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Abstract—Two models for AF relaying, namely, fixed gain
and fixed power relaying, have been extensively studied in the
literature given their ability to harness spatial diversity. In fixed
gain relaying, the relay gain is fixed but its transmit power varies
as a function of the source-relay channel gain. In fixed power
relaying, the relay transmit power is fixed, but its gain varies.
We revisit and generalize the fundamental two-hop AF relaying
model. We present an optimal scheme in which an average power
constrained AF relay adapts its gain and transmit power to
minimize the symbol error probability (SEP) at the destination.
Also derived are insightful and practically amenable closed-form
bounds for the optimal relay gain. We then analyze the SEP of
MPSK, derive tight bounds for it, and characterize the diversity
order for Rayleigh fading. Also derived is an SEP approximation
that is accurate to within 0.1 dB. Extensive results show that
the scheme yields significant energy savings of 2.0-7.7 dB at
the source and relay. Optimal relay placement for the proposed
scheme is also characterized, and is different from fixed gain
or power relaying. Generalizations to MQAM and other fading
distributions are also discussed.

Index Terms—Cooperative systems, spatial diversity, relays,
MPSK, MQAM, power constraint, modulation, fading channels,
amplify-and-forward, symbol error probability, relay placement.

I. INTRODUCTION

RELAY-BASED cooperative communication exploits spa-
tial diversity to combat wireless fading, and is considered

to be one of the key technologies for next generation wireless
systems [1]. Using transmitters and receivers that have only
one antenna, relaying provides multiple independent fading
paths for the signal transmitted by a source to reach its desti-
nation [2]. Among the many relaying schemes that have been
studied in the literature, amplify-and-forward (AF) relaying is
a classical scheme, and is popular because the relay does not
have to decode the source’s message [3]–[13]. It is a two-phase
cooperation protocol. The source transmits in the first phase,
and in the second phase, the AF relay amplifies the noisy and
faded signal it receives from the source and transmits it to the
destination.

Two AF relaying policies have been extensively investigated
in the literature, namely, fixed power relaying [3], [5], [6], [8],
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[9], [13], [14] and fixed gain relaying [10], [12], [15]–[17]. In
fixed power relaying, the relay adjusts its gain as a function of
the source-relay (SR) channel gain such that its instantaneous
transmit power, when averaged over the noise added by the
relay and the data symbols, is fixed. On the other hand, in
fixed gain relaying, the relay gain is fixed. As a result, its
instantaneous transmit power depends on the SR channel gain.
Notice that in the above two policies, the relay adapts its gain
or power as a function of its SR channel gain. While these
policies are intuitive, they do not optimize an end objective
such as the symbol error probability (SEP) at the destination.

In this paper, we reexamine the fundamental two-hop
building block of an AF relaying system that consists of
a source, a destination, and a relay. We generalize the AF
relaying model by considering a relay that adapts both its relay
gain and transmit power as a function of its SR and relay-
destination (RD) channel gains. However, the relay remains
non-regenerative and does not decode the signal it receives
from the source. We derive the optimal gain and power
adaptation rule at the average power constrained relay that
minimize the SEP of MPSK at the destination receiver. We
shall refer to this as adaptive relay gain and transmit power
(ARGTP) relaying. Thereafter, we discuss generalizations to
MQAM and to different channel fading models.

We then analyze the SEP of the proposed AF relaying
policy. We derive two upper bounds for the SEP, which trade-
off evaluation complexity with tightness. We also derive an
accurate approximation for the SEP, which is less than 0.1 dB
away from the exact value. Extensive simulation results are
presented to benchmark the proposed scheme’s performance
with conventional AF relaying schemes. We find that ARGTP
relaying, which optimally exploits local knowledge of the SR
and RD channel gains, significantly outperforms both fixed
power and fixed gain relaying. For example, for QPSK, with
unit average channel power gains and equal source and relay
powers, ARGTP relaying delivers energy savings of 2.0 dB to
2.4 dB over fixed power relaying and fixed gain relaying at an
SEP of 10−2. The corresponding energy savings increase to
4.3 dB to 7.7 dB when the direct source-destination (SD) link
is absent. The results also show that the finite-SNR diversity
order [18], [19], which quantifies how the system harnesses the
spatial diversity at finite SNRs, of ARGTP relaying is better
than the conventional AF relaying schemes over a wide range
of SNRs.

While minimizing the SEP or maximizing throughput have
also been investigated in [16], [20], [21], the focus was on
optimally allocating power between the source and relay;
either fixed power or fixed gain relaying was assumed. A
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different generalization was considered in [22], in which
the relay gain was varied a function of the SR and RD
channel gains to maximize the average SNR at the destination.
However, our design objectives and the depth of our results
are different for the following reasons:

• We focus on minimizing the fading-averaged SEP,
while [22] focuses on maximizing the average SNR at
the destination. The SEP is an end-to-end performance
metric while the SNR is an intermediate metric. While a
high instantaneous SNR implies a low instantaneous SEP,
a high fading-averaged SNR need not imply a low fading-
averaged SEP because the SEP is a non-linear function
of the SNR.

• While [22] shows that quasi-convexity based techniques
can be used to numerically determine the relay gain as
a function of the channel gains, we instead analytically
characterize the SEP-optimal relay gain policy and show
that it is functionally quite different from fixed power or
fixed gain relaying.

• We also develop two upper and lower bounds for the
relay gain that are theoretically insightful and make it
feasible to practically implement ARGTP relaying. Such
an approach has not been pursued in [22].

• For ARGTP relaying, we analyze the SEP, derive analyti-
cally simpler upper bounds and a tight approximation for
the SEP, and characterize the diversity order for Rayleigh
fading. Such an SEP analysis was not attempted in [22].

The paper is organized as follows. Section II describes
our system model. Section III derives the optimal ARGTP
relaying rule, whose SEP is analyzed in Section IV. Our results
and conclusions follow in Sections V and VI, respectively.
Mathematical details are relegated to the Appendix.

II. SYSTEM MODEL

Figure 1 depicts a system consisting of a source S, a des-
tination D, and a half-duplex relay R. Each node is equipped
with a single transmit or receive antenna. The SR, RD, and SD
channels are assumed to be block fading channels that undergo
independent frequency-flat Rayleigh fading. However, they
need not be statistically identical. All transmissions occur over
the same bandwidth. The relay is assumed to know its local
SR and RD channel gains [22]–[24]. In practice, these can be
acquired by a training protocol [11], [25], [26]. However, the
relay need not know the SD channel gain.

We use the following notation henceforth. The probability
of an event A is denoted by Pr (A). For a random variable
(RV) X , its probability density function (PDF), expectation,
and variance are denoted by pX(x), E [X ], and var [X ],
respectively. CN (0, σ2) represents a zero-mean circular sym-
metric complex Gaussian RV with variance σ2. The complex
conjugate of x is denoted by x∗.

A. Cooperative AF Protocol

The cooperative AF relaying protocol occurs over two
phases. In the first phase, the source broadcasts a data symbol
α that is drawn with equal probability from the M -ary PSK

yrd

ysd

ysr

hrd

hsd
S

R

D
α

α

hsr

AF relay gain=
√
βPr

Fig. 1. Average relay transmit power constrained and variable gain AF relay
model

(MPSK) constellation of size M . The received signals ysd and
ysr at the destination and relay, respectively, are given by

ysd =
√
Pshsdα+ nsd, (1)

ysr =
√
Pshsrα+ nsr, (2)

where Ps is the source transmit power, hsd is the SD channel
gain and is a CN (0, σ2

sd) RV, and hsr is the SR channel gain
and is a CN (0, σ2

sr) RV. Without loss of generality (w.l.o.g.),
|α|2 = 1. Further, w.l.o.g., the additive noise terms nsr and
nsd are modeled as CN (0, 1) RVs, and are independent of
each other and the channel gains.

In the second phase, the relay amplifies the signal it
receives, ysr, by a factor

√
βP r, where P r is the average

relay transmit power. Therefore, the destination receives the
signal yrd =

√
βP rhrdysr + nrd, which can be shown to be

equal to

yrd =

√
βP rPshsrhrdα+

√
βP rhrdnsr + nrd. (3)

Let γsd � |hsd|2 Ps, γsr � |hsr|2 Ps, and γrd � P r |hrd|2.
Further, γsd � E [γsd], γsr � E [γsr], and γrd � E [γrd].

B. General AF Relaying Model

The main difference in our model lies in the AF relay gain.
In fixed power AF relaying [3], [5], [9], the relay gain for the
above relay transmission model is given by β = 1

γsr+1 . On
the other hand, in fixed gain AF relaying [4], [11], the relay
gain equals β = 1

γsr+1 .
In our model, however, the relay gain is a function of the

local SR and RD channel gains, γsr and γrd. As mentioned,
we do not assume that the relay knows the SD channel
gain, as this would require channel state feedback from
the destination. Hence, the relay gain will be denoted by
β(γsr , γrd). The relay is subject to an average relay transmit
power constraint, which is E [β(γsr , γrd) (γsr + 1)] = 1. The
destination coherently determines α using its two observables
ysd and yrd. We assume that it knows the SR, RD, and SD
channel gains [3], [5], [6]. The SNR γE at the destination
receiver when it employs maximal ratio combining is given
by [6], [20] γE = γsd +

γsrγrd

γrd+β(γsr,γrd)−1 .

III. OPTIMAL ARGTP RELAYING

We first derive the optimum relay gain function βopt. The
fading-averaged SEP for MPSK at the destination is given
by [27, (8.23)]

SEP =
1

π

∫ (M−1
M )π

0

E

[
exp

(
−γE

m

sin2 θ

)]
dθ, (4)
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where m = sin2
(

π
M

)
. Averaging over γsd, which is an

exponential RV that is independent of γsr, γrd, and β, yields

SEP =
1

π

∫ (M−1
M )π

0

E
[
exp
(
− γsrγrd

γrd+β(γsr,γrd)−1
m

sin2 θ

)]
1 + γsd

m
sin2 θ

dθ.

(5)
The SEP expression in (5) cannot be simplified further

because the relay gain is now a function of γsr and γrd, and
it is this function that we seek to optimize. To gain further
insights, we derive below an analytically tractable upper bound
for the SEP and shall minimize it instead. Using the inequality
sin2 θ ≤ 1 only for the term inside the expectation in the
integrand in (5), we get

SEP ≤ SEP0E

[
exp

(
− mγsrγrd
γrd + β(γsr, γrd)−1

)]
, (6)

where SEP0 captures the contribution of the direct SD link
and is given by

SEP0 =
1

π

∫ (M−1
M )π

0

(
1 + γsd

m

sin2 θ

)−1

dθ. (7)

Using the variable substitution t = cot(θ) and simplifying, it
can be shown that SEP0 reduces to the following expression:

SEP0=
M−1

M
− 1√

1 + m−1

γsd

(
1

2
+

1

π
arctan

√
1−m

m+ 1
γsd

)
. (8)

A. AF Relaying Optimization

Since SEP0 does not depend on the relay gain, the SEP
minimization problem now reduces to finding the optimal
function βopt :(R

+)
2→R, which is a function of two variables

γsr and γrd, that minimizes the expectation term in (6).
Mathematically, the optimization problem can be stated as

min
β

E

[
exp

(
− mγsrγrd
γrd + β(γsr , γrd)−1

)]
(9)

s. t. E [β(γsr , γrd) (γsr + 1)] = 1, and (10)

β(γsr , γrd) ≥ 0, ∀ γsr ≥ 0, γrd ≥ 0. (11)

Notice that fixed power and fixed gain relaying are feasible
solutions of this problem. The optimal solution is as follows.

Result 1: Let

φ(x)�exp

(
mγsrγrd
γrd + x−1

)
(xγrd + 1)

2 − mγsrγrd
λ(γsr + 1)

. (12)

For γrd ≥ B(γsr), φ(x) has a unique positive root
x0(γsr, γrd), and

βopt(γsr, γrd) =

{
x0(γsr, γrd), γrd ≥ B(γsr)
0, otherwise

, (13)

where

B(γsr) � λ

m

(
1 +

1

γsr

)
. (14)

The Lagrange multiplier λ is chosen to satisfy the average
power constraint in (10).

Proof: The proof is relegated to Appendix A.

B. Closed-form Insights into Optimum AF Relay Gain

One problem with the transcendental equation in (12) is
that x appears in it inside the exponential term as well as
in the term outside the exponential. Therefore, it needs to be
computed numerically by solving (12) for each realization of
γsr and γrd. We now present a lower bound βl(γsr, γrd) and
an upper bound βu(γsr, γrd) for βopt(γsr, γrd). These provide
new insights into the structure of the optimal AF relaying
scheme and have practical utility as described below.

Result 2: The optimal AF relay gain βopt is lower bounded
as follows:

βopt(γsr, γrd) ≥ βl(γsr, γrd)

=

{ √
mγsrγrd
λ(γsr+1)

exp(−mγsr
2 )−1

γrd
, γrd ≥B1(γsr)

0, otherwise
, (15)

where
B1(γsr) = B(γsr) exp (mγsr) . (16)

Proof: The proof is given in Appendix B.
Result 3: The optimal AF relay gain βopt is upper bounded

as follows:

βopt(γsr, γrd) ≤ βu(γsr, γrd)

=

⎧⎨
⎩

−1+
√

1+[mγsrγrd
λ(γsr+1)−1](1+m2γ2

sr)

γrd(1+m2γ2
sr)

, γrd≥B(γsr)
0, otherwise

. (17)

Proof: The proof is given in Appendix C.
Figure 2 plots βopt, βu, and βl as a function of γrd for

γsr = 0.5 dB for QPSK (M = 4). It verifies that βu is an
upper bound and βl is a lower bound. Notice that while the
bounds are not tight over the entire range of γrd, their variation
is qualitatively similar to βopt. We see that the optimal policy
shuts off the relay for small values of γrd. This makes intuitive
sense because the relay would otherwise need to transmit at
a high power and expend a significant amount of its energy
in order to overcome a weak RD channel and make its signal
heard by the destination. The optimal policy also reduces the
relay transmit power for large values of γrd. As can be seen
from (15) and (17), both βl and βu, and hence βopt, decrease as
1/

√
γrd for large γrd. This also makes intuitive sense because

there is limited benefit in making the relay transmit at a high
transmit power when the RD channel itself boosts the signal
sent by the relay. This behavior is different from fixed power
relaying, in which the relay’s transmit power does not depend
on the SR and RD channel gains.

C. Implementability of ARGTP Relaying and Practical Utility
of Bounds

Using βopt is difficult from an implementation perspective
in an AF relay, since it would require the use of an unwieldy
two-dimensional look-up table to determine βopt(γsr, γrd) as
a function of γsr and γrd. Given their qualitatively similar
behavior as βopt, the relay can instead use as its relay gain
βl or βu, whose dependence on the SR and RD channel
gains is available in closed-form in (15) and (17). While these
relay gain expressions are more involved than those for fixed
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Fig. 2. Comparison of optimum relay gain, βopt, its upper bound, βu, and
its lower bound, βl, as a function of the instantaneous RD link SNR, γrd
(γsr = 0.5 dB, λ = 0.1, and QPSK).
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power and fixed gain relaying, they are in terms of elementary
functions and are easily computable.

In order to meet the average power constraint, the value
of the Lagrange multiplier needs to be chosen depending on
whether βu or βl is used. If λ is the value of the Lagrange
multiplier at which the power constraint is satisfied by βopt,
then βopt ≤ βu implies that E [βu(γsr , γrd)(γsr + 1)] ≥ 1
and βopt ≥ βl implies that E [βl(γsr, γrd)(γsr + 1)] ≤ 1.
Therefore, let λadj

u denote the value of the Lagrange multiplier
such that the relay that uses βu meets the average power
constraint. Similarly, let λadj

l denote the value of the Lagrange
multiplier such that the relay that uses βl meets the average
power constraint. Figure 3 plots βopt, β

adj
l , and β

adj
u as a

function of γrd. We observe that βadj
u and βadj

l now track βopt

better.

Note that the Lagrange multiplier depends on the channel
fading statistics of the SR and RD links and not their instanta-
neous channel gains. It, therefore, needs to be computed only
once. Its occurrence in the optimal relay gain expressions is
typical of optimal solutions to problems in which a node is
subject to an average transmit power constraint, e.g., [28].

D. Optimal Relaying for MQAM and Other Fading Distribu-
tions

The optimal relay gain policy for MQAM is of the same
form as for MPSK for the following reason. The fading-
averaged SEP for MQAM at the destination can be shown
to be upper bounded by [27, (8.12)]

SEP ≤ M − 1

M
E

[
exp

(
− 3

2(M − 1)
γE

)]
,

=
M − 1

M
(
1 + 3γsd

2(M−1)

)E
[
exp

(
−

3
2(M−1)γsrγrd

γrd + β(γsr , γrd)−1

)]
.

This has the same form as (6) except for a different scaling
constant in front of the expectation, which does not affect the
optimization problem in (9), and with m replaced by 3

2(M−1) .
Therefore, for MQAM, the expressions for the optimal relay
gain βopt and its bounds βl and βu are the same as those
in (13), (15), and (17), respectively, except that m is replaced
by 3

2(M−1) . The value of λ is chosen to meet the average
power constraint.1

The results in (13), (17), and (15), in fact, hold for other
channel fading distributions as well. This can be seen from
the proof of Result 1 in Appendix A. In it, the expectation
operator, which averages over the different SR and RD channel
gains, gets dropped in the unconstrained optimization problem
in (38). Consequently, β(γsr , γrd) is optimized for each γsr
and γrd. The fading distribution only affects the value of λ,
which is chosen to meet the average power constraint.

IV. SEP ANALYSIS OF OPTIMAL ARGTP RELAYING

We now analyze the SEP of ARGTP relaying. First, ana-
lytically tractable upper bounds, which are based on βu and
trade off evaluation complexity with tightness, are derived.
Thereafter, an accurate SEP approximation is derived using
an alternate approach based on βl. The diversity order is then
characterized for Rayleigh fading.

Expanding the expectation in the integrand in (5) results in
the following exact SEP expression, which is in the form of
a triple-integral over θ, γsr, and γrd:

SEP =
1

πγsrγrd

×
∫ ∞

0

∫ ∞

0

∫ (M−1
M )π

0

exp
(
− γsrγrd

γrd+βopt(γsr,γrd)−1
m

sin2 θ

)
1 + γsd

m
sin2 θ

× exp

(
−γsr
γsr

)
exp

(
−γrd
γrd

)
dθ dγrd dγsr . (18)

Further, using the inequality sin2 θ ≤ 1, we get the following
upper bound SEPu:

SEPu =
SEP0

γsrγrd

∫ ∞

0

∫ ∞

0

exp

(
− mγsrγrd

γrd + βopt(γsr, γrd)
−1

)

× exp

(
−γsr
γsr

)
exp

(
−γrd
γrd

)
dγsr dγrd. (19)

1In general, for several constellations, the SEP is well approximated by [28]
a1 exp (−a2γE). Thus, βopt for these constellations also has the same form
as for MPSK except that m is replaced by a2.
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It is still in the form of a double-integral. We, therefore,
simplify it further below.

From (12), we know that exp
(

mγsrγrd

γrd+βopt(γsr,γrd)−1

)
=

mγsrγrd

λ(γsr+1) (βopt(γsr, γrd)γrd + 1)
−2, for γrd ≥ B(γsr), and is

equal to 1, otherwise. Therefore, the expression for SEPu

above becomes

SEPu =
SEP0

γsrγrd

×
∫ ∞

0

∫ B(γsr)

0

exp

(
−γsr
γsr

)
exp

(
−γrd
γrd

)
dγsr dγrd

+
SEP0

γsrγrd

∫ ∞

0

∫ ∞

B(γsr)

λ(γsr + 1)

mγsrγrd
(βopt(γsr, γrd)γrd + 1)2

× exp

(
−γsr
γsr

)
exp

(
−γrd
γrd

)
dγsr dγrd. (20)

Let the first term in the expression for SEPu above be denoted
by I1. Using [29, (3.324.1)], it can be shown that I1 simplifies
in closed-form to

I1 = SEP0

[
1− 2

γsr

exp

(
− λ

mγrd

)√
λγsr

mγrd

×K1

(√
4λ

mγsrγrd

)]
, (21)

where K1 (·) denotes the modified Bessel function of second
kind and first order [30, (9.6)].

The result below simplifies the second term of (20) and
presents a more tractable upper bound SEPuu for the SEP.
The tightness of these bounds will be evaluated in Sec. V.

Result 4: The SEP of optimal ARGTP relaying is upper
bounded as follows:

SEP≤SEPu≤SEPuu � I1 +
SEP0

γrdγsr

∫ ∞

0

[
b21Ei

(B(γsr)
γrd

)

+b2γrd exp

(
−B(γsr)

γrd

)
+ 2b1

√
b2πγrd erfc

(√
B(γsr)
γrd

)]

× B(γsr) exp
(
−γsr
γsr

)
dγsr, (22)

where SEP0 is given by (8), b1 =
m2γ2

sr

1+m2γ2
sr
, b2 =

mγsr

λ(γsr+1)(1+m2γ2
sr)

, erfc(·) denotes the complementary error
function [29, (8.250.4)], and Ei(·) is the exponential integral
Ei(x) =

∫∞
x

e−t

t dt, for x > 0.
Proof: The derivation is given in Appendix D.

The upper bound SEPuu can be accurately computed using
Gauss-Laguerre quadrature [30] as:

SEPuu≈I1 +
SEP0

γrd

W∑
n=0

wnκn

[(
b
(n)
1

)2
Ei

(
κn

γrd

)

+b
(n)
2 γrde

− κn
γrd + 2b

(n)
1

√
b
(n)
2 πγrd erfc

(√
κn

γrd

)]
, (23)

where wn and an are the W weights and abscissas of Gauss-
Laguerre quadrature, respectively, κn = λ

m

(
1 + 1

anγsr

)
,

b
(n)
1 =

a2
nm

2γ2
sr

(1+a2
nm

2γ2
sr)

, and b
(n)
2 = anmγsr

λ(anγsr+1)(1+a2
nm

2γ2
sr)

. We

have found that at most W = 6 Gauss-Laguerre quadrature
terms are sufficient to accurately compute SEPuu up to 10−3.

While SEPuu is an upper bound, it is loose by 0.7 dB.
We now present an alternate approximation that is accurate to
within 0.1 dB, as shall be seen in Sec. V.

Result 5:

SEP ≈ SEPapx = I1 +
SEP0

γrd

Wapx∑
n=0

wn

×
[
κn

(
Ei

(
κn

γrd

)
− Ei

(
κn exp (mγsran)

γrd

))

+ γrd exp

(
−κn exp (mγsran)

γrd

−mγsran

)]
. (24)

Proof: The derivation is relegated to Appendix E.
We have found that at most Wapx = 9 terms are sufficient to
accurately determine SEPapx up to 10−3.

A. Diversity Order Analysis

We now prove that the diversity order of optimal ARGTP
relaying, which is denoted by dARGTP, is two for Rayleigh
fading. Since fixed power relaying is a sub-optimal solution
of the optimization problem in (9), we know that dARGTP is
greater than or equal to the diversity order of fixed power
relaying. As shown in [9], the diversity order of fixed power
relaying for Rayleigh fading is 2. Thus, dARGTP ≥ 2.2

Next, we analyze the diversity order of a lower bound on
the SEP and use it to show that dARGTP ≤ 2. We know that

γE = γsd +
βopt(γsr, γrd)γsrγrd
βopt(γsr, γrd)γrd + 1

≤ γsd + γsr. (25)

From the SEP expression in (4), it follows that

SEP≥ 1

π

∫ (M−1
M )π

0

E

[
exp

(
− (γsd+γsr)

m

sin2 θ

)]
dθ.

Averaging over γsr and γsd, which are independent exponen-
tial random variables, we get

SEP ≥ 1

π

∫ (M−1
M )π

0

sin2 θ(
sin2 θ +mγsr

) sin2 θ(
sin2 θ +mγsd

) dθ.
Using the inequality sin2 θ ≤ 1 in the denominator terms
above, we get

SEP ≥
1
π

∫ (M−1
M )π

0 sin4 θ dθ

(1 +mγsr) (1 +mγsd)
. (26)

It can be easily seen that the diversity order of the SEP
lower bound in (26) is two, with the relay and direct links
contributing equally. Hence, dARGTP ≤ 2. Combining the
results above, we get dARGTP = 2 for Rayleigh fading.

2Another relevant result that applies here is the diversity order analysis
in [31] for fixed gain relaying for Nakagami-m fading. Specializing it to
Rayleigh fading by setting m = 1 also yields dARGTP ≥ 2.



SAINATH and MEHTA: GENERALIZING THE AMPLIFY-AND-FORWARD RELAY GAIN MODEL: AN OPTIMAL SEP PERSPECTIVE 4123

0 2 4 6 8 10 12 14 16 18
10

−4

10
−3

10
−2

10
−1

10
0

Average relay transmit power (dB)

S
E

P

 

 

10 12 14

10
−2

 

 

Simulations
Exact SEP
SEP approximation
SEP

u
 upper bound

SEP
uu

 upper bound

0.3 dB
0.7 dB

0.1 dB

Fig. 4. SEP and its bounds as a function of average relay transmit power,
P r (γsr = γrd = γsd = Ps, Ps = P r , and QPSK).

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

Average relay transmit power (dB)

S
E

P

 

 

ARGTP with 
opt

: exact analysis

ARGTP with 
opt

: simulations

Fixed power relaying [4]
Fixed gain relaying [17]

8PSK

2.8 dB

2.2 dB

2.4 dB

2 dB

QPSK

Fig. 5. Comparison of SEPs of AF relaying schemes as a function of average
relay transmit power, P r (Ps = P r and γsr = γrd = γsd = Ps).

V. NUMERICAL RESULTS AND DISCUSSION

We now verify the analytical results using Monte Carlo
simulations that use up to 106 fading and noise realizations,
and benchmark the performance of ARGTP relaying. In the
simulations, we set E

[
|hsr|2

]
= 1 and E

[
|hrd|2

]
= 1. Recall

that the additive noise power is normalized to unity. Given
the focus of this paper on AF relaying, we compare ARGTP
relaying with both fixed power and fixed gain relaying. We
consider below two scenarios: (i) where the SD link is com-
parable in strength to the SR and RD links (E

[
|hsd|2

]
= 1),

and (ii) where the SD link is absent (E
[
|hsd|2

]
= 0).

A. With SD link

Figure 4 plots the SEP expression in (18) as a function of
the average relay transmit power for QPSK. Also plotted for
reference are the results from Monte Carlo simulations, the
SEP upper bounds SEPu in (20) and SEPuu in (23), and the
SEP approximation SEPapx in (24). We see that SEPu and
SEPuu are within 0.3 dB and 0.7 dB, respectively, at an SEP
of 10−2. However, the approximation is accurate to within
0.1 dB.
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Fig. 6. MQAM: Comparison of SEPs of AF relaying schemes as a function
of average relay transmit power, P r (γsr = γrd = γsd = Ps, Ps = P r ,
and 16QAM).

Figure 5 plots the SEP as a function of the average relay
transmit power for QPSK and 8PSK. It compares the SEPs of
ARGTP relaying, fixed gain relaying, and fixed power relaying
when Ps = P r. We see that ARGTP relaying outperforms
both fixed gain and fixed power relaying. For example, for
QPSK, it requires 2.0 dB (36.9%) less power than fixed
power relaying and 2.4 dB (42.5%) less power than fixed gain
relaying at an SEP of 10−2. For 8PSK, the power savings
increase to 2.2 dB (39.7%) over fixed power relaying and
2.8 dB (47.5%) over fixed gain relaying. At larger SNRs,
the SEP curves of ARGTP relaying and fixed power relaying
become parallel to each other, which shows that their diversity
orders become the same (two). However, fixed gain relaying
requires considerably larger SNRs to reach the asymptotic
regime in which its diversity order is two [26], [32].

Similarly, Figure 6 benchmarks the SEP of ARGTP relaying
with fixed gain and fixed power relaying for 16QAM. We
again see that ARGTP relaying markedly outperforms both
fixed gain and fixed power relaying. For example, it requires
1.6 dB (30.8%) less power than fixed power relaying and
requires 2.5 dB (43.8%) less power than fixed gain relaying
at an SEP of 10−2.

B. Without SD link

Figure 7 plots the SEP of ARGTP relaying as a function of
the average relay transmit power for QPSK. Also shown are
the corresponding SEP curves for fixed gain and fixed power
relaying. Now ARGTP relaying outperforms both fixed gain
and fixed power AF relaying by an even larger margin. For
example, the savings are 4.3 dB (62.8%) over fixed power
relaying and 7.7 dB (83.0%) over fixed gain relaying at an SEP
of 2× 10−2. This is because in the absence of the direct SD
link, the relay influences the signal quality at the destination
much more.

Figure 8 compares the finite-SNR diversity orders of
ARGTP relaying, fixed power relaying, and fixed gain relay-
ing. The finite-SNR diversity order is defined as the negative
slope of the error probability curve at a given SNR [18],
[19]. It quantifies how well the cooperation protocol harnesses
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spatial diversity at a given SNR and not just at asymptotically
large SNRs. The figure shows that while the three schemes
have an asymptotic diversity order of two when the SD link
is present and one when it is absent (cf. Sec. IV-A) for
Rayleigh fading, the behavior of their finite-SNR diversity
orders is different. The finite-SNR diversity order of ARGTP
relaying is greater than the benchmark schemes for SNRs up
to 16 dB. This addresses one problem of fixed power and
fixed gain relaying, which require large SNRs to achieve full
diversity [32].

C. Optimal Relay Placement

We now study the optimum placement of an ARGTP relay
and contrast it with that for the conventional schemes. Let
dsr, drd, and dsd denote the distance between S and R,
R and D, and S and D, respectively. For simplicity, the
relay is placed on the line segment connecting the source
and the destination. Thus, dsd = dsr + drd. As before,
E
[
|hsr|2

]
= E

[
|hrd|2

]
= E

[
|hsd|2

]
= 1. After accounting

for path loss, the average SNRs of the SR, RD, and SD

links are given by γsr = Ps

(
d0

dsr

)η
, γrd = P r

(
d0

drd

)η
, and
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Fig. 9. Optimal relay placement: SEP of ARGTP relaying, fixed gain
relaying, and fixed power relaying as a function of dsr (Ps = P r , η = 4,
and QPSK).
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γsd = Ps

(
d0

dsd

)η
, where η is the path loss exponent and d0

is a reference distance. In the results below, we set η = 4.
Figure 9 plots the SEP as a function of dsr for all the three

AF relaying schemes. For ARGTP relaying, the optimal relay
position is 0.4dsd from the source when P r = Ps = 12 dB
and is 0.3dsd when P r = Ps = 16 dB. However, it is 0.6dsd
for both fixed power and fixed gain relaying at both the above
power settings. Thus, the optimal relay location for ARGTP
relaying is closer to the source than for the other benchmark
relaying schemes. This can be intuitively understood as fol-
lows. When the relay is closer to the destination, the odds of
the RD channel gain being larger are high. As discussed in
Sec. III-B, the amplification of the signal by the relay in this
scenario provides limited benefit. Similarly, when the relay is
very close to the source, the odds of the RD channel gain
being very small are high. Therefore, the relay, having been
turned off, provides no benefit most of the time. It is for this
reason that the SEP first falls sharply as dsr increases, reaches
a minimum value dsr = 0.3dsd, and then increases gradually
as dsr increases further. Also notice that the SEP is always
the lowest for ARGTP relaying.

Figure 10 plots the SEP as a function of the relay location
for different values of the constellation size M and path
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loss exponent η. We see that the optimal relay location is
insensitive to both η and M .

VI. CONCLUSIONS

We considered ARGTP relaying, in which, the relay opti-
mally adapts its instantaneous transmit power and gain as a
function of the channel gains of the links incident on the relay.
We derived the SEP-optimal AF relay gain and an analytically
tractable, insightful and implementable upper bound and lower
bound for it. We then analyzed its SEP.

The numerical results for MPSK and MQAM showed that
ARGTP relaying, which optimally exploits the knowledge of
the local channel gains at the relay, markedly outperforms both
fixed power and fixed gain relaying. We also saw the optimal
location of an ARGTP relay is closer to the source than for a
fixed gain or fixed power relay.

The results motivate the use of ARGTP relaying in coop-
erative relay networks. Interesting problems for future work
include introduction of a peak power constraint, including
imperfect channel state information in our model, and its
extension to multi-hop and multi-relay systems. For example,
in a two-hop system with multiple AF relays, the selected
relay can follow the relay gain rule in (13), with the relay that
maximizes the SNR at the destination being selected.

APPENDIX

A. Proof of Result 1

Let f(x) � exp
(
−mγsrγrd

γrd+x−1

)
. Partially differentiating f(x)

with respect to x, we get

∂f(x)

∂x
= − exp

(
− mγsrγrd
γrd + x−1

)
mγsrγrd

(xγrd + 1)2
.

Therefore, ∂f(x)
∂x ≤ 0, for all x ≥ 0. The second derivative of

f(x) is

∂2f(x)

∂x2
= exp

(
− mγsrγrd
γrd + x−1

)(
m2γ2

srγ
2
rd

(xγrd + 1)2
+

2mγsrγ
2
rd

(xγrd + 1)3

)
.

Thus, ∂2f(x)
∂x2 ≥ 0, for all x ≥ 0. Hence, f(x) is a

convex function of x, for x ≥ 0, and so is its expecta-
tion in (9). Further, since β(γsr , γrd)(γsr + 1) is a linear
function of β(γsr , γrd), the average power constraint is also
convex. Therefore, the problem is equivalent to minimizing
E [Lλ(β(γsr , γrd))], where

Lλ(x) � exp

(
− mγsrγrd
γrd + x−1

)
+ λ (x (γsr + 1)− 1) . (27)

Since this is now an unconstrained optimization, min-
imizing E [Lλ(β(γsr , γrd))] is equivalent to minimizing
Lλ(β(γsr , γrd)) for each value of γsr and γrd. Formally, the
optimization problem for each γsr, γrd can be stated as:

min
x

Lλ(x)

s. t. x ≥ 0. (28)

Since Lλ(x) is convex in x, the optimal value of x is unique.
It is the non-negative solution of

∂Lλ(x)

∂x
= − exp

(
− mγsrγrd
γrd + x−1

)
mγsrγrd

(γrdx+ 1)2

+ λ(γsr + 1) = 0, (29)

if it exists, and is 0, otherwise. Let the non-negative solution be
denoted by x0(γsr, γrd). Simplifying (29) results in (12). The
boundary of the region in which βopt(γsr, γrd) is 0 is obtained
by substituting x = 0 in (12). Further, it can be verified that
βopt(γsr, γrd) = 0, for all γrd < B(γsr).

B. Proof of Result 2

Since βopt(γsr , γrd) satisfies (12), by rearranging its terms,
we get the following for γrd ≥ B(γsr):

(βopt(γsr , γrd)γrd+1)2=
mγsrγrd
λ(γsr + 1)

exp

(
− mγsrγrd
γrd+βopt(γsr, γrd)−1

)
.

(30)
Since βopt(γsr , γrd)≥0, it follows that γrd

γrd+βopt(γsr,γrd)−1 ≤ 1.
Hence,

exp

(
− mγsrγrd
γrd + βopt(γsr, γrd)−1

)
≥ exp (−mγsr) . (31)

Substituting (31) in (30) yields

(βopt(γsr, γrd)γrd + 1)2≥ mγsrγrd
λ (γsr + 1)

exp (−mγsr) . (32)

Taking square root on both sides and simplifying, we get

βopt(γsr, γrd) ≥ 1

γrd

(√
mγsrγrd
λ (γsr + 1)

exp
(
−mγsr

2

)
− 1

)
,

� βl(γsr, γrd). (33)

Since βopt(γsr , γrd) ≥ 0, the above lower bound can be
tightened by ensuring βl(γsr, γrd) ≥ 0. From (33), we see that
this occurs so long as

√
mγsrγrd

λ(γsr+1) exp
(−mγsr

2

) ≥ 1. From the

definition of B(γsr) in (14), this is equivalent to the condition

γrd ≥ B(γsr) exp (mγsr) . (34)

Combining the results in (33) and (34) yields (15).

C. Proof of Result 3

The following simple inequality shall help us derive a
tractable upper bound for βopt: exp(x) ≥ 1 + x2, for x ≥ 0.
Substituting it in (12), we get, for γrd ≥ B(γsr),

φ(x) ≥ (xγrd + 1)
2

(
1 +

a2x2

(xγrd + 1)2

)
− a

λ (γsr + 1)
,

where a � mγsrγrd. Simplifying further, we get

φ(x) ≥ (xγrd + 1)
2
+ a2x2 − a

λ (γsr + 1)
. (35)

Expanding the right side of the above inequality and rearrang-
ing terms yields the following quadratic form in x:

φ(x) ≥ (γ2
rd + a2

)
x2 + 2γrdx+ 1− a

λ (γsr + 1)
� Ω(x).

It can be easily verified that Ω(x) has exactly one positive root
when γrd ≥ B(γsr). It is nothing but βu(γsr, γrd), which is
given in (17). Since φ(x) ≥ Ω(x) and since both are convex
for x ≥ 0, it can be shown that βopt(γsr , γrd) ≤ βu(γsr , γrd).
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D. Derivation of Result 4

Since βopt≤βu, it follows from (17) that, for γrd≥B(γsr),

βopt(γsr , γrd)γrd + 1 ≤ βu(γsr, γrd)γrd + 1

≤
γ2
srm

2 +
√

γsrγrdm
λ(γsr+1) (1 + γ2

srm
2)

1 + γ2
srm

2
.

Substituting this and (21) in (20), we get the following upper
bound for SEPu:

SEPu ≤ SEPuu = I1

+
SEP0

γsrγrd

∫ ∞

0

∫ ∞

B(γsr)

λ (γsr + 1)
(
b1 +

√
b2γrd

)2
γsrγrdm

× exp

(
−γsr
γsr

)
exp

(
−γrd
γrd

)
dγsr dγrd, (36)

where b1 and b2 are as defined in the result statement. The
double integral term in (36), which is denoted by I2, can be
recast as

I2 =
SEP0

γsrγrd

∫ ∞

0

B(γsr) exp
(
−γsr
γsr

)
I in
2 (γsr) dγsr, (37)

where I in
2 �

∫∞
B(γsr)

b21+b2γrd+2b1
√
b2γrd

γrd
exp

(
− γrd

γrd

)
dγrd.

Further, I in
2 can be split as

I in
2 = b21ϕ1 + b2ϕ2 + 2b1

√
b2ϕ3, (38)

where ϕ1 �
∫∞
B(γsr)

1
γrd

exp
(
− γrd

γrd

)
dγrd = Ei

(
B(γsr)
γrd

)
,

ϕ2 �
∫∞
B(γsr)

exp
(
− γrd

γrd

)
dγrd = γrd exp

(
−B(γsr)

γrd

)
,

and ϕ3 �
∫∞
B(γsr)

1√
γrd

exp
(
− γrd

γrd

)
dγrd =

√
πγrd erfc

(√
B(γsr)
γrd

)
. Substituting all the above expressions

in (36) yields the desired expression in (22).

E. Derivation of Result 5

The derivation below uses the properties of βopt to derive
a lower bound for SEPu, which we denote by SEPapx. The
goal is to arrive at a simpler expression that is in the form
of a single integral, unlike the double integral form of the
expression in (20). Note that since SEPapx lower bounds SEPu,
it is neither a lower nor an upper bound for the exact SEP.
However, it is useful as an approximation for the SEP. Recall
from (20) that the second term in the expression for SEPu is

J2 =
SEP0

γsrγrd

∫ ∞

0

∫ ∞

B(γsr)

λ(γsr + 1)(βopt(γsr, γrd)γrd + 1)2

mγsrγrd

× exp

(
−γsr
γsr

)
exp

(
−γrd
γrd

)
dγsr dγrd. (39)

Replacing βopt with its lower bound βl in the above equation
yields a lower bound for J2. Further, since βl(γsr, γrd) = 0,

for γrd ≤ B(γsr) exp (mγsr) = B1(γsr), we get

J2 ≥ SEP0

γsrγrd

∫ ∞

0

∫ B1(γsr)

B(γsr)

λ(γsr + 1)

mγsrγrd
exp

(
−γsr
γsr

)

× exp

(
−γrd
γrd

)
dγsr dγrd

+
SEP0

γsrγrd

∫ ∞

0

∫ ∞

B1(γsr)

λ(γsr + 1)(βl(γsr, γrd)γrd + 1)2

mγsrγrd

× exp

(
−γsr
γsr

)
exp

(
−γrd
γrd

)
dγsr dγrd. (40)

However, from (15), we know that, for γrd ≥ B1(γsr),

λ (γsr + 1) (βl(γsr , γrd)γrd + 1)
2

mγsrγrd
= exp (−mγsr) .

Substituting this in (40), we get

J2 ≥ SEP0

γsrγrd

∫ ∞

0

∫ B1(γsr)

B(γsr)

λ (γsr + 1)

mγsrγrd
exp

(
−γsr
γsr

)

× exp

(
−γrd
γrd

)
dγsr dγrd

+
SEP0

γsrγrd

∫ ∞

0

∫ ∞

B1(γsr)

exp (−mγsr) exp

(
−γsr
γsr

)

× exp

(
−γrd
γrd

)
dγsr dγrd. (41)

Let the first term in (41) above be denoted by L1. By noting
that λ(γsr+1)

mγsrγrd
= B(γsr)

γrd
(cf. (14)), L1 can be recast as

L1 =
SEP0

γsrγrd

∫ ∞

0

B(γsr) exp

(
−γsr
γsr

)
Lin
1 (γsr) dγsr , (42)

where

Lin
1 =

∫ B1(γsr)

B(γsr)

1

γrd
exp

(
−γrd
γrd

)
dγrd,

= Ei

(B(γsr)
γrd

)
− Ei

(B1(γsr)

γrd

)
. (43)

The second term in (41), which we denote by L2, can be
rewritten as

L2 =

∫ ∞

0

exp (−mγsr) exp

(
−γsr
γsr

)
Lin
2 (γsr) dγsr, (44)

where

Lin
2 �

∫ ∞

B1(γsr)

exp

(
−γrd
γrd

)
dγrd = γrd exp

(
−B1(γsr)

γrd

)
.

Thus, L2 simplifies to

L2 = γrd

∫ ∞

0

exp(−mγsr) exp

(
−γsr
γsr

)
exp

(
−B1(γsr)

γrd

)
dγsr.

(45)
Upon substituting (21), (42), (43), and (45) in (20), we get

SEPu ≥ SEPapx = I1

+
SEP0

γrdγsr

∫ ∞

0

[
B(γsr)

(
Ei

(B(γsr)
γrd

)
− Ei

(B1(γsr)

γrd

))

+γrd exp

(
−B1(γsr)

γrd

−mγsr

)]
exp

(
−γsr
γsr

)
dγsr . (46)

The desired expression in (24) is obtained by using Gauss-
Laguerre quadrature.
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