))

Pr(ξ(Hh(k)))
. (36)

Since the intersection of the two events
A0(Hm(k), Hh(k)) and ξ(Hh(k)) implies that the metrics of
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all the users are less than or equal to Hm(k), we get

Pr(A0(Hm(k), Hh(k)) | ξ(Hh(k)))

=
FX(Hm(k), . . . ,Hm(k))

FX(Hh(k), . . . ,Hh(k))
. (37)

Similarly, we can show that

Pr(A1(Hm(k),Hh(k)) | ξ(Hh(k)))

=

∑N
i=1 FXi,X(i)(Hh(k), Hm(k), . . . ,Hm(k))

FX(Hh(k), . . . ,Hh(k))

−N FX(Hm(k), . . . ,Hm(k))

FX(Hh(k), . . . ,Hh(k))
. (38)

Substituting (23), (34), and (35) in (25), we get

E [n(k) | ξ(Hh(k)), A2(Hm(k), Hh(k))] =
Φ1(Hl(k))

Φ2(Hl(k))
,

(39)
where Φ1(Hl(k)) and Φ2(Hl(k)) are as specified in (7) and (8),
respectively. Equating (39) to q yields the desired result.

C. Proof of Result 3

From the law of total probability, the probability that the
best user is selected in the kth slot is given by

Pr(T = k) =
∑
s∈Sk

Pr(T = k, s) . (40)

We derive Pr(T = k, s) for the following three paths separately:
(i) s = φ path that occurs when the algorithm starts in slot 1,
(ii) the all-0 path Ωk that occurs when the feedbacks of slots
1, . . . , (k − 1) are idles, and (iii) all the remaining paths.

1) s = φ: The s = φ path occurs only when k = 1.
Hence, Pr(T = k, φ) = 0, for k ≥ 2. We have Pr(T = 1) =
Pr(T = 1, φ). The probability that a user is selected in
slot 1 is the probability that there is exactly one user in(
Hφ
l (1), Hφ

h (1)
]

and the remaining (N − 1) users are less

than or equal to Hφ
l (1). Thus, we get

Pr(T = 1, φ) =

[
N∑
i=1

FXi,X(i)(H
φ
h (1), Hφ

l (1), . . . ,Hφ
l (1))

]
−NFX(Hφ

l (1), . . . ,Hφ
l (1)). (41)

2) All-0 path Ωk: An all-0 path Ωk, for k ≥ 2, is the path
in which idles (0) have occurred in slots 1, . . . , (k − 1). For
example, Ω2 = 0, Ω3 = 00, and so on. Hence, the probability
that the best user is selected in the kth slot after traversing
the path Ωk is the probability that there is exactly one user
whose metric lies in

(
HΩk

l (k), HΩk

h (k)
]

and the metrics of

the remaining (N − 1) users are less than or equal to HΩk

l (k).
Thus, we get

Pr(T = k,Ωk) = −NFX(HΩk

l (k), . . . ,HΩk

l (k))

+
N∑
i=1

FXi,X(i)(HΩk

h (k), HΩk

l (k), . . . ,HΩk

l (k)). (42)

3) Any other path: For any other path s ∈ Sk \ {Ωk} and
k ≥ 2, the events ξ(Hs

h(k)) and A2(Hs
m(k), Hs

h(k)), which are
defined in Appendices A and B, respectively, have occurred
since the path involves at least one collision (e). For the
best user to be selected in the kth slot, A1(Hs

l (k), Hs
h(k))

must, therefore, occur. Thus, the probability that the best
user is selected in slot k after traversing this path s is the
probability of intersection of the events A1(Hs

l (k), Hs
h(k)),

A2(Hs
m(k), Hs

h(k)), and ξ(Hs
h(k)). Therefore,

Pr(T = k, s)

= Pr(A1(Hs
l (k), Hs

h(k)), A2(Hs
m(k), Hs

h(k)), ξ(Hs
h(k))) .

(43)

Using Bayes’ rule, (43) can be written as

Pr(T = k, s)

= Pr(A2(Hs
m(k), Hs

h(k)) | A1(Hs
l (k), Hs

h(k)), ξ(Hs
h(k)))

× Pr(A1(Hs
l (k), Hs

h(k)), ξ(Hs
h(k))) . (44)

We now derive expressions for the two terms in (44). First,
by simple inspection, we get

Pr(A1(Hs
l (k), Hs

h(k)), ξ(Hs
h(k)))

=

[
N∑
i=1

FXi,X(i)(Hs
h(k), Hs

l (k), . . . ,Hs
l (k))

]
−NFX(Hs

l (k), . . . ,Hs
l (k)). (45)

Second, we can write the conditional probability term in (44)
as follows:

Pr(A2(Hs
m(k), Hs

h(k)) | A1(Hs
l (k), Hs

h(k)), ξ(Hs
h(k))) =

1− Pr(A0(Hs
m(k), Hs

h(k)) | A1(Hs
l (k), Hs

h(k)), ξ(Hs
h(k)))

− Pr(A1(Hs
m(k), Hs

h(k)) | A1(Hs
l (k), Hs

h(k)), ξ(Hs
h(k))) .

(46)

Since Hs
m(k) < Hs

l (k) < Hs
h(k), given that

A1(Hs
l (k), Hs

h(k)) has occurred, we get

Pr(A0(Hs
m(k), Hs

h(k)) | A1(Hs
l (k), Hs

h(k)), ξ(Hs
h(k))) = 0.

(47)
By applying Bayes’ rule, we also get

Pr(A1(Hs
m(k), Hs

h(k)) | A1(Hs
l (k), Hs

h(k)), ξ(Hs
h(k)))

=
χ1

χ2
, (48)

where

χ1 =
N∑
i=1

FXi,X(i)(Hs
h(k), Hs

m(k), . . . ,Hs
m(k))

−
N∑
i=1

FXi,X(i)(Hs
l (k), Hs

m(k), . . . ,Hs
m(k)), (49)

χ2 =
N∑
i=1

FXi,X(i)(Hs
h(k), Hs

l (k), . . . ,Hs
l (k))

−N
N∑
i=1

FX(Hs
l (k), . . . ,Hs

l (k)). (50)
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Substituting (45) and (46) in (44), we get the expression in (18)
for Pr(T = k, s). Comparing (41) and (42) with (18), we see
that the above expression holds true for any s ∈ Sk including
s = φ and s = Ωk. This is because the second term in (18)
becomes 0, since Hs

m(k) = 0 for s = φ and Ωk. Hence,
Pr(T = k, s) is given by (18) for all paths.
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