
496 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 2, FEBRUARY 2013

Antenna Selection in Interference-Constrained
Underlay Cognitive Radios:

SEP-Optimal Rule and Performance Benchmarking
Rimalapudi Sarvendranath, Student Member, IEEE, and Neelesh B. Mehta, Senior Member, IEEE

Abstract—In the underlay mode of cognitive radio, secondary
users are allowed to transmit when the primary is transmit-
ting, but under tight interference constraints that protect the
primary. However, these constraints limit the secondary system
performance. Antenna selection (AS)-based multiple antenna
techniques, which exploit spatial diversity with less hardware,
help improve secondary system performance. We develop a
novel and optimal transmit AS rule that minimizes the symbol
error probability (SEP) of an average interference-constrained
multiple-input-single-output secondary system that operates in
the underlay mode. We show that the optimal rule is a non-linear
function of the power gain of the channel from the secondary
transmit antenna to the primary receiver and from the secondary
transmit antenna to the secondary receive antenna. We also
propose a simpler, tractable variant of the optimal rule that
performs as well as the optimal rule. We then analyze its SEP
with L transmit antennas, and extensively benchmark it with
several heuristic selection rules proposed in the literature. We
also enhance these rules in order to provide a fair comparison,
and derive new expressions for their SEPs. The results bring out
new inter-relationships between the various rules, and show that
the optimal rule can significantly reduce the SEP.

Index Terms—Cognitive radio, underlay, antenna selection,
diversity techniques, fading channels, symbol error probability,
average interference constraint.

I. INTRODUCTION

RECENT studies reveal that electromagnetic spectrum
allocations are often underutilized [1]. This coupled with

an increase in the number of users demanding high data
rates has created a scarcity of spectrum, and has led to the
development of cognitive radio (CR) technology to address
the scarcity. In one common paradigm of CR, two classes of
users are defined, namely, primary users (PU) and secondary
users (SU). A PU owns the license to use the spectrum. A SU
can access the same spectrum as the primary, but is subject
to constraints on the interference it causes to the PU so as to
protect the PU.

Two types of CR access models are common in the liter-
ature, namely, overlay and underlay [2], [3]. In overlay CR,
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which has also been referred to as interweave CR in [4], the
SU transmits only in the unused spectral regions. Hence, the
SU does not cause any interference to the PU, except when it
senses the spectrum incorrectly. Whereas, in underlay CR, the
SU can access the spectrum even when the PU is transmitting.
However, it is subject to tight constraints on the average or
peak interference power that it can cause to the primary.

In order to limit the interference caused by the SU to the
PU below a threshold, power allocation strategies were used
in [5] to maximize SU capacity. In [6], multiple antennas were
used to improve the performance of the SU; techniques such as
transmit beamforming were explored. Multiple input multiple
output (MIMO) antenna techniques for CR were investigated
in [7]–[9]. However, one drawback of a multiple antenna
system is that each antenna element requires an expensive
radio frequency (RF) chain to process the signal to or from the
antenna. For example, at the transmitter, the RF chain consists
of a digital-to-analog converter, an upconverter, filters, and a
power amplifier. While antenna elements are typically cheap,
the RF chains constitute a significant portion of the total device
cost.

To reduce the hardware costs of multiple antenna systems, a
technique called antenna selection (AS) has been extensively
studied [10], [11]. It uses fewer RF chains than the number
of available antennas. A subset of antennas is selected as
a function of the channel conditions and connected to the
RF chains. Besides reducing hardware complexity, cost, and
size, AS effectively harnesses the diversity benefits of multiple
antennas [12]–[14]. Consequently, AS is now a part of next
generation wireless standards such as the IEEE 802.11n and
Long Term Evolution (LTE) [15].

Given its promise, AS has also been considered in CR
systems [16]–[20], and has been shown to improve secondary
system throughput. In the overlay mode, since the SU does
not interfere with the PU, the rule for selecting which antenna
to transmit from remains the same as for conventional AS
systems, which are not subject to any interference constraint.
For example, in a multiple input single output (MISO) system
in which the secondary transmitter (STx) has L transmit
antennas and the secondary receiver (SRx) has one receive
antenna, the transmit antenna with the strongest channel power
gain to the SRx antenna should be selected. We shall refer
to this as the unconstrained AS rule henceforth. However,
in the underlay mode, the primary interference constraint
fundamentally changes the criterion on the basis of which
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the transmit antenna is selected. Intuitively, even though an
antenna has a strong link to the SRx, it should not get
selected if it causes significant interference to the primary
receiver (PRx). Therefore, the selection rule must take into
consideration both the STx to SRx (STx-SRx) and STx to
PRx (STx-PRx) channel power gains.

Several rules for selecting an antenna in a MISO CR, such
as the minimum interference (MI) rule and the maximum
signal power to leak interference power ratio (MSLIR) rule,
are proposed in [17] for an STx that transmits with a fixed
power. The MI rule selects the antenna that causes the least
interference to the primary. However, since the selection is
done entirely on the basis of the STx-PRx channel gains,
the secondary system does not benefit from antenna diversity.
The MSLIR rule compromises between the MI and uncon-
strained rules, and selects the antenna with the highest ratio
of STx-SRx and STx-PRx channel power gains. Note that
all the above rules do not consider the average interference
constraint and may not always be admissible. An AS rule
similar to MSLIR rule is proposed in [20], but STx uses
variable power to transmit. A difference selection (DS) rule is
proposed in [18], [21]. It selects the antenna that maximizes
a linear weighted difference of the STx-SRx and STx-PRx
channel power gains. It outperforms the MSLIR rule in many
scenarios. While the above rules are intuitive, they are ad hoc
as they do not provably optimize an end objective such as
symbol error probability (SEP) or capacity.

Contributions: We make the following contributions.
• We systematically develop the optimal AS rule that

minimizes the SEP for a MISO secondary system that
is subject to an average primary interference constraint.
Given a transmit power, we show that the SEP-optimal
AS rule is a linear combination of the STx-PRx channel
power gain and an exponentially decaying function of
the STx-SRx gain. The optimal selection rule is, thus,
non-linear in nature.

• We also present a simpler variant of the optimal rule
called the upper bound-based optimal rule that minimizes
a tight Chernoff upper bound of the SEP instead. Its
appeal lies in its integral-free closed form. We also
show through our results that the SEPs of the SEP-
optimal rule and the upper bound-based optimal rule are
indistinguishable from each other.

• Another utility of the upper bound-based optimal rule
is that its SEP analysis is tractable, unlike that of the
exact rule. We derive its exact SEP and an SEP upper
bound for the general case with L transmit antennas
at STx. We also show that the analytical expressions
simplify further when the STx has L = 2 antennas. A key
challenge that the analysis tackles is the non-linear form
of the selection rule, which is unlike the linear selection
rules that have been considered in the literature on single
transmit AS [11], [22].

• An insightful asymptotic characterization of the upper
bound-based optimal rule is also developed. It shows that
an error floor occurs due to the average primary interfer-
ence constraint, and that the error floor is an exponentially
decreasing function of the number of transmit antennas.

• Extensive simulation results are presented to study the

performance of the upper bound-based optimal AS rule
and benchmark its performance with many rules that have
been proposed in the literature. In order to provide as fair
a comparison as possible, we compare against enhanced
versions of the MI and MSLIR rules that always adhere
to the average interference constraint. This is achieved
by allowing an extra zero-transmit power option at the
STx. Intuitively, the latter option is beneficial when all
the STx-PRx channel power gains are large, which makes
the secondary transmissions interfere considerably with
the primary.

• Finally, new analytical results for the SEPs of the en-
hanced MI and MSLIR rules are also developed. Hitherto,
the MI and MSLIR rules had only been studied using
simulations. These results lead to new insights about the
optimality of the ad hoc rules and bring out new inter-
relationships among them. For example, we show that
the upper bound-based optimal rule, enhanced MI rule,
and the DS rule are equivalent only for large values of
transmit power, and that the enhanced MSLIR rule is
suboptimal in most scenarios.

The paper is organized as follows. Section II develops
the system model and the problem statement. The optimal
selection rule and SEP analysis are in Section III. Section IV
analyzes the benchmark selection rules. Numerical results in
Section V are followed by our conclusions in Section VI. Sev-
eral mathematical derivations are relegated to the Appendix.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We use the following notation henceforth. The absolute
value of a complex number x is denoted by |x|. The prob-
ability of an event A and the conditional probability of A
given B are denoted by Pr (A) and Pr (A|B), respectively.
For a random variable (RV) X , fX(x) denotes its probability
density function (PDF) and EX [·] denotes it expectation.
Scalar variables are written in normal font and vector variables
are written in bold font. I{a} denotes the indicator function;
it is 1 if a is true and is 0 otherwise.

As shown in Figure 1, we consider an underlay CR system
in which an STx transmits data to an SRx; its transmissions
cause interference at a PRx. The SRx and the STx constitute
the secondary system. The PRx and the SRx have one receive
antenna each. The STx has L transmit antennas and one RF
chain; it, therefore, needs to select one of its antennas for
transmission. For i ∈ {1, 2, . . . , L}, hi denotes the instan-
taneous channel power gain between the ith antenna of the
STx and the SRx antenna, and gi denotes the instantaneous
channel power gain between the ith antenna of the STx and
the PRx antenna. We assume Rayleigh fading. The STx-
SRx channels are assumed to be independent and identically
distributed (i.i.d.) random variables (RVs), and so are the STx-
PRx channels. This assumption is justified when the antennas
at the STx are spaced sufficiently apart in a rich scattering
environment. Thus, the channel power gains hi and gi are
i.i.d. exponential RVs with means μh and μg , respectively.
Let h � [h1, h2, . . . , hL] and g � [g1, g2, . . . , gL].
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Fig. 1. System model with one PRx and a secondary system consisting of
an STx with L transmit antennas and one RF chain that communicates with
an SRx with one receive antenna.

A. Selection Options and Data Transmission

The STx transmits a symbol x that is drawn with equal
probability from an M -ary phase shift keying (MPSK) con-
stellation. It can transmit using one of the L antennas with
fixed symbol energy Et. Transmission using Antenna i is
represented by option i, for i = 1, . . . , L. Further, it may
decide to transmit with zero power in order to not interfere
with the primary. We shall represent the zero-transmit power
option by 0 and shall define the corresponding channel power
gains as zero, i.e., h0 � 0 and g0 � 0. When the STx uses the
zero-transmit power option, the SEP is m � 1− 1

M , since the
optimal receiver in this case just chooses any one of the M
symbols as its decoded symbol with equal probability [23].

Let s ∈ {0, 1, . . . , L} be the option selected. The signal r
received by the SRx and the interference signal ip seen by the
PRx are given by

r =
√
Et

√
hse

jθhsx+ n+ wps, (1)

ip =
√
Et

√
gse

jθgsx, (2)

where |x|2 = 1, θhs and θgs are the phases of the complex
baseband STx-SRx and STx-PRx channel gains, respectively,
and n is circular symmetric complex additive white Gaussian
noise at the SRx. The interference seen by the SRx due to
primary transmissions is wps, and is assumed to be Gaussian.
This corresponds to a worst case model for the interference
and makes the problem of finding the optimal AS rule
tractable. Therefore, n+wps is a circular symmetric complex
Gaussian RV, whose variance is denoted by σ2.

We assume that the STx knows h and g, i.e., its channel
power gains to the SRx and to the PRx. This has also been
assumed in the literature on AS in CR, e.g., [17], [18], [20].
Note also that no knowledge of the phases of any complex
baseband channel gains is required at the STx.1 The SRx uses

1In the time division duplex (TDD) mode of operation, information about
h and g can be obtained by the STx by exploiting reciprocity. The STx
uses the signals it receives from the SRx and PRx when they transmit in
order to estimate h and g. Since phase information is not required, simple
signal strength-based techniques can be used for estimation. We note that
these results also serve as bounds on the performance of AS in CR systems
that have access to either partial or imperfect knowledge of g.

a coherent receiver, and is assumed to know hs and θhs .2 No
knowledge of g or the channel gains of any other antenna is
required at the SRx.

B. Problem Statement

Terminology: A selection rule φ is a mapping φ : (R+)
L ×

(R+)
L → {0, 1, . . . , L} that selects one of the L+ 1 options

for every realization of h and g. We define a feasible selection
rule to be a rule whose average interference is less than or
equal to Iave. Let Z be the set of all feasible selection rules.

Our goal is to find the optimal transmit AS rule φ∗, which
minimizes the average SEP of the secondary system while
ensuring that the average interference caused to the PRx is
below a threshold Iave. We first consider the case where Et

is given. The optimization of Et is handled in Section V.
Let SEP(hs) denote the instantaneous SEP given channel
power gain hs of the selected option s. Using (2), the average
interference caused to the PRx is given by EtEh,g [gs].

Our problem can be mathematically stated as follows:

min
φ

Eh,g [SEP(hs)]

subject to EtEh,g [gs] ≤ Iave, (3)

s = φ(h,g).

III. OPTIMAL ANTENNA SELECTION RULE AND SEP
ANALYSIS

We now derive the optimal selection rule. We then analyze
its SEP.

A. Optimal Selection Rule

Let us first consider the selection rule that minimizes the
SEP at the SRx when the average interference constraint
in (3) is not active. Clearly, in this case, the optimal rule
is the unconstrained rule, which selects the antenna with the
highest channel power gain from the STx to the SRx. It is
given by s = argmaxi∈{1,...,L} {hi}. Therefore, the average
interference caused to the PRx by the unconstrained rule, Iun,
is Iun = EtEh,g [gs] = Etμg . The second equality follows
because the unconstrained rule does not take into account the
STx-PRx channel power gain.

However, when Iun > Iave, the unconstrained AS rule is not
a feasible rule. Therefore, it cannot be optimal. The following
result completely characterizes the optimal AS rule.

Theorem 1: The optimal selection rule φ∗, where s∗ =
φ∗ (h,g), that minimizes the SEP under the average interfer-
ence constraint is as follows:

s∗ =

{
argmaxi∈{1,...,L} {hi} , Iun ≤ Iave

argmini∈{0,1,...,L} {SEP(hi) + λgi} , Iun > Iave.
(4)

When Iun > Iave, we have λ > 0. The value of λ is such
that the STx satisfies the average interference constraint with
equality, i.e., EtEh,g [gs∗ ] = Iave.

Proof: The proof is given in Appendix A.

2In practice this can be achieved by embedding a pilot along with the data
symbols once in every coherence interval, since the channel does not change
within a coherence interval.
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The parameter λ is computed numerically, as is typical of
several optimization problems in wireless communications that
are subject to an average constraint, e.g., optimal link adapta-
tion [24] and water-filling in time, space, or frequency [25].

The SEP as a function of hs for MPSK is given by [26,
(40)]

SEP(hs) =
1

π

∫ mπ

0

exp

(
−hsEt sin

2
(

π
M

)
σ2 sin2 θ

)
dθ, (5)

where, as mentioned, m = 1− 1
M . Substituting (5) in (4) we

see that the SEP-optimal AS rule is a non-linear function of
hi. This is unlike the MI, MSLIR, and the DS rules.

B. Simpler Upper Bound-based Optimal Rule

Since the rule in (4) is in the form of a single integral, it is
desirable to simplify it. This is achieved by instead minimizing
the Chernoff upper bound of the SEP, as we show below.

The upper bound on the SEP of MPSK is given by

SEP(hs) ≤ m exp

(
−hsEt sin

2
(

π
M

)
σ2

)
. (6)

The optimization problem that minimizes the above bound can
be written as

min
φ

mEh,g

[
exp

(
−hsEt sin

2
(

π
M

)
σ2

)]
subject to EtEh,g [gs] ≤ Iave, (7)

s = φ(h,g).

Along lines of Appendix A, it can be shown that the optimal
rule, which we shall refer to as the upper bound-based optimal
rule, is given by

s∗ =

{
argmaxi∈{1,...,L} {hi} , Iun ≤ Iave

argmini∈{0,1,...,L} {yi + λgi} , Iun > Iave
, (8)

where

yi � m exp

(
−hiEt sin

2
(

π
M

)
σ2

)
, i ∈ {0, 1, . . . , L}. (9)

Note that λ = 0 makes the rules in (4) and (8) equivalent
to the unconstrained rule, whose SEP is given in [13, (36)] .

C. SEP Analysis

1) General Case of L Transmit Antennas: We now analyze
the SEP of the upper bound-based rule in (8) when λ > 0. The
average SEP for L transmit antennas is denoted by SEP(L).

Theorem 2: The average SEP of the secondary system for
the upper bound-based optimal rule is given by

SEP(L)= m

(
αe

− m
λμg (λμg)

α
Ω

Ωm
α
Ω

γ̃

(
α

Ω
,
m

λμg

))L

+
Lα

πΩm
α
Ωμg

∫ mπ

0

∫ m

0

∫ m−y1
λ

0

(y1
m

)csc2(θ)
y

α
Ω−1
1 e

−g1
μg

×
(
1−e

−y1+λg1
λμg

(
λμg

m

)α
Ω

γ̃

(
α

Ω
+ 1,

y1 + λg1
λμg

))L−1

dg1dy1dθ,

(10)

where α � csc2( π
M ), Ω � Etμh

σ2 , and γ̃(s, x) �
∫ x

0
ts−1et dt.

Proof: The proof is given in Appendix B.
Note that γ̃(·, ·) is a modified version of the lower incomplete
gamma function [27, (8.350.1)], and can be evaluated using
standard routines available for the latter. The SEP expression
in (10) is in the form of a triple integral. It is a function of
Ω and λ, which depends on Iave/Et. The second term in (10)
can be simplified further by using the inequality sin2(θ) ≤ 1

to get the following upper bound SEP(L)
UB:

SEP(L) ≤ SEP(L)
UB =

Lα

Ωm
α
Ωμg

∫ m

0

∫ m−y1
λ

0

y
α
Ω
1 e

−g1
μg

×
(
1−e

−y1+λg1
λμg

(
λμg

m

)α
Ω

γ̃

(
α

Ω
+ 1,

y1 + λg1
λμg

))L−1

dg1 dy1

+m

(
αe

− m
λμg (λμg)

α
Ω

Ωm
α
Ω

γ̃

(
α

Ω
,
m

λμg

))L

. (11)

Given the non-linear nature of the optimal selection rule,
further simplifications are not possible to the best of our
knowledge. The double integral above is evaluated numeri-
cally. Note that even this result is a significant improvement
compared to Monte Carlo simulations.

In a similar manner, the average interference Iopt caused to
the PRx when the upper bound-based optimal rule in (8) is
used can be shown to be equal to

Iopt=
EtLα

Ωm
α
Ωμg

∫ m

0

∫ m−y1
λ

0

g1y
α
Ω−1
1 e

−g1
μg

×
(
1−e

−y1+λg1
λμg

(
λμg

m

)α
Ω

γ̃

(
α

Ω
+ 1,

y1 + λg1
λμg

))L−1

dg1dy1.

This result is useful in numerically determining λ when it is
non-zero, as it is the solution of the equation Iopt = Iave.

Approximate SEP Analysis: To derive the upper bound
in (11), we used the Chernoff bound. Very similar expressions
also arise when the integral-free SEP approximations for
MPSK that were proposed in [24] are used instead of the exact
SEP expression. These are also motivated by the Chernoff
bound. The only difference lies in the constants.

2) L = 2 Transmit Antennas: We now investigate the
special case of an STx with two transmit antennas, and show
that the SEP expressions simplify further.

Corollary 1: The average SEP of the secondary system
for the upper bound-based optimal rule for L = 2 transmit
antennas is given by

SEP(2) = m

(
α(λμg)

α
Ω e

−m
λμg

Ωm
α
Ω

γ̃

(
α

Ω
,
m

λμg

))2
+
( α

Ωm
α
Ω

)2
× (λμg)

α
Ω

π

∫ mπ

0

∫ m

0

[
e

−y1
λμg γ̃

(
α

Ω
,
y1
λμg

)
− e

y1−2m
λμg γ̃

(
α

Ω
,
m

λμg

)
+ e

y1
λμg

(
γ

(
α

Ω
,
y1
λμg

)
−γ

(
α

Ω
,
m

λμg

))](y1
m

)csc2(θ)
y

α
Ω−1
1 dy1dθ

+
1

π

∫ mπ

0

2α2 sin4(θ)(
Ω + α sin2(θ)

) (
Ω+ 2α sin2(θ)

) dθ. (12)

Proof: The proof is given in Appendix C.
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The expression in (12) is in the form of a simpler double
integral, unlike the expression for the general case L transmit
antennas. The Chernoff upper bound for SEP(2), which is
denoted by SEP(2)

UB , will be in the form of a single integral.
Using Gauss-Legendre quadrature [28], SEP(2)

UB can be evalu-
ated accurately as a sum of a few terms as follows:

SEP(2)
UB=m

((
αe

− m
λμg (λμg)

α
Ω

Ωm
α
Ω

γ̃

(
α

Ω
,
m

λμg

)))2
+
m

2

( α

Ωm
α
Ω

)2
×(λμg)

α
Ω

[
N∑

k=1

wkz
α
Ω

k

(
e

zk
λμg γ

(
α

Ω
,
zk
λμg

)
+ e

−zk
λμg γ̃

(
α

Ω
,
zk
λμg

))]

−
( α

Ωm
α
Ω

)2
(λμg)

1+ 2α
Ω γ̃

(
1 +

α

Ω
,
m

λμg

)[
γ

(
α

Ω
,
m

λμg

)
+ e

−2m
λμg γ̃

(
α

Ω
,
m

λμg

)]
+

2mα2

(Ω + α) (Ω + 2α)
, (13)

where zk � m
2 (xk + 1) and xk and wk are the N Gauss-

Legendre abscissas and weights, respectively. As N increases,
the approximation becomes tighter. We have found that N =
3 terms are sufficient for λ ≥ 0.20 and N = 5 terms are
sufficient for 0.05 < λ < 0.20. For λ ≤ 0.05 more terms are
required.

D. Asymptotic Behavior of the Selection Rule

Now we analyze the regime in which Et is large in order
to gain further insights about the performance of optimal
selection. As Et increases, SEP(hi), for i ∈ {1, . . . , L},
becomes negligible compared to λgi. Hence, the SEP due
to the zero-transmit power option, which is m, becomes the
dominant contributor to the SEP. In this case, the optimal rule
in (4) for λ > 0 can be shown to reduce to

s∗ =

{
0, if g1 ≥ m

λ , . . . , gL ≥ m
λ

argmini∈{1,...,L}{gi}, otherwise
.

(14)
From (14), we get probability of s = 0 as Pr (s = 0) =

Pr
(
g1 ≥ m

λ , . . . , gL ≥ m
λ

)
=
(
e
− m

λμg

)L
. Thus, the SEP in

the asymptotic regime, which we denote by SEP(L)
asym, is simply

SEP(L)
asym � lim

Et→∞
SEP(L) = me

− Lm
λμg . (15)

We, thus, see that an error floor occurs when the interference
constraint is active. As expected, the error floor increases as
λ increases, which corresponds to a tighter interference con-
straint. However, it decreases exponentially when the number
of transmit antennas L increases.

IV. BENCHMARK SELECTION RULES

We now state the MI, MSLIR, and DS rules, which have
been proposed in the literature. We shall enhance the MI and
MSLIR rules in order to make them feasible for all interfer-
ence threshold values so that a fair performance comparison
becomes possible. We then analyze these enhanced rules.

A. MI Rule

The MI rule proposed in [17] always selects the transmit
antenna with the smallest channel power gain to the PRx. It
is given by

smi = arg min
i∈{1,...,L}

{gi}. (16)

Let Imi denote the average interference caused by the MI rule
to the primary. Thus, if Imi > Iave, the MI rule above is
infeasible even though its goal is to minimize the interference
caused to the primary.

To overcome this we introduce the zero-transmit power
option in the MI rule; the STx transmits with zero power in
case all the channel power gains to the PRx exceed a threshold
τ . Thus, the enhanced MI (EMI) rule that we use is given by

semi =

{
0, if g1 ≥ τ, . . . , gL ≥ τ
argmini∈{1,...,L}{gi}, otherwise

.

(17)
The threshold τ is chosen to satisfy the average interference
constraint. Clearly, τ = ∞ makes the EMI rule equivalent
to the MI rule. Notice also that τ = m

λ corresponds to the
asymptotic version of the optimal selection rule in (14). Thus,
for large Et, the optimal selection rule reduces to the EMI
rule. We now derive the SEP and average interference of the
EMI rule.

Theorem 3: The SEP of the EMI rule with L transmit
antennas is given by

SEP(L) = me
−Lτ
μg +

1

π

(
1− e

−Lτ
μg

)
×
(
mπ −

√
Ω

α+Ω
tan−1

(√
α+Ω

Ω
tan(mπ)

))
. (18)

Recall that α = csc2( π
M ) and Ω = Etμh

σ2 . The average
interference Iemi caused to the PRx by the EMI rule is

Iemi =
Etμg

L

[
1−

(
1 +

Lτ

μg

)
e

−Lτ
μg

]
. (19)

Proof: The proof is given in Appendix D.
Taking the limit τ → ∞ in (19) yields Imi =

Etμg

L . Equat-
ing (19) with Iave yields the following explicit characterization
of τ in terms of Iave:

τ =
μg

L

[
−1−W−1

(
LIave

eEtμg
− 1

e

)]
, (20)

where W−1(x) is the lower branch of the Lambert-W function,
which is defined as the inverse of the function f(x) =
xex [29].

B. MSLIR Rule

The MSLIR rule proposed in [17] selects the antenna with
the highest ratio of the STx-SRx and STx-PRx gains. It is
given by

smslir = arg max
i∈{1,...,L}

{
hi

gi

}
. (21)

Let the average interference caused by this rule be denoted by
Imslir. Therefore, the MSLIR rule is infeasible if Imslir > Iave.
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As before, we introduce the zero-transmit power option in the
rule. The enhanced MSLIR (EMSLIR) rule is then as follows:

semslir=

{
0, if h1

g1
≤ η, . . . , hL

gL
≤ η

argmaxi∈{1,...,L}{hi

gi
}, otherwise

.

(22)
The threshold η is chosen such that the interference constraint
is satisfied with equality, i.e., EtE [gsemslir ] = Iave. Note that
η = 0 makes the EMSLIR rule equivalent to the MSLIR rule.

The expressions for the SEP and average interference of the
EMSLIR rule are as follows.

Theorem 4: The average SEP of the EMSLIR rule with L
transmit antennas is given by

SEP(L)=m

(
ημg

ημg + μh

)L
+

L

πμh
L

∫ mπ

0

∫ ∞

0

h1
L−1e

−
(

h1Et
ασ2 sin2(θ)

)

×
(
γ

(
2− L,

h1

μh
+

h1

ημg

)
−γ

(
2− L,

h1

μh

))
dh1dθ, (23)

where γ(·, ·) is the incomplete gamma function [27]. The
average interference Iemslir caused to the PRx is equal to

Iemslir=
2Etμg

L+ 1

(
L

(
ημg

ημg + μh

)L+1

−(L+ 1)

(
ημg

ημg + μh

)L
+1

)
.

(24)
Proof: The proof is given in Appendix E.

Equating (24) with Iave yields η. Substituting η = 0 in (24)
yields Imslir =

2Etμg

L+1 . The SEP expression in (23) is in the
form of a double integral. Its upper bound can be expressed in
a single integral form using sin2(θ) ≤ 1, and can be computed
accurately as a sum of a few terms using Gauss-Laguerre
quadrature [28]. The details are omitted.

C. DS Rule

The difference AS rule for δ ∈ [0, 1] is given by [18]

sds = arg max
{1,...,L}

{δhi − (1− δ)gi}. (25)

Note that δ = 1 corresponds to the unconstrained selection
rule and δ = 0 corresponds to the MI rule in (16). Thus,
the DS rule can control the average interference caused to the
primary by choosing an appropriate δ. However, the minimum
interference caused by the DS rule is the same as that of the
MI rule in (16). Therefore, the DS rule is infeasible when
Imi > Iave. Introducing the zero-transmit power option can
make it feasible for all Iave. We do not delve into it further
due to space constraints. The SEP of this rule is given in [21,
(6)] for BPSK, and can be generalized to MPSK. The average
interference caused to the primary is given in [18, (22)].

V. NUMERICAL RESULTS AND PERFORMANCE

BENCHMARKING

We now present Monte Carlo simulations that use 106

samples to verify our analytical results and benchmark the
behavior of the upper bound-based optimal AS rule under
different conditions. The mean channel powers and noise
variance are set as unity, i.e., μh = μg = σ2 = 1.

Figure 2 compares the SEPs of the optimal selection rule
in (4) and the upper bound-based optimal rule in (8) as a
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Fig. 2. Comparison of the SEPs of the optimal AS rule in (4) and the upper
bound-based optimal rule in (8) (L = 2, M = 4, and Iave = 16 dB).
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Fig. 3. SEP as a function of Et of the upper bound-based optimal rule for
different numbers of secondary transmit antennas (λ = 0.1 and M = 4).

function of the symbol energy Et. We see that the two are
indistinguishable from each other. This is because the Chernoff
bound for the SEP of MPSK is tight. As a result, the same
antenna gets selected by the two rules with high probability.

Figure 3 plots the SEP of the upper bound-based optimal
rule as a function of Et for different numbers of STx antennas
with λ = 0.1. From the average interference constraint in (3),
a fixed λ implies that the ratio Iave

Et
is kept constant on each

curve. We observe that the analytical and simulation results
match very well. As expected, the SEP decreases significantly
as L increases.

Figure 4 studies the SEP of the upper bound-based optimal
rule as a function of Et for L = 2 antennas for different values
of λ. The λ = 0 curve corresponds to the scenario where the
interference constraint is not active and the unconstrained rule
is optimal. As λ increases, the SEP increases due to a tighter
average interference constraint. Notice that the analytical and
simulation results again match each other very well. We,
therefore, no longer distinguish between the two henceforth.

Figure 5 plots the SEP and its upper bound for a larger
range of Et for λ = 0.5 and different values of L. The figure
verifies the result in Section III-D about the occurrence of an
error floor occurs at larger Et. Notice that the error floor drops
significantly as L increases. Notice also that the gap between
the exact SEP and its upper bound disappears at larger Et.

Figure 6 plots the SEP as a function of Et when the average
interference threshold is fixed at Iave = 10 dB. We see that
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Fig. 4. SEP as a function of Et of the SEP upper bound-based optimal rule
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Et
(L = 2 and M = 4).
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Fig. 5. Large Et: SEP and its upper bound of the upper bound-based optimal
rule as a function of Et for different number of STx antennas (λ = 0.5 and
M = 4).

there are three regions of operation of the optimal rule for
L = 2: (i) Et ≤ 10 dB: In this case the interference constraint
is not active. Hence, λ = 0 and the optimal rule selects
the antenna with the highest STx-SRx channel power gain.
(ii) 10 dB < Et ≤ 12 dB: In this case λ becomes non-zero, but
is very small. The SEP continues to decrease as Et increases.
(iii) Et > 12 dB: The SEP now increases as Et increases.
This is because the probability that the STx does not transmit
increases so as to adhere to the average interference constraint.
Thus, Et = 12 dB is the optimal transmit symbol energy when
Iave = 10 dB and L = 2. Similarly Et = 14 dB is optimal for
L = 4.3 The optimal value of Et is Iave itself when L = 1.
Thus, the optimal value of Et increases with L.

Figure 7 plots the SEPs of the optimal rule, the SEP
Chernoff upper bound SEP(L)

UB in (11), and the SEPs obtained
by using the approximate SEP expressions named Model 2 and
Model 3 in [24, (12), (13)]. We see that these approximations
track the exact SEP well for smaller values of Et while the
SEP(L)

UB curve matches the exact SEP curve for larger Et.
Figure 8 plots the SEP as a function of Et when the

average interference threshold Iave is fixed at 12 dB. This is

3It is difficult to analytically characterize the optimal Et in closed-form
because the SEP expression and its bound depend on λ, which itself depends
on Et.
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Fig. 6. SEP of the upper bound-based optimal rule as a function of Et for
different numbers of secondary transmit antennas (Iave = 10 dB and M = 4).
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Fig. 7. Comparison of SEPs obtained using the approximate SEP expressions
proposed in [24] and the exact SEP and its upper bound derived in (10)
and (11), respectively (L = 2, M = 4, and Iave = 16 dB).

done for different MPSK constellation sizes. As expected, the
SEP increases as the constellation size increases. Further, the
optimal symbol energy is a function of the constellation size.
Figure 9 plots the cumulative distribution function (CDF) of
the instantaneous interference seen by the PRx. From this,
other performance metrics of interest such as the primary out-
age probability, which is the probability that the interference
at the PRx exceeds a threshold, can be read off.

Performance benchmarking: Figure 10 compares the SEP
of the optimal rule with those of the EMI, EMSLIR, and DS
rules, for Iave = 16 dB and L = 2. For Et < Iave = 16 dB, the
SEP of the optimal rule is the same as that of unconstrained
rule and the DS rule (δ = 1). For Et ≥ 19 dB, the optimal rule
becomes equivalent to the EMI rule (cf. Section IV-A). The
DS rule performs worse than the optimal rule when 16 dB <
Et < 19 dB, and is infeasible beyond 19 dB. The EMSLIR
rule is sub-optimal for all values of Et. We observe that the
minimum SEP of the optimal rule is lower by a factor of 16.5,
3.5, and 2.4 than the minimum SEPs of the EMI, EMSLIR,
and DS rules.

VI. CONCLUSIONS

We considered the problem of antenna selection at a sec-
ondary transmitter that operates under an average interference
constraint imposed by the underlay mode of operation of a
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Fig. 8. SEP of the upper bound-based optimal rule as a function of Et for
different constellation sizes (Iave = 12 dB and L = 4).
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M = 4).

cognitive radio. We developed the optimal selection rule that
minimizes the SEP, and saw that it is non-linear in nature. It
is functionally quite different from the many ad hoc rules that
have been proposed in the literature. We then analyzed the
SEP of the upper bound-based optimal rule for the general
case of L transmit antennas. These expressions simplified
further for L = 2 antennas. We also analyzed the SEPs of
the enhanced MI and MSLIR rules. We saw that the SEPs of
the optimal rule and the upper bound-based optimal rule are
indistinguishable from each other. The unconstrained rule and
the DS rule behave as the optimal rule for small Et, and the
optimal rule becomes equivalent to the EMI rule for larger Et.
While an error floor is unavoidable, it decreases exponentially
as L increases.

The analytical techniques presented in this paper open the
door to developing optimal subset selection rules when the
transmitter has more than one RF chain. Further, it is of
interest to investigate the optimal selection rule when the STx
is subject to a constraint on the outage probability it causes
at the PRx. Another interesting problem is characterizing the
joint and optimal power control and antenna selection policy.

APPENDIX

A. Proof of Theorem 1

When Iun ≤ Iave, the unconstrained rule is feasible. There-
fore, it must be the SEP-optimal rule. Now, consider the case
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Fig. 10. Comparison of the SEPs of the upper bound-based optimal rule
and several benchmark rules (L = 2, M = 4, and Iave = 16 dB).

when Iun > Iave. A selection rule that always chooses the zero-
transmit power option causes zero interference to the PRx. It
is, therefore, feasible for any Iave. Therefore, the set of all
feasible selection rules, Z , is a non-empty set.

Let φ ∈ Z be a feasible rule. For a given λ > 0, define

Lφ(λ) � Eh,g [SEP(hs) + λgs] , (26)

where s = φ (h,g). From the definition of φ∗ for Iun > Iave

in (4) , it follows that Lφ∗(λ) ≤ Lφ(λ). Therefore,

Eh,g [SEP(hs∗)]+λEh,g [gs∗ ] ≤ Eh,g [SEP(hs)]+λEh,g [gs] ,
(27)

where s∗ = φ∗(h,g). Choose λ such that Eh,g [gs∗ ] =
Iave
Et

.
Such a unique choice of λ is possible since 0 ≤ Iave < Iun

and the average interference decreases monotonically as λ in-
creases. Thus, φ∗ is also a feasible selection rule. Rearranging
the terms in (27), we get

Eh,g [SEP(hs∗)] ≤ Eh,g [SEP(hs)] + λ

(
Eh,g [gs]− Iave

Et

)
.

(28)
However, since φ is a feasible rule, we know that Eh,g [gs] ≤
Iave
Et

. Hence, (28) implies that for any feasible antenna selection
rule φ, Eh,g [SEP(hs∗)] ≤ Eh,g [SEP(hs)]. Thus, φ∗ must be
the optimal rule.

B. Proof of Theorem 2

The SEP conditioned on h and g, which we denote by
Pr (Err|h,g), can be written as

Pr (Err|h,g) = Pr (s = 0,Err|h,g) +
L∑

i=1

Pr (s = i,Err|h,g) .

Averaging over h and g and using the chain rule, we get the
following expression for the SEP:

SEP(L) = Eh,g [Pr (s = 0|h,g)Pr (Err|h,g, s = 0)]

+

L∑
i=1

Eh,g [Pr (s = i|h,g)Pr (Err|h,g, s = i)] . (29)

Using symmetry and the fact that the SEP conditioned on
option s depends only on hs, we get

SEP(L) = Eh,g [Pr (s = 0|h,g)Pr (Err|h0)]

+ LEh,g [Pr (s = 1|h,g)Pr (Err|h1)] . (30)
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Substituting (5) and using the fact that Pr (Err|h0) = m, we
get

SEP(L) = mEh,g [Pr (s = 0|h,g)]

+
L

π

∫ mπ

0

Eh,g

[
Pr (s = 1|h,g) exp

(
−h1Et sin

2
(

π
M

)
σ2 sin2 θ

)]
dθ.

(31)

From the definition of yi in (9) and y � [y1, . . . , yL], the
above expression for the SEP can be recast as

SEP(L) = mEh,g [Pr (s = 0|h,g)]

+
L

π

∫ mπ

0

Ey,g

[
Pr (s = 1|y,g)

(y1
m

)csc2(θ)]
dθ. (32)

From the law of total expectation we know that

Eh,g [Pr (s = 0|h,g)] = Pr (s = 0) . (33)

Similarly,

Ey,g

[
Pr (s = 1|y,g)

(y1
m

)csc2(θ)]
= Ey1,g1

[
Pr (s = 1|y1, g1)

(y1
m

)csc2(θ)]
.

We evaluate the two terms in (32) separately below.
First term: Recall that the selection rule in (8) is s∗ =

argmini∈{0,1,...,L} {yi + λgi}. Therefore, the first term can
be written as

mPr (s = 0) = mPr (y1 + λg1 > m, . . . , yL + λgL > m) ,

= m (Pr (y1 + λg1 > m))L . (34)

Here, the second equality follows from the independence of
the channel power gains of the L antennas. Further, using the
PDF of y1, which is given by fy1(y1) = α

Ωm
α
Ω
y

α
Ω−1
1 , y1 ∈

(0,m], we get

Pr (y1 + λg1 > m) =

∫ m

0

∫ ∞

m−y1
λ

e
− g1

μg

μg

αy
α
Ω−1
1

Ωm
α
Ω

dg1dy1

=

∫ m

0

αe

(
y1−m
λμg

)
y

α
Ω−1
1

Ωm
α
Ω

dy1 =
αe

− m
λμg (λμg)

α
Ω

Ωm
α
Ω

γ̃

(
α

Ω
,
m

λμg

)
.

Here, the last equality follows from the definition of γ̃ (., .) in
the theorem statement. Substituting the above equation in (34)
completes the evaluation of the first term, which we denote
by T1, and yields

T1=mPr (s = 0)=m

(
αe

− m
λμg (λμg)

α
Ω

Ωm
α
Ω

γ̃

(
α

Ω
,
m

λμg

))L
. (35)

Second term: In a similar manner, from (8), we get

Pr (s = 1|y1, g1)
= Pr (y2 +λg2 > y1 +λg1, . . . , yL +λgL > y1 +λg1,

m > y1 +λg1|y1, g1) ,
= (Pr (y2 +λg2 > y1 +λg1, y1 +λg1 < m|y1, g1))L−1 .

(36)

Simplifying Pr (y2 + λg2 > y1 + λg1, y1 + λg1 < m|y1, g1)
is similar to simplifying Pr (y1 + λg1 > m) in the first term.
This yields

Pr (s = 1|y1, g1)

=

(
1−e

−y1+λg1
λμg

(
λμg

m

)α
Ω

γ̃

(
α

Ω
+ 1,

y1 + λg1
λμg

))L−1

I{y1+λg1<m}.

Let the second term of (32) be denoted by T2. Substituting
the above equation in T2 and changing the integration limits
of g1 to ensure that y1 + λg1 < m, we get

T2 =
Lα

πΩm
α
Ωμg

∫ mπ

0

∫ m

0

∫ m−y1
λ

0

(y1
m

)csc2(θ)
y

α
Ω−1
1 e

−g1
μg

×
(
1−e

−y1+λg1
λμg

(
λμg

m

)α
Ω

γ̃

(
α

Ω
+ 1,

y1 + λg1
λμg

))L−1

dg1dy1dθ.

Combining the expressions for T1 and T2 gives the desired
result in (10).

C. Proof of Corollary 1

Starting from (32) and substituting L = 2, we get

SEP(2) = mEh,g [Pr (s = 0|h,g)]

+
2

π

∫ mπ

0

Ey,g

[
Pr (s = 1|y,g)

(y1
m

)csc2(θ)]
dθ. (37)

The first term can be obtained directly from (35). However, the
expectation in the second term can be simplified differently.
From the law of total expectation, we know that

Ey,g

[
Pr (s = 1|y,g)

(y1
m

)csc2(θ)]
= Ey

[
Pr (s = 1|y)

(y1
m

)csc2(θ)]
. (38)

From (8), we know that

Pr (s = 1|y) = Pr (y1 + λg1 < y2 + λg2, y1 + λg1 < m|y) .

Rearranging the terms and summing over the mutually exclu-
sive events y2 < y1 and y2 > y1, we get

Pr (s = 1|y)
= Pr

(
y2 < y1, g1 − g2 <

y2 − y1
λ

, g1 <
m− y1

λ

⏐⏐y)
+ Pr

(
y2 > y1, g1 − g2 <

y2 − y1
λ

, g1 <
m− y1

λ

⏐⏐y) .

Since g1 and g2 are i.i.d. exponential RVs, we can show that

Pr (s = 1|y) = 1

2

(
e

y2−y1
λμg − e

y1+y2−2m
λμg

)
I{y2<y1}

+
1

2

(
2− e

y1−y2
λμg − e

y1+y2−2m

λμg

)
I{y2>y1}.
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Thus, the expectation in the second term of (37), which we
denote by Q, can be written as

Q =
1

2

( α

Ωm
α
Ω

)2∫ m

0

[∫ y1

0

(
e

y2−y1
λμg − e

y1+y2−2m
λμg

)
y

α
Ω−1
2 dy2

+

∫ m

y1

(
2− e

y1−y2
λμg − e

y1+y2−2m
λμg

)
y

α
Ω−1
2 dy2

]
×
(y1
m

)csc2(θ)
y

α
Ω−1
1 dy1.

Simplifying Q in terms of incomplete gamma functions yields
the desired result in (12).

D. Proof of Theorem 3

1) SEP Analysis: We start from (31). In the EMI rule,
selection of an option s depends only on g. Therefore, the
SEP can be written as

SEP(L) = mEg [Pr (s = 0|g)]

+Eg [Pr (s = 1|g)] L
π

∫ mπ

0

Eh1

[
exp

(
−h1Et sin

2
(

π
M

)
σ2 sin2 θ

)]
dθ.

Since Eg [Pr (s = i|g)] = Pr (s = i), for i ∈ {0, 1}, and h1 is
an exponential RV, we get

SEP(L)=mPr (s = 0)+Pr (s = 1)
L

π

∫ mπ

0

sin2(θ)

sin2(θ) + α
Ω

dθ. (39)

For the EMI rule, Pr (s = 0) = Pr (g1 > τ, . . . , gL > τ) =

(Pr (g1 > τ))
L

= e
−Lτ
μg . By symmetry, the probability of

selecting any one of the L antennas is the same. Therefore,

Pr (s = 1) =
1− Pr (s = 0)

L
=

1− e
−Lτ
μg

L
. (40)

Substituting Pr (s = 0) and Pr (s = 1) in (39), we get

SEP(L) = me
−Lτ
μg +

1− e
−Lτ
μg

π

∫ mπ

0

sin2(θ)

sin2(θ) + α
Ω

dθ. (41)

The single integral in the above equation can be simplified by
using [27, (2.562)], and leads to the desired result.

2) Average Interference Analysis: The average interference
caused to the PRx when we employ the EMI rule is given by

Iemi = Et

L∑
i=1

Eg [giPr (s = i|g)] ,

= EtLEg [g1Pr (s = 1|g)] , (42)

= EtLEg1 [g1Pr (s = 1|g1)] . (43)

Here, (42) follows from symmetry, and (43) follows from the
law of total expectation. Hence,

Iemi =
EtL

μg

∫ ∞

0

g1Pr (s = 1|g1) e−
g1
μg dg1. (44)

For the EMI rule, Antenna 1 is chosen if g2 > g1, . . . , gL > g1
and g1 < τ . Hence,

Pr (s = 1|g1) = Pr (g2 > g1, . . . , gL > g1, g1 < τ |g1) ,
= (Pr (g2 > g1|g1))L−1

I{g1<τ}. (45)

Using the result Pr (g2 > g1|g1) = e
− g1

μg and simplifying
further yields (19).

E. Proof of Theorem 4

1) SEP Analysis: Starting from (31) and proceeding along
lines similar to Appendix B, we get

SEP(L) = mPr (s = 0)

+
L

π

∫ mπ

0

Eh1,g1

[
Pr (s = 1|h1, g1) exp

(
−h1Et sin

2
(

π
M

)
σ2 sin2 θ

)]
dθ.

The EMSLIR rule selects the zero-transmit power option
when h1

g1
< η, . . . , hL

gL
< η. Thus, we have Pr (s = 0) =

Pr
(

h1

g1
< η, . . . , hL

gL
< η

)
= Pr

(
h1

g1
< η

)L
. Furthermore,

Pr

(
h1

g1
< η

)
=

∫ ∞

0

Pr (h1 < ηg1|g1) e
− g1

μg

μg
dg1,

=

∫ ∞

0

(
1−e

−ηg1
μh

)e− g1
μg

μg
dg1=

ημg

ημg + μh
. (46)

Similarly, Antenna 1 is selected when h2

g2
< h1

g1
, . . . , hL

gL
< h1

g1

and h1

g1
> η. Thus,

Pr (s = 1|h1, g1)

= Pr

(
h2

g2
<

h1

g1
, . . . ,

hL

gL
<

h1

g1
,
h1

g1
> η
⏐⏐⏐h1, g1

)
. (47)

Conditioned on h1 and g1, the events
{

hi

gi
< h1

g1

}
, for i ∈

{2, . . . , L}, and h1

g1
> η are mutually independent. Further

the RVs h2

g2
, . . . , hL

gL
are identically distributed. Thus,

Pr (s = 1|h1, g1)=Pr

(
h2

g2
<

h1

g1

⏐⏐⏐h1, g1

)L−1

I{ h1
g1

>η
}. (48)

Using (46), we get Pr
(

h2

g2
< h1

g1
|h1, g1

)
=

μgh1

μhg1+μgh1
. Hence,

SEP(L)=
L

π

∫ mπ

0

∫ ∞

0

∫ h1
η

0

exp

(
−h1Et sin

2
(

π
M

)
σ2 sin2 θ

)
e
− g1

μg

μg

e
− h1

μh

μh

×
(

μgh1

μhg1 + μgh1

)L−1

dg1dh1dθ +m

(
ημg

ημg + μh

)L
. (49)

Using the variable substitution q = g1
μg

+ h1

μh
and simplifying

further yields (23).
2) Average Interference Analysis: Carrying out the same

steps as in (43) we get

Iemslir = EtLEh1,g1 [g1Pr (s = 1|h1, g1)] . (50)

Substituting the expression for Pr (s = 1|h1, g1) from (48) and
simplifying further yields the desired result in (24).
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