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Abstract— The ordered transmissions scheme requires fewer
sensor nodes to transmit their measurements than the conven-
tional unordered transmissions scheme (UTS) in which all nodes
transmit. Yet, it achieves the same error probability as UTS.
For the practically relevant scenario in which the measurements
of the sensor nodes are spatially correlated, we present a novel
correlation-aware ordered transmissions scheme (CA-OTS) for
the binary hypothesis testing problem with Gaussian statistics.
It uses the timer scheme to make the nodes transmit their
measurements in the decreasing order of the absolute values of
the measurements without any node knowing the measurements
of other nodes. CA-OTS applies to the general case where the
hypotheses differ in the mean vector and covariance matrix, and
markedly reduces the number of transmissions. It differs from
the literature that assumes that the measurements of the nodes,
when conditioned on the hypotheses, are statistically independent
or the covariance matrix has a special structure. When the
mean vector or covariance matrix is the same for the two
hypotheses, we propose novel refinements that require even fewer
transmissions. We also derive insightful upper bounds for them
that apply to a general product-correlation model.

Index Terms— Wireless sensor networks, detection, ordered
transmissions, correlation, energy-efficiency.

I. INTRODUCTION

ENERGY-EFFICIENCY is a critical issue in the design
of wireless sensor networks (WSNs). It ensures that

these networks have the longevity required by their many
compelling and diverse applications such as transportation
and logistics, environmental monitoring, military surveillance,
and healthcare [2]. Several techniques, such as censoring,
sensor selection, on-off keying, duty cycling, and clustering,
have been proposed in the literature to address this challenge
[3]–[5]. They improve the energy-efficiency by curtailing the
number of transmissions by the nodes. However, this invari-
ably degrades performance.

A noteworthy exception is the ordered transmissions scheme
(OTS), which reduces the average number of transmissions
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by 50% compared to the error rate-optimal unordered trans-
missions scheme (UTS), in which all the sensor nodes trans-
mit. It does so without any increase in the error probability
[6]–[16]. OTS was first proposed in [6] for the binary hypoth-
esis testing problem. It exploits the fact that the decision
statistic at the fusion node (FN) can be written as the sum
of the log-likelihood ratios (LLRs) of the measurements
at the individual sensor nodes. In OTS, the nodes trans-
mit in the decreasing order of the absolute values of their
LLRs. This is accomplished by the timer-based multiple access
scheme [17] in which each node sets a timer that is a monotone
non-increasing function of a local, non-negative real number
called metric. In OTS, the metric is the absolute value of the
LLR. When a node’s timer expires, it transmits its LLR to
the FN. This ensures that the nodes transmit their LLRs in
the decreasing order of their metrics in a distributed manner
without any node knowing the metric of any other node. Every
time the FN receives an LLR from a node, it decides on a
hypothesis or waits for the next transmission. Once the FN
decides, it broadcasts a control signal to stop the other nodes
from transmitting and draining their battery energies.

A. Literature Survey on OTS

In [7], OTS is used for target detection in radar networks.
In [8], only a sensor node whose absolute value of the LLR
exceeds a threshold can transmit. Among such nodes, the one
with the largest channel power gain transmits. This is repeated
over multiple coherence intervals and the transmitting node’s
power is adapted to minimize the total energy consumed.
In [9], just one observation is shown to be sufficient for
OTS to decide on a hypothesis when the number of nodes is
asymptotically large. In [10], an ordered transmissions-based
sequential detection scheme for spectrum sensing is used
to maximize the weighted sum throughput of the primary
and secondary users. In [11], a linear regression problem
involving multiple sensors is studied. The sensors transmit in
the increasing order of the difference between their training
data and observed data, and the goal is to minimize the mean
squared error. In [12], a constraint is imposed on the number of
transmissions to the FN. A combination of OTS and slotted
Aloha for detecting a shift in the mean is studied in [13].
In [14], OTS is adapted for energy harvesting sensor networks
and the problem of missing transmissions is addressed.

The above articles [7]–[14] assume that the measurements
of the sensor nodes, when conditioned on the hypothe-
ses, are mutually independent. However, in many practical
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deployments, the measurements can be spatially dependent
or correlated [18]. For example, as WSNs become more
ubiquitous and the cost of a sensor node decreases, these
nodes are likely to be densely deployed [19]. In these cases,
the decision statistic at the FN is no longer the sum of the
individual node LLRs. Instead, it also consists of cross-terms
involving products of the measurements of multiple nodes.
Thus, ordering on the basis of the absolute values of the LLRs
no longer works.

OTS for correlated measurements has received less attention
in the literature. It has recently been studied in [15], [16]
for a decomposable Gaussian graphical model. In this model,
each node is a vertex. The measurements of any pair of
non-adjacent vertices are independent when conditioned on the
measurements of the other vertices. Furthermore, the graph can
be decomposed into maximal cliques, which might have some
vertices in common. In [15], [16], the problems of detecting a
shift in the mean vector and a shift in the covariance matrix are
separately studied. Both works exploit an elegant property of
the graphs to group the vertices belonging to maximal cliques
into clusters. All the nodes within a cluster transmit their
measurements to the cluster head. Ordering is used to reduce
the number of cluster heads that transmit.

However, for several commonly studied correlation models,
the graph is complete, i.e., it is a maximal clique. In this case,
all the nodes end up transmitting. One example is the uniform
correlation model [20], [21]. In it, the correlation between
any two nodes is the same. This model is a special case of
the more general product-correlation model [22] in which the
correlation between two nodes i and j can be written as θiθj ,
for i �= j, 1 ≤ i, j ≤ N , where θ1, θ2, . . . , θN ∈ (−1, 1)
are arbitrary constants and N is the number of nodes. This
happens, for example, when the measurements at the sensor
nodes are linearly attenuated, noise corrupted versions of a
source signal [23]–[25]. A different example is the exponential
correlation model in which the correlation-coefficient between
nodes i and j is ρ|i−j|, for some 0 < ρ < 1 [26]. The graphical
model for it is a line. Every maximal clique consists of only
two adjacent nodes, one of which is the cluster head. The
other node transmits to its two adjacent cluster heads. Thus,
the total number of transmissions is not reduced.

B. Focus and Contributions

We propose a novel correlation-aware OTS (CA-OTS) for
the binary hypothesis testing framework. It applies to Gaussian
statistics with a general correlation model in which the two
hypotheses differ in their mean vectors and their covariance
matrices. In CA-OTS, the metric of a node is the absolute
value of its measurement. And, when the timer expires, a node
transmits its measurement to the FN. We derive novel decision
rules at the FN that reduce the average number of transmis-
sions while achieving the same optimal error probability as
conventional UTS.

Since the measurements are correlated, this choice of the
metric can seem counter-intuitive at first since the absolute
value of the measurement no longer fully captures how infor-
mative it is. A holistic understanding of OTS, which we put

forth below, is needed to understand this. OTS consists of
three key components that need to be jointly designed. The
first component is the metric, which determines the order in
which the nodes should transmit. The second component is the
payload of the packet that a node transmits to the FN when its
timer expires. The third component is the decision rules at the
FN, which enable it to make a decision early but using only
the information that it has received thus far from an ordered
subset of nodes.

We then present refined versions of CA-OTS for the
shift-in-covariance and shift-in-mean binary hypothesis testing
problems. These refinements bring out the importance of
designing the metric. Their corresponding novel decision rules
exploit the additional structure in the problem to improve
performance or reduce complexity. In the shift-in-covariance
problem, the covariance matrices for the two hypotheses
are different while the mean vectors are the same. For
the product-correlation model, we derive an insightful upper
bound on the average number of transmissions. It shows
that the average number of transmissions decreases to the
lowest possible value of one as the signal-to-noise ratio (SNR),
which we formally define later, increases. To the best of our
knowledge, similar results are available in the literature only
for independent measurements [7], [9].

In the shift-in-mean problem, the mean vectors for the
two hypotheses are different while the covariance matri-
ces are the same. For it as well, we derive an insightful
upper bound on the average number of transmissions for the
product-correlation model. It shows that the average number
of transmissions decreases by at least 50% as the separation
between the two mean vectors increases. While such results
are available in the literature, they only apply to independent
measurements [6] or the decomposable Gaussian graphical
model [15].

Our benchmarking results show that CA-OTS and its refine-
ments markedly reduce the average number of transmissions
compared to UTS. This translates into an improvement in the
energy-efficiency of the WSN – without compromising on its
error probability. The results also bring out the impact of
correlation among the measurements on the performance of
all the schemes.

C. General Mathematical Principle and Comments

Separability of the decision statistic in terms of functions
of the local measurements is the key mathematical principle
behind OTS when the measurements are independent when
conditioned on the hypotheses. This leads to a natural ordering
of the sensor nodes in terms of the absolute values of the
LLRs. Even for correlated measurements, this principle is
exploited in [15] and [16], where the decision statistic is
written in a form that is separable across cluster heads for the
decomposable Gaussian graphical model. Our work shows that
even if the decision statistic is not separable, as is the case for
several correlation models [20], [23]–[25], an ordering can be
imposed so long as the lower and upper bounds on the decision
statistic are separable. This principle differs from model order
reduction techniques such as reduced rank detection [27],
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which assume that the FN has access to all the measurements
and employ a reduced rank, lower complexity detector that
maximizes the divergence between the hypotheses.

There are two key differences between our approach and
those in [15], [16]. First, our approach applies to any general
correlation model. Second, the ordering happens across all the
sensor nodes. On the other hand, in [15], [16], all nodes within
a cluster transmit to the cluster head and ordering happens only
across the cluster heads. CA-OTS also differs from sequential
detection in which the nodes transmit one by one, but in a
random order [28].

D. Organization and Notations

Section II presents the system model. Section III specifies
CA-OTS and its refinements. Simulation results are presented
in Section IV, and are followed by our conclusions in
Section V.

Notations: The probability of an event B is denoted by
Pr(B), and the conditional probability of B given event D by
Pr(B|D). The expectation with respect to a random variable
(RV) X is denoted by EX [·]. Matrices and vectors are denoted
using boldface characters. The notation y ∼ N (µ,C) means
that y is a Gaussian random vector with mean µ and a
covariance matrix C. For a matrix P, Pij denotes the entry in
the ith row and jth column, det(P) denotes its determinant,
and λmin(P) and λmax(P) denote its smallest and largest
eigenvalues, respectively. For a vector v, vT denotes its
transpose and vi denotes its ith element. The identity matrix of
size N×N is denoted by IN and the all-zero vector is denoted
by 0. For a real number x, sgn(x) denotes its sign, �x� denotes
the ceiling function, and �x	 denotes the floor function. For N
continuous RVs, X1, X2, . . . , XN , we use the order statistics
notation to denote the rth largest value by X[r] and the index
of this RV by [r]. Therefore, X[1] > X[2] > · · · > X[N ].

II. SYSTEM MODEL

Consider a WSN that consists of N sensor nodes and an FN.
Let N ={1, 2, . . . , N} denote the set of indices of the sensor
nodes. Time is divided into measurement rounds. In each
round, a decision needs to be made by the FN on the basis of
the measurements it receives from some or all of the sensor
nodes.

We consider the binary hypothesis testing framework,
which is a fundamental problem in signal detection theory
[6], [9], [10]. In general, the signal models under the two
hypotheses for Gaussian statistics are given by [15], [16]

H0 : y ∼ N
(
µ(0),R(0)

)
,

H1 : y ∼ N
(
µ(1),R(1)

)
, (1)

where y =[y1, y2, . . . , yN ]T, yi is the measurement at node i,
µ(0) and R(0) are the mean vector and covariance matrix,
respectively, under hypothesis H0, and µ(1) and R(1) are
the mean vector and covariance matrix, respectively, under

hypothesis H1. Let µ(h) =
[
μ
(h)
1 , μ

(h)
2 , . . . , μ

(h)
N

]T
, for h ∈

{0, 1}. The mean vectors and covariance matrices are assumed

Fig. 1. A WSN consisting of N nodes that transmit their measurements to
an FN, which decides in favor of a hypothesis.

to be known to the FN. The system model is illustrated
in Fig. 1.

Optimum Decision Rule: Let cuv be the cost incurred if
hypothesis Hu is chosen when hypothesis Hv is true. Let ζ0
and ζ1 be the prior probabilities of H0 and H1, respectively.
The decision rule that minimizes the error probability is given
by [29, Ch. III.A]

log
(
f(y|H1)
f(y|H0)

)
H1

≷
H0

β, (2)

where f(y|Hh) is the probability density function (PDF) of
the measurements conditioned on the hypothesis Hh, and β =
log(((c10 − c00)ζ0) / ((c01 − c11) ζ1)). For the signal model
in (1), the decision rule in (2) becomes(
y − µ(0)

)T(
R(0)

)−1(
y − µ(0)

)
+ log

(
det

(
R(0)

)
det

(
R(1)

))

−
(
y − µ(1)

)T(
R(1)

)−1(
y − µ(1)

) H1

≷
H0

2β. (3)

Expanding the products and rearranging terms yields

yTGy + sTy − log

(
det

(
R(1)

)
det

(
R(0)

))−
(
µ(1)

)T(
R(1)

)−1

µ(1)

+
(
µ(0)

)T(
R(0)

)−1

µ(0)
H1

≷
H0

2β, (4)

where

G =
(
R(0)

)−1

−
(
R(1)

)−1

,

s = 2
(
R(1)

)−1

µ(1) − 2
(
R(0)

)−1

µ(0). (5)

We see that cross-terms of the form Gijyiyj arise in (4)
whenever G is not a diagonal matrix.

The matrices R(0) and R(1) are assumed to be positive def-
inite. If either of them is positive semi-definite, then the mea-
surement of a node can be expressed as a linear combination
of other nodes’ measurements. In that case, the FN modifies
the decision rule in (4) to only account for the measurements
whose covariance sub-matrix is positive definite.

Timer Scheme: At the start of each measurement round,
the FN broadcasts a beacon signal to all the nodes.
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Upon receiving the beacon, node i sets a timer that is a
monotone non-increasing function of a locally-computed real
number called metric. All the nodes use the same metric-to-
timer mapping. Once its timer expires, the node transmits a
packet to the FN. The metric and the information contained
in the packet are functions of the measurement yi. We specify
them in the next section. The timer scheme ensures that the
nodes transmit in the decreasing order of their metrics, without
any communication between the nodes. Its design can take
into account several aspects such as the differences in the
propagation and detection delays, and even physical layer
capabilities of the nodes such as carrier sensing [17].

When the FN receives a packet from a node, it decides on a
hypothesis or it waits for the next packet. Once the FN makes
a decision, it broadcasts a control signal to all the sensor nodes
to halt their timers for the rest of the round. The process starts
afresh at the beginning of every round when the nodes make
a new set of measurements. As in OTS, we assume that the
quantization error is negligible and the FN receives with a
negligible probability of decoding error and collision [6], [7],
[9], [15], [16].

III. CORRELATION-AWARE OTS

We present CA-OTS for the general case in which both
mean vectors and covariance matrices of the two hypotheses
can be different. Thereafter, we present novel refinements for
the following two specializations, which are important in their
own right:

• Shift-in-Covariance: Here, R(0) �= R(1) but µ(0) = µ(1).
This happens, for example, when the nodes detect a
Gaussian signal in the presence of spatially correlated
Gaussian noise [29, Ch. III-B].

• Shift-in-Mean: In this, µ(0) �= µ(1) but R(0) = R(1).
This happens, for example, when the nodes detect a
deterministic signal in the presence of spatially correlated
Gaussian noise [29, Ch. III-B].

A. General Case

In CA-OTS, we specify that the metric of node i is |yi|.
Thus, node i sets its timer to be a monotone non-increasing
function of |yi|. Once the timer expires, it transmits a packet
containing its measurement yi and its index i. Thus, the FN
receives measurements in the order

∣∣y[1]∣∣ , ∣∣y[2]∣∣ , . . . , ∣∣y[N ]

∣∣,
where the subscript [i] is the index of the node with the ith

largest metric. Expressing (4) in terms of the ordered statistics
notation and rearranging the terms yields

d(y) �
N∑

i=1

G[i][i]y
2
[i] +

N∑
i=1

N∑
j=1
j �=i

G[i][j]y[i]y[j] +
N∑

i=1

s[i]y[i]

H1

≷
H0

βgen, (6)

where βgen = 2β +
(
µ(1)

)T(
R(1)

)−1
µ(1) −(

µ(0)
)T(

R(0)
)−1

µ(0) + log
(

det
(
R(1)

)
/det

(
R(0)

))
.

When the FN has received measurements from the nodes
[1] , [2] , . . . , [k], we can write (6) in a compact matrix

form, which is as follows. Let rk =
[
y[1], y[2], . . . , y[k]

]T

and uN−k =
[
y[k+1], y[k+2], . . . , y[N ]

]T
be the vector of

measurements that are received and yet to be received,
respectively. Let Pk =

[
G[i][j]

]
, for 1 ≤ i, j ≤ k, mk =[

s[1], s[2], . . . , s[k]

]T
, TN−k =

[
G[i][j]

]
, for k + 1 ≤ i, j ≤ N ,

and vN−k =
[(
s[k+1]/2

)
+
∑k

i=1G[i][k+1]y[i],
(
s[k+2]/2

)
+
∑k

i=1G[i][k+2]y[i], . . . ,
(
s[N ]/2

)
+
∑k

i=1G[i][N ]y[i]

]T
.

We see that Pk is the sub-matrix of G that corresponds to
the k received measurements, mk consists of the entries of s
that correspond to the received measurements, TN−k is the
sub-matrix of G that corresponds to the (N − k) nodes that
have not yet transmitted, and the elements of vN−k depend
on the nodes [k + 1] , . . . , [N ] that are yet to transmit and
also the k received measurements. Thus, d(y) in (6) can be
recast as

d(y) = rT
kPkrk + mT

krk + uT
N−kTN−kuN−k

+ 2vT
N−kuN−k. (7)

The FN can compute the terms rT
kPkrk and mT

krk in (7)
from the k measurements it has received. However, it does not
know uN−k. It also does not know TN−k and vN−k since
they depend on the order in which the remaining nodes will
transmit. We explain this with an example.

Example: Let N = 4, k = 2, and [1] = 2 and [2] = 4.
Thus, node 2 transmitted first followed by node 4. The FN
can compute the term rT

kPkrk + mT
krk. The FN also knows

that nodes 1 and 3 have not transmitted. However, it does not
know if [3] is 1 or 3. It, thus, does not know TN−k and vN−k.
As a result, it cannot compute the terms uT

N−kTN−kuN−k

and vT
N−kuN−k. However, notice that TN−k and vN−k when

[3] = 1 and [4] = 3 are permuted versions of TN−k and vN−k

when [3] = 3 and [4] = 1. We formalize this insight below.
Let �1, �2, . . . , �N−k denote the indices of the

(N − k) nodes that have not transmitted such that
�1 < �2 < · · · < �N−k. Let ũN−k = [y�1 , y�2 , . . . , y�N−k ]

T,
T̃N−k =

[
G�i�j

]
, for 1 ≤ i, j ≤ N − k, and ṽN−k =[

(s�1/2) +
∑k

i=1G[i]�1y[i], (s�2/2) +
∑k

i=1G[i]�2y[i], . . . ,(
s�N−k/2

)
+
∑k

i=1G[i]�N−ky[i]

]T
. Here, �1, �2, . . . , �N−k

can be interpreted as the unordered indices. In the example
above, �1 = 1 and �2 = 3. Similarly, ũN−k can be
interpreted as the vector of unordered yet-to-be-received
measurements and T̃N−k as the sub-matrix of G that
corresponds to these unordered measurements. Depending
on the measurements, some permutation of them yields
[k + 1] , [k + 2] , . . . , [N ]. Let Uπ denote the permutation
matrix of size (N − k) × (N − k) for this permutation.
Then, uN−k = UπũN−k, TN−k = UπT̃N−kUT

π, and
vN−k = UπṽN−k. Using UπUT

π = UT
πUπ = IN−k, (7)

becomes

d(y) = rT
kPkrk + mT

krk

+ ũT
N−kT̃N−kũN−k + 2ṽT

N−kũN−k. (8)

Since the quantities T̃N−k and ṽN−k depend on the nodes
that are yet to transmit and not on their ordering, the FN

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 12,2021 at 16:50:12 UTC from IEEE Xplore.  Restrictions apply. 



SEN GUPTA AND MEHTA: ORDERED TRANSMISSIONS SCHEMES FOR DETECTION IN SPATIALLY CORRELATED WSNs 1569

can explicitly compute them. This is unlike TN−k and vN−k

in (7). Furthermore, |y�i | <
∣∣y[k]

∣∣, for 1 ≤ i ≤ N − k. We
can now bound the unknown terms ũT

N−kT̃N−kũN−k and
ṽT

N−kũN−k and, in effect, d(y) in terms of the measurements
received thus far. It leads to the following novel decision rules,
which are derived in Appendix A.

Result 1: Let the FN have received y[1], y[2], . . . , y[k] from
the nodes [1] , [2] , . . . , [k] and

ak = rT
kPkrk + mT

krk

bk = 2
∣∣y[k]

∣∣ ∑
j∈N\{[1],[2],...,[k]}

∣∣∣∣∣sj

2
+

k∑
i=1

G[i]jy[i]

∣∣∣∣∣ .
The following decision rules achieve the same optimal error
probability as UTS:

1) If λmin

(
T̃N−k

)
≥ 0:

Decide H1 if: ak > βgen + bk, (9)

Decide H0 if: ak < βgen − λmax

(
T̃N−k

)
(N − k)y2

[k]

− bk, (10)

Wait for the next transmission, otherwise.
2) If λmin

(
T̃N−k

)
< 0 < λmax

(
T̃N−k

)
:

Decide H1 if: ak > βgen − λmin

(
T̃N−k

)
(N − k)y2

[k]

+ bk, (11)

Decide H0 if: ak < βgen − λmax

(
T̃N−k

)
(N − k)y2

[k]

− bk, (12)

Wait for the next transmission, otherwise.
3) If λmax

(
T̃N−k

)
≤ 0:

Decide H1 if: ak > βgen − λmin

(
T̃N−k

)
(N − k)y2

[k]

+ bk, (13)

Decide H0 if: ak < βgen − bk, (14)

Wait for the next transmission, otherwise.

If k = N , the FN decides based on (6). �
Remark: The FN can compute the lower and upper thresh-

olds in the decision rules above since they are entirely
in terms of the k measurements y[1], y[2], . . . , y[k] and the
k node indices [1] , [2] , . . . , [k] that it has received. For
example, to compute the sum

∑
j∈N\{[1],[2],...,[k]} |(sj/2) +∑k

i=1G[i]jy[i]

∣∣∣, the FN only needs to know who the remaining
nodes are and not the order in which they will transmit.

B. Detecting a Shift in Covariance

In this case, R(0) �= R(1) but µ(0) = µ(1) = µ. We present
two approaches below that bring out the important role that
the metric plays in the design of the scheme.

We first write the decision rule in (4) as follows:

dcov(z) � zTGz
H1

≷
H0

βcov, (15)

where βcov = 2β + log
(

det
(
R(1)

)
/det

(
R(0)

))
and

z = y − µ. Expanding (15), we get

N∑
i=1

Giiz
2
i +

N∑
i=1

N∑
j=1
j �=i

Gijzizj

H1

≷
H0

βcov. (16)

We shall refer to zi = yi−μi as the mean-shifted measurement
of node i.

We propose that the metric for node i is |zi|. When its
timer expires, it sends zi and its identity i to the FN.1 Now,
|z[1]| > |z[2]| > · · · > |z[N ]|. Based on (15), we present two
approaches to derive the decision rules, namely, covariance-
shift-OTS (CovShift-OTS) and CovShift-Refined-OTS. They
present different trade-offs between complexity and the num-
ber of transmissions.

1) CovShift-OTS: Here, we bound the quadratic term zTGz
to obtain the following decision rules. The derivation is given
in Appendix B.

Result 2: Let the FN have received the mean-shifted mea-
surements z[1], z[2], . . . , z[k]. The following decision rules
achieve the same error probability as UTS:

1) If λmin(G) ≥ 0:

Decide H1 if: λmin(G)
k∑

i=1

z2
[i] > βcov, (17)

Decide H0 if: λmax(G)
k∑

i=1

z2
[i] < βcov

−λmax(G) (N − k)z2
[k], (18)

Wait for the next transmission, otherwise.
2) If λmin(G) < 0 < λmax(G):

Decide H1 if: λmin(G)
k∑

i=1

z2
[i] > βcov

−λmin(G) (N − k)z2
[k],

(19)

Decide H0 if: λmax(G)
k∑

i=1

z2
[i] < βcov

−λmax(G) (N − k)z2
[k],

(20)

Wait for the next transmission, otherwise.
3) If λmax(G) ≤ 0:

Decide H1 if : λmin(G)
k∑

i=1

z2
[i] > βcov

−λmin(G) (N − k)z2
[k], (21)

Decide H0 if : λmax(G)
k∑

i=1

z2
[i] < βcov, (22)

Wait for the next transmission, otherwise.

If k = N , the FN decides based on (16). �
1For this, a node i is assumed to know its mean μi, which is easy to ensure

in practice.
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Analytical Bounds: To understand the performance of
CovShift-OTS, we derive an upper bound on the average
number of transmissions Ā. While this is intractable for
arbitrary R(0) and R(1), we derive bounds for the product-
correlation model [22]. In it, under H1, the correlation-
coefficient between the measurements yi and yj at nodes i
and j is θiθj , where θ1, θ2, . . . , θN ∈ (−1, 1). Thus, R(1)

ij =
σiσjθiθj , for i �= j, and σ2

i , otherwise, where σ2
i is the

variance of the measurement at node i under H1. Note that
the variances σ2

1 , σ
2
2 , . . . , σ

2
N can be different. Furthermore,

R(0) = γ0IN . Thus, only spatially white noise is measured
under H0 [16]. From the definition of G in (5), we get

λmin(G) =
1
γ0

− 1
λmin

(
R(1)

) ,
λmax(G) =

1
γ0

− 1
λmax

(
R(1)

) . (23)

Let

α1 =
βcov

λmin(G)
and α0 =

βcov

λmax(G)
. (24)

Result 3: Ā is upper bounded by

Ā ≤ N −(N − 1) ν̄, (25)

where ν̄ depends on the signs of βcov, λmin(G), and λmax(G).
It is given as follows:

1) If λmin(G) ≥ 0:

ν̄ =

⎧⎪⎪⎨⎪⎪⎩
1, if βcov < 0,[
1 − δ0(α1) + δ0

(α0

N

)]
ζ0

+
[
1 − δ1(α1) + δ1

(α0

N

)]
ζ1, otherwise.

(26)

2) If λmin(G) < 0 < λmax(G):

ν̄ =

⎧⎪⎨⎪⎩
δ0

(α1

N

)
ζ0 + δ1

(α1

N

)
ζ1, if βcov < 0,

δ0

(α0

N

)
ζ0 + δ1

(α0

N

)
ζ1, otherwise.

(27)

3) If λmax(G) ≤ 0:

ν̄ =

⎧⎪⎪⎨⎪⎪⎩
[
1 − δ0(α0) + δ0

(α1

N

)]
ζ0

+
[
1 − δ1(α0) + δ1

(α1

N

)]
ζ1, if βcov < 0,

1, otherwise,

(28)

where δ0(x) =
[
1 − 2Q

(√
x
γ0

)]N

,

δ1(x) =
1√
2π

∫ ∞

−∞

N∏
i=1

[
Q

(
1√

1 − θ2i

[
−
√

x

σ2
i

− θiψ

])

−Q

(
1√

1 − θ2i

[√
x

σ2
i

− θiψ

])]
e−

ψ2
2 dψ, (29)

and Q(·) denotes the Gaussian Q-function [30, Ch. 26.2].
Proof: The proof is given in Appendix C.

Remark: The different cases arise in Result 3 because βcov,
λmin(G), and λmax(G) can be positive or negative. The
integral in (29) can be easily evaluated using Gauss-Hermite
quadrature [30, Ch. 25.4] as follows:

δ1(x) ≈
g∑

l=1

ωl√
π

N∏
i=1

[
Q

(
1√

1 − θ2i

[
−
√

x

σ2
i

−
√

2θial

])

−Q

(
1√

1 − θ2i

[√
x

σ2
i

−√
2θial

])]
,

where ωl and al, for 1 ≤ l ≤ g, are the Gauss-Hermite weights
and abscissas, respectively, and g is the number of terms.2

To gain insights, consider the case where γ0 is fixed and
σ2

1 = σ2
2 = · · · = σ2

N = γ1. Define γ1/γ0 as the SNR. When
γ1 → ∞ and γ0 is fixed, SNR → ∞. It follows from (23) that
λmin(G) → 1/γ0, λmax(G) → 1/γ0, and βcov → ∞. Thus,
δ0(α1) → 1 and δ0(α0/N) → 1. Furthermore, δ1(α1) → 0
and δ1(α1/N) → 0. Thus, ν̄ → 1 and Ā → 1. Hence, on an
average, the FN can make a decision with a single transmission
without any increase in the error probability.

We see from Result 2 that the FN does not need to know the
identities of the nodes that have transmitted to implement the
decision rules for CovShift-OTS, which is unlike CA-OTS.

2) CovShift-Refined-OTS: As in CovShift-OTS, the metric
of node i is |zi| and it transmits zi upon timer expiry. Thus,
as before,

∣∣z[1]∣∣ > ∣∣z[2]∣∣ > · · · > ∣∣z[N ]

∣∣.
In terms of the order statistics notation, the decision statistic

dcov(z) can be expressed as

dcov(z) =
N∑

i=1

G[i][i]z
2
[i] +

N∑
i=1

N∑
j=1
j �=i

G[i][j]z[i]z[j]. (30)

When the FN has received the mean-shifted measurements
z[1], z[2], . . . , z[k] from the nodes [1] , [2] , . . . , [k], we can
express (30) in the following form that is similar to (7):

dcov(z) = (r′k)T Pkr′k +
(
u′

N−k

)T
TN−ku′

N−k

+ 2
(
v′

N−k

)T
u′

N−k, (31)

where Pk and TN−k have been defined earlier,
r′k =

[
z[1], z[2], . . . , z[k]

]T
, u′

N−k =
[
z[k+1] ,

z[k+2], . . . , z[N ]

]T
, and v′

N−k =
[∑k

i=1G[i][k+1]z[i],∑k
i=1G[i][k+2]z[i], . . . ,

∑k
i=1G[i][N ]z[i]

]T
. As in Section III-

A, the FN constructs T̃N−k, which is the sub-matrix of G
that corresponds to the unordered measurements from the
nodes in the set N \{[1] , [2] , . . . , [k]}. The decision rules for
CovShift-Refined-OTS are as follows.

Result 4: Let the FN have received the mean-shifted mea-
surements z[1], z[2], . . . , z[k] from the nodes [1] , [2] , . . . , [k]
and

a′
k = (r′k)T Pkr′k,

b′
k = 2

∣∣z[k]

∣∣ ∑
j∈N\{[1],[2],...,[k]}

∣∣∣∣∣
k∑

i=1

G[i]jz[i]

∣∣∣∣∣ .
2We have found that g = 8 is sufficient to ensure numerical accuracy for

all system parameter values of interest.
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The following decision rules achieve the same error probability
as UTS:

1) If λmin

(
T̃N−k

)
≥ 0:

Decide H1 if: a′
k > βcov + b′

k, (32)

Decide H0 if: a′
k < βcov − λmax

(
T̃N−k

)
(N − k)z2

[k]

− b′
k, (33)

Wait for the next transmission, otherwise.
2) If λmin

(
T̃N−k

)
< 0 < λmax

(
T̃N−k

)
:

Decide H1 if: a′
k > βcov − λmin

(
T̃N−k

)
(N − k)z2

[k]

+ b′
k, (34)

Decide H0 if: a′
k < βcov − λmax

(
T̃N−k

)
(N − k)z2

[k]

− b′
k, (35)

Wait for the next transmission, otherwise.
3) If λmax

(
T̃N−k

)
≤ 0:

Decide H1 if: a′
k > βcov − λmin

(
T̃N−k

)
(N − k)z2

[k]

+ b′
k, (36)

Decide H0 if: a′
k < βcov − b′

k, (37)

Wait for the next transmission, otherwise.
If k = N , the FN decides based on (16).

Proof: The proof is similar to that in Appendix A, and is
skipped to conserve space.

The decision rules for CovShift-OTS use λmin(G) and
λmax(G), which only needs to be computed once. How-
ever, this approach bounds the term (r′k)T Pkr′k instead of
computing it exactly, which CovShift-Refined-OTS does. The
looser bounds increase the odds that the FN requires more
transmissions to decide. CovShift-OTS is a refinement over
CA-OTS as it uses a more refined metric. However, it is
more involved than CovShift-OTS as it needs to compute
the smallest and largest eigenvalues of T̃N−k, which changes
every time the FN receives a measurement. This discussion
also implies that the upper bound in Result 3 also applies to
CovShift-Refined-OTS.

C. Detecting a Shift in Mean

In this case, µ(0) �= µ(1) but R(1) = R(0) = R. Thus,
the decision rule in (4) simplifies to

sTy
H1

≷
H0

βmean, (38)

where s = 2R−1
(
µ(1) − µ(0)

)
and βmean = 2β +(

µ(1)
)T

R−1µ(1) − (
µ(0)

)T
R−1µ(0). Thus, (38) becomes

N∑
i=1

wi

H1

≷
H0

βmean, (39)

where, for 1 ≤ i ≤ N ,

wi = siyi and si = 2
N∑

j=1

R−1
ij

(
μ
(1)
j − μ

(0)
j

)
, (40)

and R−1
ij denotes the element in the ith row and jth column of

R−1.
In this case, the measurement yi of node i is weighted by the

node-specific scaling factor si that depends on the covariance
matrix R and the mean vectors µ(0) and µ(1). We propose
the MeanShift-OTS scheme in which the metric of node i is
|wi| and it transmits a packet containing wi when its timer
expires.3 Now, |w[1]| > |w[2]| > · · · > |w[N ]|. The decision
rules for MeanShift-OTS are as follows.

Result 5: Let the FN have received w[1], w[2], . . . , w[k] from
nodes [1] , [2] , . . . , [k]. The decision rules, which ensure the
same error probability as UTS, are as follows:

Decide H1 if :
k∑

i=1

w[i] > βmean + (N − k)
∣∣w[k]

∣∣ , (41)

Decide H0 if :
k∑

i=1

w[i] < βmean − (N − k)
∣∣w[k]

∣∣ , (42)

Wait for the next transmission, otherwise.
Proof: The proof is similar to that of Theorem 1 in [6]

and is skipped.
When k = N , the decision rule is the same as UTS, which

is given in (39).
Analytical Bounds: To gain analytical insights, we consider

the product-correlation model from before. In it, Rij =
σiσjθiθj , for i �= j, 1 ≤ i, j ≤ N , and Rii = σ2

i , for
1 ≤ i ≤ N . And, µ(0) = 0 [13], [15]. We assume the uniform
cost model in which c01 = c10 = 1 and c00 = c11 = 0, and
ζ0 = ζ1 = 0.5 [6], [16]. Thus, βmean =

(
µ(1)

)T
R−1µ(1).

We now derive an upper bound on the average number of
transmissions Ā.

Result 6: Ā is upper bounded as

Ā ≤ N −
(⌊

N

2

⌋
− 1

)
[(η0 + κ0) ζ0 +(η1 + κ1) ζ1] , (43)

where the constants ηh and κh, for h ∈{0, 1}, are given by

ηh =
1√
2π

∫ +∞

−∞

N∏
i=1

[
Q

(
1√

1 − θ2i

[
βmean − siμ

(h)
i

|si|σi

− sgn(si) θiψ

])]
e−

ψ2
2 dψ, (44)

κh =
1√
2π

∫ +∞

−∞

N∏
i=1

[
1 −Q

(
1√

1 − θ2i

[
βmean − siμ

(h)
i

|si|σi

− sgn(si) θiψ

])]
e−

ψ2
2 dψ. (45)

Proof: The proof is given in Appendix D.
As before, using Gauss-Hermite quadrature,

the integrals in (44) and (45) can be easily
computed as follows for h ∈ {0, 1}: ηh ≈
g∑

l=1

ωl√
π

∏N
i=1

[
Q

(
1√

1−θ2
i

[
βmean−siμ

(h)
i

|si|σi − sgn(si)
√

2θial

])]
3This requires node i to know si. This can be communicated to the node

by the FN, and it needs to be done only once.
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and κh ≈
g∑

l=1

ωl√
π

∏N
i=1

[
1 −Q

(
1√

1−θ2
i

[
βmean−siμ

(h)
i

|si|σi
−sgn(si)

√
2θial

])]
.

To understand Result 5, consider μ(1)
1 = μ

(1)
2 = · · · =

μ
(1)
N = μ and the uniform correlation model, in which
Rij = γρ, for i �= j, 1 ≤ i, j ≤ N , and Rii = γ,
for 1 ≤ i ≤ N . It follows that θi =

√
ρ and si =

2μ/ (γ [1 + ρ (N − 1)]), for 1 ≤ i ≤ N . Hence, under H1,(
βmean − siμ

(1)
i

)
/(|si|σi) = (N − 2)μ/

(
2
√
γ
)
, and under

H0,
(
βmean − siμ

(0)
i

)
/(|si|σi) = Nμ/

(
2
√
γ
)
. Consequently,

if μ → ∞ and γ is fixed, we have η0 → 0, η1 → 0, κ0 → 1,
and κ1 → 1. And we get, Ā ≤ �N/2� + 1.

IV. NUMERICAL RESULTS

We now benchmark the average number of transmis-
sions Ā since the error probability is the same as that of
UTS. A reduction in Ā also translates into an improvement
in energy-efficiency as follows. The energy-efficiency of a
scheme is the ratio of the average energy consumed by UTS
to the average energy consumed by the scheme to make a
decision. The larger this value is compared to one, the more
energy-efficient the scheme is. When the nodes transmit with
the same power, it follows that the energy-efficiency is equal
to N/Ā. When the nodes use different powers, e.g., when
they are at different distances from the FN and employ power
control, a reduction in Ā implies a higher energy-efficiency,
but the connection between the two is not as mathematically
direct.

We illustrate results for the uniform cost model and ζ0 =
ζ1 = 0.5. The Monte Carlo simulations are averaged over
106 measurement rounds. We show results for two correlation
models. First, to demonstrate the generality of our model,
we show results for the product-correlation model. In it, we set
θi = θmax − (i− 1)(θmax − θmin)/ (N − 1), for 1 ≤ i ≤
N , θmin = 0.25, and θmax = 0.75. Thus, the correla-
tion between the measurements of different pairs of nodes
is different. Second, to evaluate the impact of correlation,
we show results for the uniform correlation model, in which
the correlation-coefficient between any two nodes is ρ ∈(0, 1).
The advantage of this model is that ρ is a single parameter that
can be varied. Note that for these correlation models, there is
only one cluster with a single cluster head as per the protocols
proposed in [15] and [16]. Since all nodes within a cluster have
to transmit to the cluster head, the number of transmissions
for these protocols is N , which is the same as that of UTS.

A. General Case: Shift in Both Mean and Covariance

We show results for an example that involves both product-
correlation and uniform correlation models. Specifically, R(1)

follows the product-correlation model with R
(1)
ij = θiθj , for

i �= j, 1 ≤ i, j ≤ N , and R
(1)
ii = 1, for 1 ≤ i ≤ N . And,

R(0) follows the uniform correlation model with R(0)
ij = 0.5,

for i �= j, 1 ≤ i, j ≤ N , and R(0)
ii = 1, for 1 ≤ i ≤ N . We set

µ(0) = 0 and µ(1) = μ [1, 1, . . . , 1]T, and vary μ. Fig. 2 plots
Ā as a function of the number of sensors N for UTS and
CA-OTS for different values of μ. For UTS, Ā = N . As N

Fig. 2. Shift in both mean and covariance: Ā as a function of N for different
values of μ (µ(0) = 0, µ(1) = μ [1, 1, . . . , 1]T, R

(0)
ij = 0.5, for i �= j,

1 ≤ i, j ≤ N , R
(0)
ii = 1, for 1 ≤ i ≤ N , R

(1)
ij = θiθj , for i �= j,

1 ≤ i, j ≤ N , and R
(1)
ii = 1, for 1 ≤ i ≤ N ).

Fig. 3. Shift-in-covariance: Ā as a function of the SNR γ1/γ0 for the
product-correlation model (N = 20, µ(0) = µ(1) = [1, 1, . . . , 1]T, R(0) =

γ0IN , R
(1)
ij = γ1θiθj , for i �= j, 1 ≤ i, j ≤ N , and R

(1)
ii = γ1, for

1 ≤ i ≤ N ).

increases, Ā of CA-OTS increases. However, for all values of
μ, it is much smaller than N . For example, when N = 20,
CA-OTS requires 31%, 51%, and 59% fewer transmissions
than UTS for μ = 1, 3, and 5, respectively. Ā decreases as μ
increases because the distributions become more separated.

B. Shift-in-Covariance

Product-Correlation Model: Fig. 3 plots Ā of CA-OTS,
CovShift-OTS, CovShift-Refined-OTS, and UTS for N =
20 nodes. For hypothesis H1, we set R(1)

ij = γ1θiθj , for

i �= j, 1 ≤ i, j ≤ N , and R
(1)
ii = γ1, for 1 ≤ i ≤ N .

For hypothesis H0, we set R(0) = γ0IN . And, µ(0) =
µ(1) = [1, 1, . . . , 1]T. As the SNR γ1/γ0 increases, CA-OTS,
CovShift-OTS, and CovShift-Refined-OTS all require fewer
transmissions, on average, to make a decision compared to
UTS. CovShift-Refined-OTS requires fewer transmissions than
CA-OTS at all SNRs. For SNRs less than 6 dB, CA-OTS
requires fewer transmissions than CovShift-OTS. This happens
because the effect of cross-terms is more pronounced at
smaller SNRs. CA-OTS computes the cross-terms that involve
only the received measurements instead of bounding them,
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Fig. 4. Effect of correlation on the shift-in-covariance problem: Ā as a
function of ρ for the uniform correlation model (N = 20, µ(0) = µ(1) =

[1, 1, . . . , 1]T, R(0) = γ0IN , R
(1)
ij = γ1ρ, for i �= j, 1 ≤ i, j ≤ N ,

R
(1)
ii = γ1, for 1 ≤ i ≤ N , and γ1/γ0 = 10 dB).

as is done by CovShift-OTS. When the SNR increases, even
CovShift-OTS requires fewer transmissions than CA-OTS
because it uses a more refined metric. Also plotted is the
upper bound on Ā for CovShift-OTS from Result 3. It becomes
tighter as the SNR increases and eventually becomes one.

Uniform Correlation Model: Fig. 4 plots Ā of all the
schemes as a function of the correlation-coefficient ρ for
µ(0) = µ(1) = [1, 1, . . . , 1]T, R(0) = γ0IN , R(1)

ij = γ1ρ, for

i �= j, 1 ≤ i, j ≤ N , and R(1)
ii = γ1, for 1 ≤ i ≤ N . This is

done for N = 20 and γ1/γ0 = 10 dB. As before, the ordered
transmissions schemes require fewer transmissions than UTS,
and CovShift-Refined-OTS requires even fewer transmissions
than CA-OTS for all values of ρ. Even CovShift-OTS, despite
its simplicity, requires fewer transmissions than CA-OTS for
ρ ≤ 0.8. For example, when ρ = 0.4, CA-OTS, CovShift-
OTS, and CovShift-Refined-OTS require 50%, 80%, and 80%,
respectively, fewer transmissions than UTS. However, when
ρ > 0.8, the effect of cross-terms increases and CovShift-OTS
requires more transmissions than CA-OTS.

As ρ increases from 0 to 0.9, Ā for CovShift-OTS
and CovShift-Refined-OTS increases. It stays the same until
ρ = 0.93. However, for ρ > 0.93, it decreases. This
can be understood using the notion of generalized variance.
It is a measure of dispersion for a multivariate distribution
and is equal to the determinant of the covariance matrix
[31, Ch. 7.5]. This makes it equivalent to entropy, which is an
affine function of the above determinant for Gaussian statistics.
From [20], det

(
R(1)

)
= γN

1 (1 − ρ)N−1(1 +(N − 1) ρ). And,
det

(
R(0)

)
= γN

0 . At ρ = 0, det
(
R(1)

)
> det

(
R(0)

)
. Intu-

itively, the more the difference between the two dispersions,
the easier it is to distinguish between the two hypotheses. As ρ
increases, det

(
R(1)

)
decreases and it becomes more difficult

to distinguish H1 from H0. Thus, Ā increases. When ρ = 0.9,
Ā of CovShift-OTS is the same as UTS. Here, it turns out that
λmin(G) = 0 and βcov > 0. Consequently, the condition for
deciding H0 early is never satisfied in (17). Each additional
measurement is less informative when ρ is large. This implies
that the FN is also often unable to decide early about H1.
When ρ > 0.93, det

(
R(1)

)
becomes significantly smaller than

Fig. 5. Shift-in-mean: Ā as a function of N for the product-correlation
model (µ(0) = 0, µ(1) = [3, 3, . . . , 3]T, R

(0)
ij = R

(1)
ij = θiθj , for i �= j,

1 ≤ i, j ≤ N , and R
(0)
ii = R

(1)
ii = 1, for 1 ≤ i ≤ N ).

Fig. 6. Effect of correlation on the shift-in-mean problem: Zoomed-in-view
of Ā as a function of ρ for different values of μ for MeanShift-OTS and
CA-OTS for the uniform correlation model (N = 20, µ(0) = 0, µ(1) =

μ [1, 1, . . . , 1]T, R
(0)
ij = R

(1)
ij = ρ, for i �= j, 1 ≤ i, j ≤ N , and R

(0)
ii =

R
(1)
ii = 1, for 1 ≤ i ≤ N ).

det
(
R(0)

)
and it is easier to distinguish between H1 and H0.

Thus, Ā decreases.

C. Shift-in-Mean

Product-Correlation Model: Fig. 5 plots Ā of CA-OTS,
MeanShift-OTS, and UTS as a function of N . This is done for
µ(0) = 0, µ(1) = [3, 3, . . . , 3]T, and the covariance matrix for
both hypotheses follows the product-correlation model with
R

(0)
ij = R

(1)
ij = θiθj , for i �= j, 1 ≤ i, j ≤ N , and R

(0)
ii =

R
(1)
ii = 1, for 1 ≤ i ≤ N . As N increases, the average number

of transmissions of CA-OTS and MeanShift-OTS increase.
Both CA-OTS and MeanShift-OTS have a much smaller Ā
than UTS. Also plotted is the upper bound on Ā that is derived
in Result 6. It tracks the simulation curve well.

Uniform Correlation Model: To understand the effect of cor-
relation, Fig. 6 plots Ā as a function of ρ for MeanShift-OTS
and CA-OTS. This is done for N = 20, µ(0) = 0, µ(1) =
μ [1, 1, . . . , 1]T, and R(0)

ij = R
(1)
ij = ρ, for i �= j, 1 ≤ i, j ≤ N ,

and R
(0)
ii = R

(1)
ii = 1, for 1 ≤ i ≤ N . We show results for

μ = 3 and 5. The results for UTS are not shown given its
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substantially worse performance. Both the schemes have the
same Ā because the scaling factor si is the same for all the
nodes. Hence, ordering on the basis of |wi| is the same as
ordering on the basis of |yi|. As μ increases, the distributions
become more separated and Ā decreases.

As ρ increases, two factors counteract each other. First, as ρ
increases, the measurements are more correlated. Thus, each
additional transmission conveys less information. Hence, more
transmissions are needed to make a decision. Second, as ρ
increases, the generalized variance decreases. This implies that
it becomes easier to distinguish the two distributions since the
measurements become more clustered around the mean. When
ρ increases from 0 to 0.6, the first factor dominates. As a
result, Ā increases. However, when ρ > 0.6, the second factor
becomes dominant. This leads to the marginal decrease in Ā
as ρ increases. For μ = 5, the two distributions are already so
separated that the increased clustering around the mean as ρ
increases has a negligible impact on the ability of the FN to
distinguish between the two distributions. Thus, the first factor
dominates and Ā increases as ρ increases.

V. CONCLUSION

We proposed CA-OTS for the binary hypothesis testing
problem with correlated Gaussian statistics for the general case
in which the mean and covariance of the two hypotheses were
different. CA-OTS required far fewer transmissions on average
than UTS, in which all nodes transmitted, without compro-
mising on the error probability. For the shift-in-covariance
problem, in which the two hypotheses differed only in their
covariance matrices, we proposed two novel approaches that
brought out the importance of designing the metric and the
decision rules. For CovShift-OTS, our upper bound on the
average number of transmissions showed that the FN required
only one transmission to make a decision at large SNRs. For
the shift-in-mean problem, in which only the mean vectors
were different, we proposed MeanShift-OTS, which again used
a different metric and decision rules. We also derived an
upper bound, which showed that as the difference between
the mean vectors increased, MeanShift-OTS saved at least half
the number of transmissions compared to UTS. Future work
includes incorporating power adaptation to improve energy
efficiency and modeling deep channel fades, due to which
some transmissions may be missed by the FN.

APPENDIX

A. Decision Rules for CA-OTS

In (8), the decision statistic is a sum of four terms. The first
two terms, rT

kPkrk and mT
krk, and thus their sum ak, are in

terms of measurements that are known to the FN. We bound
the third term ũT

N−kT̃N−kũN−k as follows. Since T̃N−k is
a symmetric matrix, from [32, Ch. A.5.2], we get

λmin

(
T̃N−k

) ∑
j∈N\{[1],[2],...,[k]}

y2
j

≤ ũT
N−kT̃N−kũN−k

≤ λmax

(
T̃N−k

) ∑
j∈N\{[1],[2],...,[k]}

y2
j . (46)

Since − ∣∣y[k]

∣∣ < yj <
∣∣y[k]

∣∣, for j ∈ N \{[1] , [2] , . . . , [k]},
we get 0 <

∑
j∈N\{[1],[2],...,[k]} y

2
j < (N−k)y2

[k]. From the def-
inition of ṽN−k in Section III-A, we can bound ṽT

N−kũN−k

as

−bk

2
< ṽT

N−kũN−k <
bk

2
, (47)

where bk is defined in the result statement. To bound
ũT

N−kT̃N−kũN−k + 2ṽT
N−kũN−k, we need to consider the

signs of λmin

(
T̃N−k

)
and λmax

(
T̃N−k

)
. This gives rise to

the following three cases:
1. If λmin

(
T̃N−k

)
≥ 0: In this case, 0 ≤

ũT
N−kT̃N−kũN−k < λmax

(
T̃N−k

)
(N − k) y2

[k]. Substituting
this and (47) in (8) yields

d(y) < ak + λmax

(
T̃N−k

)
(N − k)y2

[k] + bk, (48)

d(y) > ak − bk. (49)

Therefore, if

ak < βgen − λmax

(
T̃N−k

)
(N − k)y2

[k] − bk, (50)

then it follows from (48) that d(y) < βgen. Thus, the FN
should decide H0. Similarly, if

ak > βgen + bk, (51)

then it follows from (49) that d(y) > βgen. Thus, the FN
should decide H1, as is done in UTS.

2. If λmin

(
T̃N−k

)
< 0 < λmax

(
T̃N−k

)
: Here,

λmin

(
T̃N−k

)
(N − k) y2

[k] < ũT
N−kT̃N−kũN−k <

λmax

(
T̃N−k

)
(N − k) y2

[k]. The upper bound on d(y)
is the same as (48). Hence, it can be shown that the condition
for deciding H0 is the same as that of the first case. This
yields (12).

Since λmin

(
T̃N−k

)
(N − k) y2

[k] < ũT
N−kT̃N−kũN−k,

it follows that

d(y) > ak + λmin

(
T̃N−k

)
(N − k)y2

[k] − bk. (52)

Thus, if

ak > βgen − λmin

(
T̃N−k

)
(N − k)y2

[k] + bk, (53)

then, from (52), d(y) > βgen. Hence, the FN should decide
H1.

3. If λmax

(
T̃N−k

)
≤ 0: In this case,

λmin

(
T̃N−k

)
(N − k) y2

[k] < ũT
N−kT̃N−kũN−k ≤ 0.

Thus,

d(y) < ak + bk. (54)

Therefore, if

ak < βgen − bk, (55)

then, from (54), d(y) < βgen and the FN should decide H0.
The lower bound on d(y) is the same as (52). Hence, the
condition for deciding H1 is the same as that in the second
case.

When k = N , the FN has received all the N measurements.
Thus, it employs (6) to decide.
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B. Decision Rules for CovShift-OTS

Here, we use the following eigenvalue bounds on G:

λmin(G) zTz ≤ dcov(z) ≤ λmax(G) zTz. (56)

Writing zTz in terms of the mean-shifted measurements
received from the nodes [1] , [2] , . . . , [k], and the ones not yet
received from the nodes [k + 1] , [k + 2] , . . . , [N ], we get

zTz =
k∑

i=1

z2
[i] +

N∑
j=k+1

z2
[j]. (57)

Since the nodes transmit in the decreasing order of the absolute
values of their mean-shifted measurements, we have 0 ≤
z2
[j] < z2

[k], for 1 ≤ k < j ≤ N.
As in Appendix A, we need to consider the following three

cases to apply this inequality:
1. If λmin(G) ≥ 0: In this case, the above discussions imply

the following:

λmin(G)

(
k∑

i=1

z2
[i]

)
< dcov(z) , (58)

dcov(z) < λmax(G)

(
k∑

i=1

z2
[i] + (N − k)z2

[k]

)
.

(59)

Therefore, if λmin(G)
(∑k

i=1 z
2
[i]

)
> βcov, then, from (58),

we get dcov(z) > βcov. Hence, the FN should decide H1, just
as UTS would after receiving all N measurements. Again, if

λmax(G)

(
k∑

i=1

z2
[i]

)
< βcov − λmax(G) (N − k)z2

[k], (60)

then, from (59), dcov(z) < βcov and the FN should decide H0.
2. If λmin(G) < 0 < λmax(G): In this case,

λmin(G)

(
k∑

i=1

z2
[i] + (N − k)z2

[k]

)
< dcov(z) . (61)

Therefore, if λmin(G)
(∑k

i=1 z
2
[i] + (N − k)z2

[k]

)
> βcov,

then, from (61), dcov(z) > βcov and the FN should decide H1.
The decision rule for H0 is obtained using a similar logic.

3. If λmax(G) ≤ 0: In this case, we get dcov(z) <

λmax(G)
(∑k

i=1 z
2
[i]

)
. Thus, the FN will decide H0 if

λmax(G)
(∑k

i=1 z
2
[i]

)
< βcov. The decision rule for H1 fol-

lows similarly.
As before, when k = N , the FN decides based on (16).

C. CovShift-OTS: Upper Bound on the Average Number of
Transmissions

We first consider the case when λmin(G) ≥ 0. The average
number of transmissions Ā equals

Ā = N − S̄, (62)

where S̄ is the average number of transmissions saved. Let D1

be the event that the FN decides after receiving one transmis-
sion. In this case, the number of transmissions saved is N−1.

Let ν̄ = Pr(D1). Clearly, S̄ ≥ (N − 1) ν̄. From the decision
rules in (17) and (18), the event D1 occurs if λmin(G) z2

[1] >

βcov and the FN decides H1, or λmax(G) z2
[1] < βcov −

λmax(G) (N − 1) z2
[1] and the FN decides H0. Substituting

the expressions for α1 and α0 from (24), ν̄ can be written as

ν̄ = Pr
([
z2
[1] > α1

]
∪
[
z2
[1] <

α0

N

])
. (63)

If βcov < 0, then α1 ≤ α0 < 0 and ν̄ = 1. Thus, S̄ ≥ N − 1.
Next, consider the case when βcov ≥ 0. Here, 0 ≤ α0 ≤ α1

and the events z2
[1] > α1 and z2

[1] < (α0/N) are mutually
exclusive. Using this in (63), we get

ν̄ = Pr
(
z2
[1] > α1

)
+ Pr

(
z2
[1] <

α0

N

)
. (64)

We now compute the two probability terms in (64) separately.
a) Computing Pr

(
z2
[1] > α1

)
: We know that

Pr
(
z2
[1] > α1

)
= 1 − Pr

(
z2
[1] < α1

)
. Conditioning on

the hypotheses H0 and H1 and applying the law of total
probability, we get

Pr
(
z2
[1] > α1

)
= 1 −

1∑
h=0

ζhPr
(
z2
[1] < α1|Hh

)
. (65)

Note that z2
[1] < α1 implies z2

i < α1, ∀1 ≤ i ≤ N . Thus,

Pr
(
z2
[1] < α1|Hh

)
= Pr(−√

α1 < zi <
√
α1, ∀1 ≤ i ≤ N |Hh) . (66)

Under H0, the RVs zi are independent and identically distrib-
uted (i.i.d.) Gaussian RVs with zero mean and variance γ0.
Thus,

Pr(−√
α1 < zi <

√
α1, ∀1 ≤ i ≤ N |H0)

=
[
1 − 2Q

(√
α1

γ0

)]N

= δ0(α1) , (67)

where δ0 (·) is defined in the result statement.
To calculate Pr

(−√
α1 < zi <

√
α1, ∀1 ≤ i ≤ N |H1

)
,

we use the following trick that holds for the
product-correlation model. The RVs zi can be written
as [22]

zi = σi

(√
1 − θ2i Ψi + θiΨ

)
, for 1 ≤ i ≤ N, (68)

where Ψ,Ψ1,Ψ2, . . . ,ΨN are (N + 1) i.i.d. Gaussian
RVs with zero mean and unit variance. Let ξ =
Pr
(−√

α1 < zi <
√
α1, ∀1 ≤ i ≤ N |H1

)
. Substituting zi

from (68), conditioning on Ψ, and applying the law of total
probability yields

ξ = EΨ

[
Pr

(
1√

1 − θ2i

[
−
√
α1

σ2
i

− θiΨ
]
< Ψi

<
1√

1 − θ2i

[√
α1

σ2
i

−θiΨ
]
, ∀1 ≤ i ≤ N

)]
, (69)

= EΨ

[
N∏

i=1

[
Q

(
1√

1 − θ2i

[
−
√
α1

σ2
i

− θiΨ
])

−Q
(

1√
1 − θ2i

[√
α1

σ2
i

− θiΨ
])]]

. (70)
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The last step follows because Ψ1,Ψ2, . . . ,ΨN , and Ψ are i.i.d.
Substituting the PDF of Ψ yields

ξ =
1√
2π

∫ ∞

−∞

N∏
i=1

[
Q

(
1√

1 − θ2i

[
−
√
α1

σ2
i

− θiψ

])

−Q

(
1√

1 − θ2i

[√
α1

σ2
i

− θiψ

])]
e−

ψ2

2 dψ. (71)

From the definition of δ1(·) in (29), we get ξ = δ1 (α1).
Substituting (67) and (71) in (65) yields

Pr
(
z2
[1] > α1

)
=[1 − δ0(α1)] ζ0 +[1 − δ1(α1)] ζ1. (72)

b) Computing Pr
(
z2
[1] <(α0/N)

)
: Conditioning on H0 and

H1 and applying the law of total probability, we get
Pr
(
z2
[1] <(α0/N)

)
=

∑1
h=0 ζhPr

(
z2
[1] <(α0/N) |Hh

)
. As

above,

Pr
(
z2
[1] <

α0

N

)
= δ0

(α0

N

)
ζ0 + δ1

(α0

N

)
ζ1. (73)

Adding (72) and (73) yields the expression for ν̄ in (26) when
βcov ≥ 0.

The lower bound on S̄ when λmin(G) < 0 < λmax(G)
is obtained in a similar manner by considering the decision
rules in (19) and (20). Lastly, the lower bound on S̄ when
λmax(G) ≤ 0 is obtained in a similar manner by considering
the decision rules in (21) and (22).

D. MeanShift-OTS: Upper Bound on the Average
Number of Transmissions

Let S̄1 denote the average number of transmissions saved
when the event in (41) occurs, which makes the FN decide on
H1. Similarly, let S̄0 denote the average number of transmis-
sions saved when the event in (42) occurs, which makes the
FN decide on H0. Since these events are mutually exclusive,
the average number of transmissions saved S̄ is given by

S̄ = S̄1 + S̄0. (74)

a) Lower Bound on S̄1: Let τ1 be the number of transmissions
after which the FN decides H1. Then, proceeding along lines
similar to the proof of Theorem 1 in [15], we have

S̄1 =
N∑

k=1

(N − k) Pr(τ1 = k) ≥
�N2 �+1∑

k=1

(N − k) Pr(τ1 = k) .

(75)

For 1 ≤ k ≤ �N/2�+1, we have �N/2	−1 ≤ N−k ≤ N−1.
Thus, S̄1 in (75) can be lower bounded further as

S̄1 ≥
(⌊

N

2

⌋
− 1

)
Pr

(
τ1 ≤

⌈
N

2

⌉
+ 1

)
. (76)

When the FN decides H1 in at most �N/2� + 1 transmis-
sions, it follows from (41) that

∑�N/2�+1
i=1 w[i] > βmean +

(�N/2	 − 1)
∣∣w[�N/2�+1]

∣∣. Hence,

Pr

(
τ1 ≤

⌈
N

2

⌉
+ 1

)

= Pr

⎛⎜⎝�N2 �+1∑
i=1

w[i] > βmean +
(⌊

N

2

⌋
− 1

) ∣∣∣w[�N2 �+1]

∣∣∣
⎞⎟⎠ .

(77)

Next we show that wi > βmean, ∀1 ≤ i ≤ N , implies∑�N/2�+1
i=1 w[i] > βmean +(�N/2	 − 1)

∣∣w[�N/2�+1]

∣∣. For this,

notice that βmean =
(
µ(1)

)T
R−1µ(1) > 0 since R is a

positive-definite matrix. Hence, wi > βmean implies that
|wi| > βmean. This, in turn, implies that

∑�N/2�+1
i=1 w[i] >

βmean +(�N/2	 − 1)
∣∣w[�N/2�+1]

∣∣. Hence, from (77), we get

Pr

(
τ1 ≤

⌈
N

2

⌉
+ 1

)
≥ Pr(wi > βmean, ∀1 ≤ i ≤ N) . (78)

Conditioning on the hypotheses, Pr (wi > βmean, ∀1 ≤ i ≤ N)
can be written as Pr (wi > βmean, ∀1 ≤ i ≤ N) =

∑1
h=0 ζh

Pr (wi > βmean, ∀1 ≤ i ≤ N |Hh).
Since wi = siyi and si is a constant, it follows that

w1, w2, . . . , wN also follow the product-correlation model
when conditioned on Hh. Their correlation-coefficient χij is
given by χij = θiθj , if sisj > 0, and χij = −θiθj , otherwise.
Thus, χij can be compactly written as χij = sgn(sisj) θiθj .
Furthermore, wi is a Gaussian RV with mean siμ

(h)
i under

hypothesis h ∈{0, 1}, and variance s2iσ
2
i . Hence, along similar

lines as (68), for 1 ≤ i ≤ N , wi can be expressed in terms
of (N + 1) i.i.d. Gaussian RVs Ψ,Ψ1,Ψ2, . . . ,ΨN with zero
mean and unit variance as

wi = siμ
(h)
i + |si|σi

(√
1 − θ2i Ψi + sgn(si) θiΨ

)
. (79)

Let Υh = Pr(wi > βmean, ∀1 ≤ i ≤ N |Hh), for h ∈{0, 1}.
Substituting (79) in Υh, we get

Υh = Pr

(
Ψi >

1√
1 − θ2i

[
βmean − siμ

(h)
i

|si|σi
− sgn(si) θiΨ

]
,

∀1 ≤ i ≤ N

)
. (80)

Conditioning on Ψ and proceeding along similar lines as (69)
and (70) yields

Υh =

EΨ

[
N∏

i=1

[
Q

(
1√

1 − θ2i

[
βmean − siμ

(h)
i

|si|σi
− sgn(si) θiΨ

])]]
.

(81)

Substituting the Gaussian PDF of Ψ and writing the expecta-
tion as an integral yields the expression for ηh in (44). Thus,
Υh = ηh and Pr (wi > βmean, ∀1 ≤ i ≤ N) =

∑1
h=0 ζhηh

Substituting this in (78) and then in (76), we get

S̄1 ≥
(⌊

N

2

⌋
− 1

) 1∑
h=0

ζhηh. (82)
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b) Lower Bound on S̄0: Along similar lines as above, S̄0 can
be lower bounded as

S̄0 ≥
(⌊

N

2

⌋
− 1

) 1∑
h=0

ζhκh, (83)

where κh is defined in (45). Substituting (82) and (83) in (74)
and then in (62) yields (43).
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