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Abstract—The performance of an underlay cognitive radio
(CR) system, which can transmit when the primary is on, is
curtailed by tight constraints on the interference it can cause to
the primary receiver. Transmit antenna selection (AS) improves
the performance of underlay CR by exploiting spatial diversity
but with less hardware. However, the selected antenna and its
transmit power now both depend on the channel gains to the
secondary and primary receivers. We develop a novel Chernoff-
bound based optimal AS and power adaptation (CBBOASPA)
policy that minimizes an upper bound on the symbol error
probability (SEP) at the secondary receiver, subject to constraints
on the average transmit power and the average interference to
the primary. The optimal antenna and its power are presented
in an insightful closed form in terms of the channel gains. We
then analyze the SEP of CBBOASPA. Extensive benchmarking
shows that the SEP of CBBOASPA for both MPSK and MQAM
is one to two orders of magnitude lower than several ad hoc AS
policies and even optimal AS with on-off power control.

Index Terms—Cognitive radio, Underlay, Antenna selection,
Multiple antennas, Diversity techniques, Fading channels, Sym-
bol error probability, Interference constraint, Power constraint

I. INTRODUCTION

COGNITIVE radio (CR) is a technology that promises to
significantly improve the availability and utilization of

precious radio spectrum. Cognitive nodes intelligently adapt
their transmissions and co-exist with other users. One common
paradigm of CR divides the users into two classes, namely,
primary users (PUs), which have unrestricted access to the
spectrum, and secondary users (SUs), which can access the
same spectrum but must ensure that their transmissions do
not interfere excessively with the PUs.

Several modes of CR operation, such as interweave and
underlay, have been considered in the literature for facilitating
such hierarchical co-existence [2]. In the underlay mode,
which is the focus of this paper, a secondary transmitter (STx)
can transmit even when the primary is on, but under tight
constraints on the interference it causes to the primary receiver
(PRx). These constraints can significantly curtail the data rates
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at which the STx can transmit, and motivate the development
of novel, interference-aware transmission techniques.

Among these, multiple input multiple output (MIMO) an-
tenna techniques are very promising as they exploit spatial
diversity to improve CR performance [3], [4]. However, in
MIMO, each antenna requires a dedicated radio frequency
(RF) chain. Single antenna selection (AS) is a popular tech-
nique that has been extensively studied in the literature in
order to address this challenge [5], [6]. In it, one of the
antennas is selected as a function of the channel conditions to
transmit data. Thus, only one RF chain is now required at the
transmitter. This reduces the hardware complexity, foot print,
and cost of the device.

AS has also been considered for CR [7]–[14]. In underlay
CR, the interference constraint imposed on the STx funda-
mentally alters the criteria used to select the transmit antenna.
Intuitively, even a transmit antenna with a high channel power
gain to the secondary receiver (SRx) should not be selected
if it causes significant interference to the PRx. Similarly, the
transmit power from the selected antenna should also be a
function of the channel gains to the SRx and the PRx. This
is unlike receive AS, in which choice of the antenna remains
unaffected by the interference constraint [11].

A. Literature Survey

Several transmit AS policies have been proposed for un-
derlay CR. These include the minimum interference (MI)
rule [8], which selects the antenna with the weakest channel
power gain to the PRx; the maximum signal power to leak
interference ratio (MSLIR) rule [8], which selects the antenna
with the largest ratio of the channel power gains to the SRx
and PRx; and the difference AS (DAS) rule [9], which selects
the antenna with the largest weighted difference between the
channel power gains to the SRx and PRx. While the STx
transmits with a fixed power in [8], [9], AS with on-off power
control is proposed in [10], in which the selected antenna
transmits either with a fixed power or with zero power.

Joint AS and power control is considered in [15] with the
goal of maximizing the SU capacity under a peak interference
constraint. However, no constraints are placed on the transmit
power. As a result, the transmit power is simply proportional
to the reciprocal of the STx-PRx channel power gain. Optimal
power control to maximize the SU capacity is considered
in [12], which imposes a constraint on the average or peak
transmit power in addition to a constraint on the average
or peak interference power. However, AS is not considered.
Optimal power control – but without AS – to maximize
ergodic capacity or minimize SEP for underlay CR with
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average or peak interference power constraints is considered
in [16]–[18].

In [13], the transmit and receive antenna subsets and the
transmit covariance matrix are jointly optimized for a MIMO
CR system to maximize an achievable rate of the STx subject
to an instantaneous interference constraint and a peak transmit
power constraint. A computationally efficient iterative algo-
rithm based on a convex approximation is developed and a
norm-based heuristic is also proposed. The channel gains of
the transmit-receive antenna pairs in the STx-SRx, STx-PRx,
and primary transmitter (PTx)-SRx links are assumed to be
known to the STx. In [11], the STx simultaneously transmits
using zero-forcing beamforming to Nt users, where Nt is
the number of transmit antennas at the STx. First, all users
whose channels from the STx have a correlation less than δp
to the STx-PRx channel are pre-selected so as to limit the
interference caused to the PRx. Among these, Nt users with
channels whose cross-correlation is less than δc are selected
for transmission so as to maximize the downlink sum rate.
However, no interference constraint is explicitly specified. The
number of users is assumed to be much greater than Nt.
Further, single receive AS is considered.

B. Contributions

In this paper, we consider an STx with Nt antennas that
employs transmit AS and transmits data to an SRx with Nr

antennas. It is subject to an average transmit power constraint
and an average primary interference power constraint. For this
problem, even the criteria for optimally selecting the transmit
antenna and its power are not known; this open problem is
solved in this paper. This problem is different from antenna
subset selection in conventional MIMO systems, which has
been studied in [19] and the references therein. Here, the
optimal subset selection criterion is known, and the focus is
on developing computationally efficient search algorithms.

We first derive for MPSK an SEP-optimal AS and power
adaptation (ASPA) policy that minimizes a Chernoff up-
per bound on the SEP of the secondary system. We shall
henceforth refer to it as the Chernoff bound-based optimal
ASPA (CBBOASPA) policy. We focus on single transmit AS
because it is practically and theoretically relevant [6], [8],
[14], [15]. It requires only one RF chain at the transmitter.
Yet, in conventional MIMO systems, it achieves the same
diversity order as antenna subset selection [20]. The average
interference constraint has been used in [12], [16], [18], [21].

CBBOASPA exploits the fact that the channel state in-
formation required to select an antenna can also help adapt
the transmit power of the selected antenna. An elegant and
insightful closed-form characterization of the optimal antenna
and its transmit power in terms of the STx-SRx and STx-
PRx channel power gains is developed. It turns out to be
functionally different from the ad hoc AS policies proposed
in the literature and even the optimal AS policy with on-off
power control. As we shall see, the exponential form of the
Chernoff bound, which arises for other constellations such
as MQAM and is functionally similar to the approximations
proposed in [22, Chap. 9], makes CBBOASPA applicable to
other constellations as well. While the Chernoff bound is

well known, its use to convert an intractable problem into
a tractable problem that yields an insightful, non-obvious, and
elegant solution is a contribution of this paper.

The second contribution is an analysis of the SEP of
CBBOASPA. The SEP analysis is challenging and different
from that for conventional AS because of the non-linear
dependence of both the selected antenna and its transmit power
on the various channel power gains. We first derive an exact
and novel expression for its SEP, which is useful given that it
is general and exact. To gain further insights, we then present
a simpler SEP upper bound that tracks the exact SEP well over
all regimes of interest. We gain further insights by studying the
special case with one receive antenna. These results provide
different trade-offs between accuracy and simplicity.

Thirdly, extensive numerical results are presented to quan-
tify the effect of Nt, Nr, constellation size, interference
constraint, and power constraint on CBBOASPA. We also
extensively benchmark its performance with the several afore-
mentioned AS policies. We show that for both MPSK and
MQAM it reduces the SEP by up to two orders of magnitude.

We note that this paper differs from [10] in its basic
idea and model, analysis, and performance. In terms of idea
and modeling, the manuscript jointly adapts the power and
selected antenna, while [10] fixes the power. This leads to
an optimal policy that is different from that in [10], and
does not follow from it. The SEP analysis that ensues and
the final SEP expressions are also different and novel. This
is because the composite random variables (RVs) that drive
AS are different from those in [10]. The ability to adapt
the transmit power continuously adds a new and challenging
dimension to the analysis. For example, while three regimes
of operation have to be specified for CBBOASPA, the simpler
policy in [10] operates in only one of two regimes. In terms
of performance, CBBOASPA reduces the SEP by more than
an order of magnitude over the policy in [10] for both MPSK
and MQAM, which demonstrates the efficacy and significance
of our approach.

C. Organization and Notation

The paper is organized as follows. Section II sets up the
system model and the optimization problem. The CBBOASPA
policy and its SEP are derived in Sec. III. Numerical results
and our conclusions are presented in Sec. IV and Sec. V,
respectively.

We shall use the following notation henceforth. The proba-
bility of an event A is denoted by Pr (A), and the conditional
probability of A given that an RV X takes the value x is
denoted by Pr (A|X = x). The expectation with respect to
the RV X is denoted by EX [.]. The sum

∑k2

i=k1
is identically

zero if k2 < k1.

II. SYSTEM MODEL AND PROBLEM STATEMENT

As shown in Figure 1, we consider an underlay CR system
in which an STx with Nt antennas transmits data to an SRx,
which has Nr receive antennas. Its transmissions cause inter-
ference at a PRx, which has one antenna. The SRx and the STx
constitute the secondary system. The STx needs to select one
of its antennas for transmission. For i ∈ {1, 2, . . . , Nr} and
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j ∈ {1, 2, . . . , Nt}, hij denotes the instantaneous baseband
channel gain between the j th transmit antenna of the STx
and the ith receive antenna of the SRx, and gj denotes the
instantaneous baseband channel gain between the j th transmit
antenna of the STx and the PRx. Let the corresponding
channel power gains be denoted by

Λij = |hij |2 and ωj = |gj |2 . (1)

Further, let Λ denote the matrix [Λij ] and let ω =
[ω1, . . . , ωNt]. The NtNr STx-SRx channels are assumed
to be independent and identically distributed (i.i.d.) random
variables (RVs), and so are the Nt STx-PRx channels. In the
SEP analysis, we consider Rayleigh fading, in which case Λij

and ωj are exponential RVs with means Λ̄ and ω̄, respectively.

A. Selection Options and Data Transmission

For ease of exposition, we first focus on MPSK. Our results
generalize to other constellations such as MQAM, which is
covered in Sec. III-C. The STx transmits a symbol z that
is drawn with equal probability from an MPSK constellation
of size M . For transmitting z, it selects one out of the Nt

antennas. It also adapts its transmit power as a function of the
channel power gains.

As the transmit power decreases, the SEP monotonically
increases. Its maximum value occurs in the limiting case when
the STx transmit power is zero. It equals m � 1− 1

M in this
case because the optimal receiver just chooses any one of the
M symbols as its decoded symbol with equal probability [18].
We treat the case where the STx transmits with zero power
separately because it then does not matter which antenna is
selected.1 We treat it as a transmission from a virtual antenna 0
whose corresponding channel power gains and transmit power
are all zero: Λi0 = 0, for 1 ≤ i ≤ Nr, and ω0 = 0.

Let s ∈ {0, 1, . . . , Nt} be the antenna selected. In baseband,
the interference signal ip seen by the PRx and the signal ri
received by the ith receive antenna of the SRx are given by

ri =
√
Pshisz + εi + ζi, (2)

ip =
√
Psgsz, (3)

where z is the unit energy complex data symbol, Ps is the
power transmitted from the selected antenna s, and εi is
circular symmetric complex additive white Gaussian noise.
The interference seen by the SRx due to primary transmissions
is ζi, and is assumed to be Gaussian. This corresponds to a
worst case model for the interference and makes the problem
of finding the selection rule tractable [8], [9], [23]. This model
also covers the models considered in [18], [24], in which the
interference from the primary transmitter (PTx) is assumed
to be negligible. Therefore, εi + ζi is a circularly symmetric
complex Gaussian RV, whose variance is denoted by σ2.

The STx is assumed to know Λ and ω, i.e., its channel
power gains to the SRx and to the PRx [8], [9], [15]. No
knowledge of the phases of any complex baseband channel
gain is required at the STx. In the time division duplex

1This case must be considered in the problem formulation since otherwise
the solution to an interference-constrained problem will be the trivial policy
in which the STx always transmits with zero power, which is not reasonable.
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Fig. 1. System model with one PRx and a secondary system consisting of
an STx with Nt transmit antennas and one RF chain that communicates with
an SRx with Nr receive antennas.

(TDD) mode of operation, the STx can exploit reciprocity and
estimate Λ and ω from the signals it overhears from the SRx
and PRx when they transmit. Since phase information is not
required, simple signal strength based techniques can be used
for estimation. The SRx uses a coherent receiver, and only
needs to know the complex channel gain from the selected
antenna to the receive antennas [10]. In practice, this can be
achieved by embedding pilots along with the data symbols in
every coherence interval.

B. Problem Statement

An ASPA policy φ is a mapping φ : (R+)
Nr × (R+)

Nt ×
(R+)

Nt → {0, 1, . . . , Nt} × R+ that selects one of the
Nt + 1 antennas and the corresponding transmit power for
every realization of Λ and ω. For a policy φ, we denote the
selected antenna and transmit power as sφ(Λ,ω) and Pφ(Λ,ω),
respectively. Our goal is to find the optimal policy φ∗ that
minimizes the fading-averaged SEP of the secondary system
subject to (s.t.) the following two constraints:

• The average interference the STx causes to the PRx
must not exceed a threshold Iave. Therefore, from (3),
EΛ,ω

[
Pφ(Λ,ω)ωsφ(Λ,ω)

] ≤ Iave.
• The average transmit power of the STx must not exceed

Pave, i.e., EΛ,ω

[
Pφ(Λ,ω)

] ≤ Pave.

The SEP for MPSK conditioned on Λ and ω, denoted by
Pr (Err|Λ,ω), is then [25, (8.23)]

Pr (Err|Λ,ω) =
1

π

∫ mπ

0

exp

(
−Pφ(Λ,ω)

∑Nr

i=1 Λisφ(Λ,ω)

ηm sin2 θ

)
dθ,

(4)

≤ m exp

(
−Pφ(Λ,ω)

∑Nr

i=1 Λisφ(Λ,ω)

ηm

)
, (5)

where η = σ2

m sin2( π
M )

, and the summation term∑Nr

i=1 Λisφ(Λ,ω)
arises due to the use of maximal ratio

combining (MRC) by the optimal receiver at the SRx. The
exact SEP expression in (4) is in the form of a single
integral, which is intractable for the purposes of optimization.
To gain analytical insights, we minimize its integral-free
Chernoff upper bound given in (5). This form is similar to
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the integral-free SEP approximations proposed in [22]. It also
applies to other constellations, as we discuss in Sec. III-C.

Our problem can be mathematically stated as the following
mixed integer, non-linear, stochastic optimization problem
over the space of all ASPA policies φ:

min
φ

EΛ,ω

[
m exp

(
−Pφ(Λ,ω)

∑Nr

i=1 Λisφ(Λ,ω)

ηm

)]
, (6)

s.t. EΛ,ω

[
Pφ(Λ,ω)ωsφ(Λ,ω)

] ≤ Iave, (7)

EΛ,ω

[
Pφ(Λ,ω)

] ≤ Pave, (8)

sφ(Λ,ω) ∈ {0, 1, . . . , Nt} and Pφ(Λ,ω) ≥ 0, ∀ Λ,ω.
(9)

Unless mentioned otherwise, we no longer show the depen-
dence of the selected antenna and power on Λ and ω. This is
done in order to keep the notation simple.

C. Alternate Models and Extensions

The problem that we study can be generalized in several
interesting ways. Firstly, it can also be posed under alternate
models for interference. For example, the instantaneous in-
terference power can be constrained along the lines of [12],
[16], [21], [23]. In terms of the effect on the primary system, a
primary outage based constraint becomes more relevant. Note,
however, that it requires knowledge of the PTx-PRx link. For
example, the mechanisms described in [26], [27] to acquire
the above channel knowledge require the PRx to communicate
with the STx. This may not be practically feasible when the
primary operates oblivious to the secondary system. Secondly,
the interference from the PTx to the SRx need not even be
Gaussian. For example, the asynchronous turning on and off
of the PTx can affect its statistics. The optimal ASPA policy
for these alternate models is beyond the scope of this paper.

III. CBBOASPA AND ITS PERFORMANCE ANALYSIS

At least one of the two constraints in (7) and (8) must be
active in the optimal policy.2 To present the general solution
of CBBOASPA, we first define two ASPA policies φI and φP

as follows. The proofs of their optimality are simpler versions
of the proof for Theorem 1 below, and are not shown.

The optimal ASPA policy φI that minimizes the SEP subject
only to the average interference constraint in (7) and (9) is as
follows. The optimal antenna sφI is

sφI =

⎧⎪⎨
⎪⎩

0,
∑Nr

i=1 Λi1

ω1
≤ ηλI , . . . ,

∑Nr
i=1 ΛiNt

ωNt
≤ ηλI ,

argmax
j∈{1,...,Nt}

{∑Nr
i=1 Λij

ωj

}
, otherwise.

(10)
The optimal power PφI transmitted from sφI is

PφI =

⎧⎨
⎩

0, sφI = 0,

mη∑Nr
i=1 ΛisφI

loge

(∑Nr
i=1 ΛisφI

λIηωsφI

)
, otherwise.

(11)

2If both constraints are not met with equality, then the transmit power of
the STx can be increased by a factor that is strictly greater than unity without
violating the constraints. Doing so yields a new policy that has a lower SEP.
Therefore, the original policy cannot be optimal.

Here, λI > 0 is chosen such that the average interference
constraint is satisfied with equality. To the best of our knowl-
edge, this result itself is novel for an average interference
constrained underlay CR system.

Similarly, the optimal ASPA policy φP that minimizes the
SEP when the STx is subject only to the average power
constraint in (8) and to (9) is as follows. The optimal antenna
sφP is

sφP =

⎧⎨
⎩

0,
∑Nr

i=1 Λi1 ≤ ηλP , . . . ,
∑Nr

i=1 ΛiNt ≤ ηλP ,

argmax
j∈{1,...,Nt}

{∑Nr

i=1 Λij

}
, otherwise.

(12)
The optimal power PφP transmitted from sφP is

PφP =

⎧⎨
⎩

0, sφP = 0,

mη∑Nr
i=1 ΛisφP

loge

(∑Nr
i=1 ΛisφP

λP η

)
, otherwise.

(13)
Here, λP > 0 is chosen such that the average power constraint
is satisfied with equality. This result can be interpreted as
an extension of the power control policy derived in [28] that
minimizes the SEP of BPSK.

We now present the CBBOASPA policy for any given Pave

and Iave. Define a feasible policy to be one that satisfies all
the constraints (7), (8), and (9).

Theorem 1: Define

Xj �
∑Nr

i=1 Λij

λP + λIωj
, for j ∈ {1, . . . , Nt}. (14)

If φP is feasible, then φ∗ = φP . Else, if φI is feasible, then
φ∗ = φI . Else, the optimal antenna sφ∗ is

sφ∗ =

{
0, X1 ≤ η, . . . , XNt ≤ η,
argmaxj∈{1,...,Nt} {Xj} , otherwise.

(15)

The optimal power Pφ∗ transmitted from sφ∗ is

Pφ∗ =

{
0, sφ∗ = 0,

mη∑Nr
i=1 Λisφ∗

loge

(
Xsφ∗

η

)
, otherwise. (16)

Here, λI > 0 and λP > 0 are chosen so as to meet the average
power and interference constraints with equality, and such a
choice exists.

Proof: The proof is given in Appendix A.
Note that the above result holds regardless of the fading

distribution of Λij and ωj , and does not preclude spatially
correlated antennas. These only manifest themselves through
the two constants λP and λI , which are found numerically.
This is typical in several constrained adaptation problems in
wireless [22]. The functional form of Xj partially validates
the intuition behind the ad hoc MSLIR rule, which makes its
selection decisions based on the ratio Λj

ωj
. What it missed is the

affine form of the denominator in (14). It also did not consider
power adaptation, which is when such a ratio matters.

To better understand CBBOASPA, we plot in Figure 2
the transmit power as a function of the channel power gain
Λ1s from the selected antenna s to the SRx for the power-
cum interference-constrained regime (λI > 0 and λP > 0).
This is done for different values of ωs for Nt = 2 and
Nr = 1. The transmit power is a function of both Λ1s
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Fig. 2. Transmit power from selected antenna in the power- cum interference-
constrained regime (Iave = 10 dB, ω̄ = 1, Λ̄ = 1, σ2 = 1, and Pave =
12 dB).

and ωs. It decreases as ωs increases due to the interference
constraint. The behavior in the interference-constrained regime
and in the power-constrained regime is qualitatively similar
except that in the latter regime, the transmit power Ps is
independent of ωs. In all the regimes, the transmit power is
zero for Λ1s ≤ η(λP + λIωs). Thereafter, as Λ1s increases,
the transmit power increases. However, for larger values of
Λ1s, it decreases towards zero. This decrease occurs because
when the instantaneous SEP is small, increasing the transmit
power to further reduce it does not influence the average SEP
as much. Thus, the node instead conserves power in this case.

Complexity: Since the optimal solution is specified in a
closed form, the complexity of computing it is quite minimal.
Computing an Xj requires Nr + 1 additions, one multiplica-
tion, and one division operation. Selecting the optimal antenna
involves Nt comparisons. Determining the transmit power
requires at most two multiplications and divisions, and a log
function computation. Thus, the number of operations is linear
in both Nt and Nr.

A. SEP Analysis of CBBOASPA

Since CBBOASPA involves thresholding, ordering, and
comparing the Nt i.i.d. RVs X1, . . . , XNt , we first characterize
the cumulative distribution function (CDF) and probability
distribution function (PDF) of Xj .

Lemma 1: The CDF Pr (Xj ≤ x) and PDF fXj (x) of Xj

are given, for x ≥ 0, by

Pr (Xj ≤ x) = 1− Λ̄e
λP
ω̄λI

ω̄λI

Nr−1∑
k=0

xkΓ
(
k + 1, λP

Λ̄
x+ λP

ω̄λI

)
k!
(
x+ Λ̄

ω̄λI

)k+1
,

(17)
and

fXj (x) =

Nr−1∑
k=0

⎡
⎣λP

(
λP

Λ̄
x
)k

e−
λP
Λ̄

x

k!
(
ω̄λIx+ Λ̄

) − Λ̄

ω̄λI
e

λP
ω̄λI

×
(
k Λ̄
ω̄λI

xk−1 − xk
)
Γ
(
k + 1, λP

Λ̄
x+ λP

ω̄λI

)
k!
(
x+ Λ̄

ω̄λI

)k+2

⎤
⎥⎦ . (18)

where Γ denotes the upper incomplete gamma function [29].

Proof: The proof is given in Appendix B.
An exact expression for the SEP of CBBOASPA is as

follows.
Theorem 2: The SEP of CBBOASPA for MPSK equals

SEP = m

⎛
⎜⎝1− Λ̄e

λP
ω̄λI

ω̄λI

Nr−1∑
k=0

ηkΓ
(
k + 1, λP

Λ̄
η + λP

ω̄λI

)
k!
(
η + Λ̄

ω̄λI

)k+1

⎞
⎟⎠
Nt

+
Nt

π

∫ ∞

η

∫ mπ

0

(η
x

)csc2(θ) Nr−1∑
k=0

⎡
⎣λP

(
λP

Λ̄
x
)k

e−
λP
Λ̄

x

k!
(
ω̄λIx+ Λ̄

)

− Λ̄

ω̄λI
e

λP
ω̄λI

(
k Λ̄
ω̄λI

xk−1 − xk
)
Γ
(
k + 1, λP

Λ̄
x+ λP

ω̄λI

)
k!
(
x+ Λ̄

ω̄λI

)k+2

⎤
⎥⎦

×

⎡
⎢⎣1− Λ̄

ω̄λI
e

λP
ω̄λI

Nr−1∑
k=0

xkΓ
(
k + 1, λP

Λ̄
x+ λP

ω̄λI

)
k!
(
x+ Λ̄

ω̄λI

)k+1

⎤
⎥⎦
Nt−1

dθdx.

(19)

Proof: The derivation is given in Appendix C.
While the expression is exact and general, it is in the form

of a double integral and is quite involved. This is unavoidable
because of the non-linear dependence of both the optimal AS
rule in (15) and the optimal transmit power in (16) on the
channel power gains to the PRx. In order to gain more insights,
we now present simpler bounds. We also study the simpler
Nt × 1 model, and show that for it the bounds reduce to a
closed form that depends on the regime of operation.

The SEP expression can be simplified to a single integral
form by writing its integral over θ as a sum of integrals over
two intervals [0, π

4 ] and [π4 ,mπ], along the lines of [19], [30].
In the first and second integrals, sin2(θ) is upper bounded by
1
2 and 1, respectively. The resultant upper bound SEPu is then

SEPu=m

⎛
⎜⎝1− Λ̄e

λP
ω̄λI

ω̄λI

Nr−1∑
k=0

ηkΓ
(
k + 1, λP

Λ̄
η + λP

ω̄λI

)
k!
(
η + Λ̄

ω̄λI

)k+1

⎞
⎟⎠

Nt

+Nt

∫ ∞

η

η

x

(
m− 1

4
+

η

4x

)Nr−1∑
k=0

⎡
⎣λP

(
λP

Λ̄
x
)k

e−
λP
Λ̄

x

k!
(
ω̄λIx+ Λ̄

)

− Λ̄

ω̄λI
e

λP
ω̄λI

(
k Λ̄
ω̄λI

xk−1 − xk
)
Γ
(
k + 1, λP

Λ̄
x+ λP

ω̄λI

)
k!
(
x+ Λ̄

ω̄λI

)k+2

⎤
⎥⎦

×

⎡
⎢⎣1− Λ̄

ω̄λI
e

λP
ω̄λI

Nr−1∑
k=0

xkΓ
(
k + 1, λP

Λ̄
x+ λP

ω̄λI

)
k!
(
x+ Λ̄

ω̄λI

)k+1

⎤
⎥⎦
Nt−1

dx.

(20)

The single integral(s) above can be easily evaluated nu-
merically because of the exponentially decaying term in the
integrand(s).

B. Insightful Special Case: One Receive Antenna (Nr = 1)

We now show that the upper bound simplifies further to an
insightful closed form when Nr = 1. The derivation is given
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in Appendix D.

• Power-constrained Regime: When the interference con-
straint is inactive, i.e., λI = 0,

SEPu = m
(
1− e−

λP η

Λ̄

)Nt

+
NtmηλP

Λ̄

×
Nt−1∑
l=0

(
Nt − 1

l

)
(−1)lE1

(
(l + 1)ηλP

Λ̄

)
, (21)

where E1(·) is the standard exponential integral func-
tion [29, pp. xxxv].

• Interference-constrained Regime: When the power con-
straint is inactive, i.e., λP = 0, we get the following
simple bound, which is also a bound on the error floor:

SEPu =
ω̄λImη

Λ̄(Nt − 1)

[
1−
(

ω̄λIη

ω̄λIη + Λ̄

)Nt−1
]
. (22)

• Power- cum Interference-constrained Regime: When
both the constraints are active, i.e., λI > 0 and λP > 0,
we get (23), which is given at the top of the next page.

C. Extension to Other Constellations

We now develop CBBOASPA for MQAM. It can be shown
that when the selected antenna is sφ and the transmit power
is Pφ, the SEP of MQAM is upper bounded by [25, (8.12)]

Pr (Err|Λ,ω) ≤
(
a

2
− a2

16

)
exp

(
−3Pφ

∑Nr

i=1 Λisφ

2(M − 1)σ2

)
,

(24)
where a = 4 − 4√

M
. This is functionally similar to the

expression in (5), except that 1
ηm is replaced with 3

2(M−1)σ2

inside the exponential. Thus, the structure of the optimal ASPA
policy remains same for MQAM, except for scaling constants.
The SEP analysis for MQAM is also similar to that for MPSK;
the expressions are not shown here due to space constraints.

IV. NUMERICAL RESULTS AND PERFORMANCE

BENCHMARKING

We now present Monte Carlo simulations that use 106

samples to verify our analytical results and to benchmark the
performance of CBBOASPA under different scenarios. Unless
mentioned otherwise, Λ̄ = ω̄ = σ2 = 1.

A. Verification of Analysis and Quantitative Insights

Figure 3 plots the SEP of CBBOASPA (cf. (19)) as a
function of the average transmit power constraint Pave. This is
done for different values of the average interference threshold
Iave with Nt = 2, Nr = 1, and 8PSK. We observe that
the simulation and analysis results are in excellent agreement.
Notice that the SEP decreases as Iave increases because the
STx can transmit at a higher average power. We also see
the occurrence of an error floor because of the interference
constraint. As expected, it decreases as Iave increases.

Figure 4 plots the SEP (cf. (19)) and its upper bound
(cf. (20)) as a function of Pave for Iave = 10 dB. We see
that upper bound tracks the SEP well for both QPSK and
8PSK over the entire range of values of Pave. As shown, the
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Fig. 3. SEP as a function of Pave for different values of Iave (Nt = 2,
Nr = 1, and 8PSK).
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Fig. 4. SEP and its upper bound as a function of Pave for different
constellation sizes (Iave = 10 dB, Nt = 2, and Nr = 1).

gap between the two is only 0.7 dB for QPSK and 1.0 dB for
8PSK at Pave = 9 dB. As expected, the SEP increases with
the constellation size, and an error floor again occurs.

Figure 5 studies the effect of the number of receive antennas
Nr at the SRx on the SEP. It plots the SEP as a function of
Pave for different Nr when Iave = 2 dB and Nt = 2. As
expected, the SEP decreases as Nr increases. The error floor
decreases markedly as Nr increases – it drops from 0.1 to 0.02
to 0.0005 when Nr increases from 1 to 2 to 4. The behavior
when the number of transmit antennas is increased is similar.

B. Performance Benchmarking

We now benchmark the performance of CBBOASPA with
several AS policies considered in the literature for underlay
CR, namely, MI, MSLIR, DAS, and SEP-optimal AS with on-
off power control. This is done for both MPSK and MQAM.
The MI and MSLIR policies, as originally proposed, require
the STx to transmit with a fixed power Pt always. Hence,
they may not even be feasible. We, therefore, enhance them
by incorporating on-off power control in them, so that they are
feasible for all system parameter settings and serve as useful
benchmarks [10]. We also extend all the benchmark policies to
handle multiple receive antennas. For single transmit AS, the
MSLIR rule arises naturally for the instantaneous interference
constraint used in [13] because it makes the transmit power of
the selected antenna to be inversely proportional to the STx-
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SEPu = m

(
1− Λ̄e−

λP η

Λ̄

ω̄λIη + Λ̄

)Nt

+Ntmη

Nt−1∑
l=0

(
Nt − 1

l

)
(−1)l

[
λP + ω̄λI

Λ̄
E1

(
(l + 1)λP η

Λ̄

)
−

l∑
k=1

λP (ω̄λI)
k−1−l

e−
(l+1)λP η

Λ̄(
Λ̄
)k−l

(l + 1− k)!

×
l+1−k∑
n=1

(n− 1)!(−1)l+1−k−n
[
(l+1)λP

Λ̄

]l+1−k−n

(
η + Λ̄

ω̄λI

)n −
l+1∑
k=1

(
ω̄λI

Λ̄

)k−1−l

e−
(l+1)λP η

Λ̄

l+2−k∑
n=1

(n− 1)!
(
− (l+1)λP

Λ̄

)l+2−k−n

(l + 2− k)!
(
η + Λ̄

ω̄λI

)n

+

⎛
⎜⎝(l + 1)λP

Λ̄

⎛
⎜⎝1 +

λP

ω̄λI

l∑
k=1

(1− k)
(
− (l+1)λP

ω̄λI

)l−k

(l + 2− k)!

⎞
⎟⎠− λP + ω̄λI

Λ̄

⎞
⎟⎠ e

(l+1)λP
ω̄λI E1

(
(l + 1)

(
λP η

Λ̄
+

λP

ω̄λI

))]
. (23)
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Fig. 5. Effect of number of receive antennas: SEP as a function of Pave for
different Nr (Iave = 2 dB, Nt = 2, and QPSK).

PRx channel power gain.3

1) SEP-Optimal AS Rule with On-off Power Control [10]:
In it, the STx either transmits with a fixed power Pt or with
zero power. The selected antenna s is given by

s = argmin
j∈{0,...,Nt}

{
ϕωj +m exp

(
−Pt

∑Nr

i=1 Λij

ηm

)}
, (25)

where ϕ = 0 if Pt is small enough such that the interference
caused to the PRx is always below Iave. In this case, the
selection rule reduces to the conventional AS rule [5]. Else,
ϕ > 0 is numerically set so that the interference constraint is
met with equality.

2) Enhanced MI (EMI) Rule: In it, the selected an-
tenna s is 0 if ω1 ≥ τ, . . . , ωNt ≥ τ , and is given by
argminj∈{1,...,Nt} {ωj}, otherwise. The threshold τ is chosen
to satisfy the interference constraint with equality. Setting
τ = ∞ reduces the EMI rule to the MI rule proposed in [8].

3) Enhanced MSLIR (EMSLIR) Rule: In it, the selected

antenna s is 0 if
∑Nr

i=1 Λi1

ω1
≤ β, . . . ,

∑Nr
i=1 ΛiNt

ωNt
≤ β, and

is given by argmaxj∈{1,...,Nt}
{∑Nr

i=1 Λij

ωj

}
otherwise. The

threshold β is chosen such that the interference constraint is
satisfied with equality, i.e., PtE [ωs] = Iave. Setting β = 0
reduces the rule to the MSLIR rule proposed in [8].

4) DAS Rule: The selected antenna s is given by [9]
argmaxj∈{1,...,Nt}

{
δ
∑Nr

i=1 Λij − (1 − δ)ωj

}
, where δ ∈

3Since [11] uses receive AS, a quantitative comparison with it is not
possible.

[0, 1] is a pre-specified constant. The DAS rule controls
the average interference caused to the primary by suitably
choosing δ. Setting δ = 1 corresponds to the unconstrained
conventional AS rule, while δ = 0 corresponds to the MI rule.

In all the above rules, STx transmits with a fixed power Pt

when s �= 0.
Figure 6 compares the SEPs of CBBOASPA, EMI rule,

EMSLIR rule, DAS rule, and AS with on-off power control
as a function of Pave for BPSK with Iave = 8 dB, Nt = 2,
and Nr = 1. For the EMI rule, Pt and τ are jointly chosen as
follows. For small values of Pave, the interference constraint
will be inactive. Therefore, Pt = Pave, which means that
the power constraint is met with equality, and τ = ∞.
For larger Pave, Pt and τ are jointly chosen such that the
power constraint and interference constraint are both met with
equality. The values of Pt and β for the EMSLIR rule and Pt

and δ for the DAS rule are also chosen in a similar manner.
The minimum SEP of CBBOASPA is lower by a factor of
140, 58, 51, and 33 than that of EMI, EMSLIR, DAS, and
AS with on-off power control, respectively.

The figure also plots the SEP of the optimal ASPA policy
that is based on the exact SEP expression in (4), which is
in the form of a single integral. We shall refer to this as the
Exact ASPA policy. It is the outcome of an intensive simulation
effort. We see that the minimum SEP of CBBOASPA is
within 10% of that of the Exact ASPA policy. This shows
the effectiveness of the insightful approach used to arrive at
CBBOASPA.

There are three different regimes of operation for CB-
BOASPA:

• Pave ≤ 8 dB = Iave: In this regime, the interference con-
straint is not active, and only the average power constraint
is active. Here, the average interference caused to the
PRx is Pave. This is because E [ωj] = 1, and from (12),
the choice of the selected antenna is determined only
by Λ1j . The SEP decreases as Pave increases. In this
regime, the interference constraint is inactive for all the
other benchmark policies as well, and their SEPs also
decrease as Pave increases.

• 8 dB < Pave ≤ 11.8 dB: In this regime, both the
interference and power constraints are active. Here, the
slope of the SEP curve changes, and the curve begins to
flatten. In this regime, the SEPs of all the benchmark
policies eventually start to increase as Pave increases.
This is because the fraction of time the STx transmits
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with zero power correspondingly increases in order to
satisfy the average interference constraint. Eventually, the
zero transmit power option contributes the most to the
SEP.

• Pave > 11.8 dB: In this regime, only the average
interference constraint is active. Consequently, the SEP of
CBBOASPA becomes independent of Pave, which leads
to an error floor. As in the previous regime, the SEPs of
the benchmark policies increase as Pave increases.

Figure 7 presents performance benchmarking results for
16QAM with Nt = 4. Now, the minimum SEP of CBBOASPA
is lower by a factor of 162.0, 56.7, 56.0, and 13.4 than the
minimum SEPs of the EMI, EMSLIR, DAS, and on-off power
control, respectively.

V. CONCLUSIONS

We developed an ASPA policy called CBBOASPA for a
secondary transmitter that operates in the underlay CR mode
and is subject to constraints on its average transmit power and
the average interference power it causes to the primary. We
saw that whether an antenna gets selected or not is determined
by a simple ratio in which the numerator is the sum of
the channel power gains from the antenna to the SRx and
the denominator is an affine function of the channel power
gain from the antenna to the PRx. For the general case with
multiple transmit antennas and multiple receive antennas, we
then derived the exact SEP of CBBOASPA for MPSK and

a simpler upper bound. We also saw that it applies to other
constellations such as MQAM. Compared to the several ad hoc
AS policies proposed in the literature, CBBOASPA reduced
the SEP by up to two orders of magnitude for both MPSK
and MQAM. The significant gains it achieved over AS with
on-off power control demonstrated the effectiveness of jointly
adapting the transmit power. Several interesting avenues for
future work arise out of this work. These include incorporating
subset selection and modeling multiple secondary and primary
nodes.

APPENDIX

A. Proof of Theorem 1

The proof below consists of three key steps. In the first
step, we check whether optimal policies for the two lesser
constrained cases, in which one of the two inequalities is
inactive, are feasible. If this is the case, then we are done.
In the second step, which arises when the above two policies
are not feasible, we define a policy φ∗ that minimizes an
auxiliary function given two constants λP ≥ 0 and λI ≥ 0,
and show that it is the desired optimal policy. In the third step,
we unravel the structure of φ∗.

First, consider the case when φP is feasible. In this case,
it must clearly be optimal because it is the solution to a
less constrained optimization problem. Similarly, when φI is
feasible, it is optimal. Else, consider the case where both φP

and φI are not feasible, i.e., the average interference generated
by φP is greater than Iave and the average power consumed
by φI is greater than Pave.4

For j ∈ {0, 1, . . . , Nt}, let

Ωλ̃I ,λ̃P

Λ,ω (j, P ) = ζ

(
Nr∑
i=1

Λij , P

)
+ λ̃PP + λ̃IPωj, (26)

where ζ (x, P ) = m exp
(
− Px

mη

)
is the SEP when the power

is P and the sum of channel power gains to all the receive
antennas is x, and λ̃I > 0 and λ̃P > 0 are constants. Given
λ̃I and λ̃P , let φ̃ to be the ASPA policy that is defined as
follows for each realization of Λ and ω:

(sφ̃(Λ,ω), Pφ̃(Λ,ω)) = argmin
{(j,P ):j=0,1,...,Nt, P≥0}

Ωλ̃I ,λ̃P

Λ,ω (j, P ).

(27)
Furthermore, for any ASPA policy φ, let

Lφ

(
λ̃P , λ̃I

)
= EΛ,ω

[
Ωλ̃I ,λ̃P

Λ,ω (sφ(Λ,ω), Pφ(Λ,ω))
]
. (28)

Choose λ̃P and λ̃I so that φ̃ meets the two con-
straints with equality, i.e., EΛ,ω

[
Pφ̃(Λ,ω)

]
= Pave and

4If both φP and φI are feasible, we can show that they must be the same.
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EΛ,ω

[
Pφ̃(Λ,ω)ωsφ̃(Λ,ω)

]
= Iave.5 Let the corresponding val-

ues of λ̃P and λ̃I be λP and λI , respectively, and let the
corresponding policy with these constants be denoted by φ∗.
Clearly, φ∗ is feasible. From the definition of φ∗, it follows
that Lφ∗ (λP , λI) ≤ Lφ (λP , λI) . Rearranging terms, we get

EΛ,ω

[
ζ

(
Nr∑
i=1

Λisφ∗(Λ,ω)
, Pφ∗(Λ,ω)

)]

≤ EΛ,ω

[
ζ

(
Nr∑
i=1

Λisφ(Λ,ω)
, Pφ(Λ,ω)

)]

+ λP

(
EΛ,ω

[
Pφ(Λ,ω)

]− Pave

)
+ λI

(
EΛ,ω

[
Pφ(Λ,ω)ωsφ(Λ,ω)

]− Iave
)
. (29)

For any feasible policy φ, we know that EΛ,ω

[
Pφ(Λ,ω)

] ≤
Pave and EΛ,ω

[
Pφ(Λ,ω)ωsφ(Λ,ω)

] ≤ Iave. Therefore, (29)
implies

EΛ,ω

[
ζ

(
Nr∑
i=1

Λisφ∗(Λ,ω)
, Pφ∗(Λ,ω)

)]

≤ EΛ,ω

[
ζ

(
Nr∑
i=1

Λisφ(Λ,ω)
, Pφ(Λ,ω)

)]
. (30)

Hence, the SEP of φ∗ is less than or equal to the SEP of any
feasible policy. Therefore, φ∗ is optimal.

1) Minimizing ΩλI ,λP

Λ,ω (j, P ): Given Λ and ω, we first
determine the optimal power P ∗

j when the selected antenna
is j ∈ {1, . . . , Nt}. Equating the derivative of ΩλI ,λP

Λ,ω (j, P )
with respect to P to zero, we get

exp

(
−P

∑Nr

i=1 Λij

mη

)
= η

(λP + λIωj)∑Nr

i=1 Λij

=
η

Xj
, (31)

where the last equality follows from the definition of Xj

in (14).6 Therefore, the optimal power P ∗
j is equal to

P ∗
j =

{
mη∑Nr

i=1 Λij
loge

(
Xj

η

)
, if Xj > η,

0, otherwise.
(32)

Substituting this in (26) and simplifying, we can show that,
for P ∗

j > 0,

ΩλI ,λP

Λ,ω (j, P ∗
j ) =

mη

Xj

(
1 + loge

(
Xj

η

))
= Ψ(Xj), (33)

where Ψ(x) = mη
x

(
1 + loge

(
x
η

))
. It can be shown that

the maximum value of Ψ(x) is m and it occurs at x = η.
Furthermore, it is monotonically decreasing for x ≥ η.

5The existence of such λP and λI can be shown by means of the
intermediate value theorem [31] using the following facts: (i) Let the two
constants that define φP be λ′

P > 0 and λ′
I = 0. As φP is not feasible,

we know that for these two constants EΛ,ω

[
PsφP (Λ,ω)

]
= Pave and

EΛ,ω

[
PsφP (Λ,ω)

ωsφP (Λ,ω)

]
> Iave . (ii) Similarly, let the two constants

that define φI be λ′′
P = 0 and λ′′

I > 0. Since φI is also not feasible,

we know that for these two constants EΛ,ω

[
PsφI (Λ,ω)

]
> Pave and

EΛ,ω

[
PsφI (Λ,ω)

ωsφI (Λ,ω)

]
= Iave. (iii) The policy in which the STx

always transmits with zero power is a feasible policy; therefore, the set of
all feasible policies is non-empty. (iv) Furthermore, the optimal power that

minimizes Ω
λ̃I ,λ̃P
Λ,ω (j, P ) is a monotonically decreasing function of λ̃I and

λ̃P .
6The dependence of Xj on λI and λP is not shown to avoid clutter.

2) Optimal Antenna: All that remains now is determining
the optimal antenna. Recall that setting the transmit power
to zero is equivalent to selecting antenna 0. Hence, if X1 ≤
η, . . . , XNt ≤ η, then, from (32), it follows that sφ∗ = 0.
Furthermore, in this case, ΩλI ,λP

Λ,ω (0, Pφ∗) = m.
Otherwise, let ג be the non-empty set of all transmit

antennas j for which Xj > η:

ג = {j ∈ {1, . . . , Nt} : Xj > η} . (34)

From (33), it is clear that for minimizing ΩλI ,λP

Λ,ω , one of the
antennas in ג should be selected and its transmit power should
be non-zero. This is because P ∗

j > 0 is equivalent to Xj > η,
which, from (33), implies that ΩλI ,λP

Λ,ω (j, P ∗
j ) < m. Therefore,

the optimal antenna is

sφ∗ = argmin
j∈ג

ΩλI ,λP

Λ,ω (j, P ∗
j ) = argmin

j∈ג

Ψ(Xj), (35)

where the last step again follows from (33). We know that
Ψ(Xj) is a monotonically decreasing function in Xj , for Xj >
η, which is the case for all the antennas in .ג Therefore, the
above equation is equivalent to sφ∗ = argmaxj∈ג Xj .

The above results together can be written in the compact
form given in (15).

B. Proof of Lemma 1

The CDF of the RV Xj is given by

Pr (Xj ≤ x) = Pr

( ∑Nr

i=1 Λij

λP + λIωj
≤ x

)
. (36)

Conditioning on ωj , which is an exponential RV with mean
ω̄, we get

Pr (Xj≤x) =

∫ ∞

0

Pr

( ∑Nr

i=1 Λij

(λP + λIωj)
≤x
⏐⏐⏐ωj

)
e−

ωj
ω̄

ω̄
dωj .

The sum
∑Nr

i=1 Λij of Nr i.i.d. exponential RVs is a gamma
RV [25]. Substituting its CDF, we get

Pr (Xj ≤ x) = 1−
Nr−1∑
k=0

e−
xλP
Λ̄

k!ω̄

×
∫ ∞

0

(
x (λP + λIωj)

Λ̄

)k

e
−
(

xλI
Λ̄

+ 1
ω̄

)
ωj dωj . (37)

Substituting y =
x(λP+λIωj)

Λ̄
in the integrand above and

simplifying yields (17). Differentiating (17) with respect to
x yields (18).

C. Proof of Theorem 2

Let X � [X1, . . . , XNt ] and let x = [x1, . . . , xNt ] denote
a realization of X. The SEP conditioned on X = x, which
we denote by Pr (Err|X = x), can be written using the chain
rule in terms of the selected antenna as

Pr (Err|X = x) =

Nt∑
j=0

Pr (s = j|X = x)

× Pr (Err|s = j,X = x) . (38)
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Averaging over X and using the fact that the Nt transmit
antennas see statistically identical channels, we get

SEP = EX [Pr (s = 0|X = x) Pr (Err|s = 0,X = x)]

+NtEX [Pr (s = 1|X = x) Pr (Err|s = 1,X = x)] . (39)

Given s = 0, the SEP is equal to m since the STx transmits
with zero power. It is, thus, independent of X. Furthermore,
the SEP conditioned on s = 1 depends only on X1 because∑Nr

i=1 Λi1 and ω1 are mutually independent of Λij , for 1 ≤
i ≤ Nr and 2 ≤ j ≤ Nt. Hence, from (4) and (16), we get

Pr (Err|X = x, s = 1) =
1

π

∫ mπ

0

(
η

x1

)csc2(θ)

dθ, (40)

where csc denotes cosecant. Therefore, the SEP is given by

SEP = mEX [Pr (s = 0|X = x)]

+
Nt

π
EX

[
Pr (s = 1|X = x)

∫ mπ

0

(
η

x1

)csc2(θ)

dθ

]
. (41)

From the fundamental theorem of expectation, we get
EX [Pr (s = 0|X = x)] = Pr (s = 0) and

EX

[
Pr (s = 1|X = x)

∫ mπ

0

(
η

x1

)csc2(θ)

dθ

]

= EX1

[
Pr (s = 1|X1 = x1)

∫ mπ

0

(
η

x1

)csc2(θ)

dθ

]
. (42)

Therefore, the SEP expression in (41) simplifies to

SEP = mPr (s = 0)

+NtEX1

[
Pr (s = 1|X1 = x1)

1

π

∫ mπ

0

(
η

x1

)csc2(θ)

dθ

]
.

(43)

We now simplify the above two summation terms, which we
denote by Q0 and Q1, respectively.

Term Q0: Virtual antenna 0 is selected if and only if (iff)
X1 ≤ η, . . . , XNt ≤ η. Thus,

Q0 = mPr (s = 0) = mPr (X1 ≤ η, . . . , XNt ≤ η) . (44)

Since X1, . . . , XNt are i.i.d. RVs, we get

Q0 = m (Pr (X1 ≤ η))Nt . (45)

Substituting the CDF of the RV X1 from (17) completes Q0.
Term Q1: Antenna 1 will be selected iff X1 > η and X2 <

X1, . . . , XNt < X1. Therefore,

Pr (s = 1|X1 = x1) = I{x1>η}
× Pr (X2 < x1, . . . , XNt < x1|X1 = x1) , (46)

where I{x} denotes the indicator function; it is equal to 1 if
x is true, and is 0 otherwise. Conditioned on X1 = x1, the
events X2 < x1, . . . , XNt < x1 are i.i.d. Hence, we get

Pr (s = 1|X1 = x1) = I{x1>η} [Pr (X2 < x1)]
Nt−1

. (47)

Substituting (47) in Q1 and writing the expectation as an
integral over x1, we get

Q1 =
Nt

π

∫ mπ

0

∫ ∞

η

(Pr (X2 < x1))
Nt−1

(
η

x1

)csc2(θ)

× fX1(x1)dx1dθ.

Substituting the CDF and PDF of X2 and X1, respectively,
from Lemma 1 yields the desired expression for Q1. Adding
this to the expression for Q0 in (45) results in (19).

D. Derivation of Simpler SEP Upper Bound for Nr = 1

We treat the following three cases separately: (i) λI = 0,
λP > 0, (ii) λI > 0, λP = 0, and (iii) λI > 0, λP > 0. To
gain insights, we consider a simpler version of (20) in which
the term η

x

(
m− 1

4 + η
4x

)
in its integrand is replaced with its

upper bound mη
x , for x ≥ η. Further, Nr = 1.

1) λI = 0, λP > 0: Substituting λI = 0 in (20) yields

SEPu = m
(
1− e−

λP η

Λ̄

)Nt

+
NtmηλP

Λ̄

∫ ∞

η

e−
λP
Λ̄

x1

x1

(
1− e−

λP
Λ̄

x1

)Nt−1

dx1. (48)

Expanding
(
1− e−

λP
Λ̄

x1

)Nt−1

as a binomial series, and using
the definition of the standard exponential integral function [29]
we get (21).

2) λP = 0, λI > 0: Substituting λP = 0 in (20), we get

SEPu = m

(
ω̄λIη

Λ̄ + ω̄λIη

)Nt

+
NtmηΛ̄

ω̄λI

∫ ∞

η

xNt−2
1(

x1 +
Λ̄

ω̄λI

)Nt+1
dx1.

Writing xNt−2
1 as

([
x1 +

Λ̄
ω̄λI

]
− Λ̄

ω̄λI

)Nt−2

, expanding it as
a binomial series, and integrating, we get

SEPu = m

(
ω̄λIη

Λ̄ + ω̄λIη

)Nt

+
Ntmηω̄λI

Λ̄

×
Nt−2∑
l=0

(
Nt − 2

l

)
(−1)Nt−l

Nt − l

(
Λ̄

ω̄λI

η + Λ̄
ω̄λI

)Nt−l

. (49)

By integrating the binomial identity x(1 − x)Nt−2 =∑Nt−2
l=0

(
Nt−2

l

)
(−1)Nt−lxNt−l−1, it can be shown that∑Nt−2

i=0 (−1)Nt−l
(
Nt

i

)
xNt−i

Nt−i = (1−x)Nt

Nt
− (1−x)Nt−1

Nt−1 +
1

Nt(Nt−1) . Using this identity, (49) simplifies to (22).
3) λP > 0 and λI > 0: The second summand in (20),

which we denote by R, is equal to

R = Ntmη

∫ ∞

η

1

x1

(
1− Λ̄e−

λP
Λ̄

x1

ω̄λIx1 + Λ̄

)Nt−1

×
(
λP e

−λP
Λ̄

x1

x1ω̄λI + Λ̄
+

Λ̄ω̄λIe
−λP

Λ̄
x1(

x1ω̄λI + Λ̄
)2
)

dx1. (50)

Expanding

(
1− Λ̄e

−λP
Λ̄

x1

ω̄λIx1+Λ̄

)Nt−1

as a binomial series, using

partial fractions, and simplifying further yields (23).



796 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 3, MARCH 2014

ACKNOWLEDGMENT

The authors would like to thank Prof. Rajesh Sundaresan,
ECE Dept., IISc, for useful technical inputs.

REFERENCES

[1] R. Sarvendranath and N. B. Mehta, “Optimal joint antenna selection and
power adaptation in underlay cognitive radios,” in Proc. 2013 WCNC,
pp. 3265–3270.

[2] A. Goldsmith, S. A. Jafar, I. Maric, and S. Srinivasa, “Breaking spectrum
gridlock with cognitive radios: an information theoretic perspective,”
Proc. IEEE, vol. 97, no. 5, pp. 894–914, May 2009.

[3] G. Scutari, D. Palomar, and S. Barbarossa, “Cognitive MIMO radio,”
IEEE Signal Process. Mag., vol. 25, no. 6, pp. 46–59, Nov. 2008.

[4] S. Sridharan and S. Vishwanath, “On the capacity of a class of MIMO
cognitive radios,” IEEE J. Sel. Topics Signal Process., vol. 2, no. 1, pp.
103–117, Feb. 2008.

[5] A. F. Molisch and M. Z. Win, “MIMO systems with antenna selection,”
IEEE Microwave Mag., vol. 5, pp. 46–56, Mar. 2004.

[6] N. B. Mehta, A. F. Molisch, and S. Kashyap, “Antenna selection in LTE:
from motivation to specification,” IEEE Commun. Mag., vol. 50, no. 10,
pp. 144–150, Oct. 2012.

[7] P. A. Dmochowski, P. J. Smith, M. A. Shafi, and H. A. Suraweera,
“Impact of antenna selection on cognitive radio system capacity,” in
Proc. 2011 CROWNCOM, pp. 21–25.

[8] J. Zhou and J. Thompson, “Single-antenna selection for MISO cognitive
radio,” in Proc. 2008 IET, pp. 1–5.

[9] Y. Wang and J. Coon, “Difference antenna selection and power allo-
cation for wireless cognitive systems,” IEEE Trans. Commun., vol. 59,
no. 12, pp. 3494–3503, Dec. 2011.

[10] R. Sarvendranath and N. B. Mehta, “Antenna selection in interference-
constrained underlay cognitive radios: SEP-optimal rule and perfor-
mance benchmarking,” IEEE Trans. Commun., vol. 61, no. 2, pp. 496–
506, Feb. 2013.

[11] K. Hamdi, W. Zhang, and K. B. Letaief, “Opportunistic spectrum sharing
in cognitive MIMO wireless networks,” IEEE Trans. Wireless Commun.,
vol. 8, no. 8, pp. 4098–4109, Aug. 2009.

[12] X. Kang, Y.-C. Liang, A. Nallanathan, H. K. Garg, and R. Zhang, “Op-
timal power allocation for fading channels in cognitive radio networks:
ergodic capacity and outage capacity,” IEEE Trans. Wireless Commun.,
vol. 8, no. 2, pp. 940–950, Feb. 2009.

[13] M. F. Hanif, P. J. Smith, D. P. Taylor, and P. A. Martin, “MIMO cognitive
radios with antenna selection,” IEEE Trans. Wireless Commun., vol. 10,
no. 11, pp. 3688–3699, Nov. 2011.

[14] V. Blagojevic and P. Ivanis, “Ergodic capacity for TAS/MRC spectrum
sharing cognitive radio,” IEEE Commun. Lett., vol. 16, no. 3, pp. 321–
323, Mar. 2012.

[15] H. Wang, J. Lee, S. Kim, and D. Hong, “Capacity enhancement of
secondary links through spatial diversity in spectrum sharing,” IEEE
Trans. Wireless Commun., vol. 9, no. 2, pp. 494–499, Feb. 2010.

[16] A. Ghasemi and E. S. Sousa, “Fundamental limits of spectrum-sharing
in fading environments,” IEEE Trans. Wireless Commun., vol. 6, no. 2,
pp. 649–658, Feb. 2007.

[17] Y. Chen, G. Yu, Z. Zhang, H.-H. Chen, and P. Qiu, “On cognitive radio
networks with opportunistic power control strategies in fading channels,”
IEEE Trans. Wireless Commun., vol. 7, no. 7, pp. 2752–2761, Jul. 2008.

[18] L. Li and M. Pesavento, “Link reliability of underlay cognitive radio:
Symbol error rate analysis and optimal power allocation,” in Proc. 2011
Intl. Conf. Cognitive Radio and Advanced Spectrum Management.

[19] K. T. Phan and C. Tellambura, “Receive antenna selection based on
union-bound minimization using convex optimization,” IEEE Signal
Process. Lett., vol. 14, no. 9, pp. 609–612, Sept. 2007.

[20] N. B. Mehta and A. F. Molisch, “Antenna selection in MIMO systems,”
in MIMO System Technology for Wireless Communications, G. Tsulos,
Ed. CRC Press, 2006, ch. 6.

[21] R. Zhang, “On peak versus average interference power constraints for
protecting primary users in cognitive radio networks,” IEEE Trans.
Wireless Commun., vol. 8, no. 4, pp. 2112–2120, Apr. 2009.

[22] A. J. Goldsmith, Wireless Communications. Cambridge University Press,
2005.

[23] M. Vu, N. Devroye, and V. Tarokh, “On the primary exclusive region
of cognitive networks,” IEEE Trans. Wireless Commun., vol. 8, no. 7,
pp. 3380–3385, Jul. 2009.

[24] Z. Rezki and M.-S. Alouini, “Ergodic capacity of cognitive radio under
imperfect channel-state information,” IEEE Trans. Veh. Technol., vol. 61,
no. 5, pp. 2108–2119, Jun. 2012.

[25] M. K. Simon and M.-S. Alouini, Digital Communication over Fading
Channels, 2nd ed. Wiley-Interscience, 2005.

[26] X. Kang, R. Zhang, Y.-C. Liang, and H. K. Garg, “Optimal power
allocation strategies for fading cognitive radio channels with primary
user outage constraint,” IEEE J. Sel. Areas Commun., vol. 29, no. 2, pp.
374–383, Feb. 2011.

[27] Y. Chen, G. Yu, Z. Zhang, H. H. Chen, and P. Qiu, “On cognitive radio
networks with opportunistic power control strategies in fading channels,”
IEEE Trans. Wireless Commun., vol. 7, no. 7, pp. 2752–2761, Jul. 2008.

[28] J. Hayes, “Adaptive feedback communications,” IEEE Trans. Commun.,
vol. 16, no. 1, pp. 29–34, Feb. 1968.

[29] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and
Products, 4th ed. Academic Press, 1980.

[30] M. Chiani, D. Dardari, and M. Simon, “New exponential bounds
and approximations for the computation of error probability in fading
channels,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 840–845,
Jul. 2003.

[31] W. Rudin, Principles of Mathematical Analysis, 3rd ed. McGraw-Hill,
1976.

Rimalapudi Sarvendranth received his B. Tech.
degree in Electrical and Electronics Eng. from Na-
tional Institute of Technology Karnataka, Surathkal,
India in 2009. He received his Master of Eng. degree
from the Dept. of Electrical Communication Eng.,
Indian Institute of Science (IISc), Bangalore in 2012.
He is currently with Broadcom Communications
Technologies Pvt. Ltd., Bangalore, India, working
on the implementation of the LTE standard. From
2009 to 2010, he was in the Dept. of Instrumenta-
tion, IISc, where he was involved in the development

of image processing algorithms. His research interests include wireless
communication, multiple antenna techniques and next generation wireless
standards.

Neelesh B. Mehta (S’98-M’01-SM’06) received his
B. Tech. degree in Electronics and Communications
Eng. from the Indian Institute of Technology (IIT),
Madras in 1996, and his M.S. and Ph.D. degrees
in Electrical Eng. from the California Institute of
Technology, Pasadena, CA, USA in 1997 and 2001,
respectively. He is now an Associate Professor in
the Dept. of Electrical Communication Eng., Indian
Institute of Science (IISc), Bangalore, India. Prior to
joining IISc, he was a research scientist in USA in
AT&T Laboratories, NJ, Broadcom Corp., NJ, and

Mitsubishi Electric Research Laboratories (MERL), MA.
His research includes work on link adaptation, multiple access protocols,

next generation cellular system design and analysis, energy harvesting wire-
less networks, MIMO and antenna selection, cooperative communications,
and cognitive radio. He was also actively involved in the Radio Access
Network (RAN1) standardization activities in 3GPP from 2003 to 2007.
He has co-authored 45+ IEEE transactions papers, 70+ conference papers,
and three book chapters, and is a co-inventor in 20 issued US patents. He
is an Editor of the IEEE TRANSACTIONS ON COMMUNICATIONS, IEEE
WIRELESS COMMUNICATIONS LETTERS, and an Executive Editor of the
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS. He serves as a
Member at Large on the Board of Governors of IEEE ComSoc. He served
as the Director of Conference Publications on the Board of Governors in
2012-13.


