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Abstract—In a communication system in which K nodes
communicate with a central sink node, the following problem of
selection often occurs. Each node maintains a preference number
called a metric, which is not known to other nodes. The sink node
must find the ‘best’ node with the largest metric. The local nature
of the metrics requires the selection process to be distributed.
Further, the selection needs to be fast in order to increase
the fraction of time available for data transmission using the
selected node and to handle time-varying environments. While
several selection schemes have been proposed in the literature,
each has its own shortcomings. We propose a novel, distributed
selection scheme that generalizes the best features of the timer
scheme, which requires minimal feedback but does not guarantee
successful selection, and the splitting scheme, which requires
more feedback but guarantees successful selection. The proposed
scheme introduces several new ideas into the design of the
timer and splitting schemes. It explicitly accounts for feedback
overheads and guarantees selection of the best node. We analyze
and optimize the performance of the scheme and show that it is
scalable, reliable, and fast. We also present new insights about
the optimal timer scheme.

Index Terms—Multiple access, multiuser diversity, selection,
splitting scheme, timer backoff, throughput, feedback overhead.

I. INTRODUCTION

IN a communication systems in which K nodes communi-
cate with a central sink node, the following problem often

occurs. A random variable (RV) is associated with each node.
This RV is called a metric. The metrics are local in the sense
that they are evaluated based on information local to the node,
and their realizations are not known to other nodes. The central
node needs to select the ‘best’ node with the largest metric.

The above metric-based selection problem arises in several
wireless systems, some of which are discussed below. In the
downlink of a cellular system, the base station needs to trans-
mit to the mobile user with the largest signal-to-noise ratio
(SNR) in order to exploit multi-user diversity [2, Chap. 14].
In this case, the metric of a node is its downlink SNR. On the
other hand, in case a proportional fair scheduler is employed
by the base station (BS), the metric is the ratio SNR/E[SNR],
where E[·] denotes expectation [3]. Other notions of fairness
such as max-min fairness [4] and CDF-based fairness [5]
can also be formulated as metric-based selection problems
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by suitably defining the metric. In an amplify-and-forward
cooperative relaying system with a source, K relays, and a
destination, the source needs to select the relay with the largest
value of the harmonic mean of the source-to-relay and relay-
to-destination channel gains in order to maximize the SNR at
the destination [6], [7].

Selection is practically appealing because it eliminates the
problem of ensuring tight symbol-level synchronization among
simultaneously transmitting nodes. Relay selection has also
been shown to reduce energy consumption [8] and has been
also considered for decode-and-forward [7] and compress-and-
forward [9] protocols. In a sensor network, selecting the best
node for transmission improves network lifetime [10], [11].

A. Selection Schemes

Given its relevance, the selection problem has been well
studied in the literature, and several schemes have been
proposed.

A centralized scheme for selection is polling. In it, each
node sequentially reveals its metric to the sink, which then
selects the best node. However, polling is not scalable since
the time taken by it to select grows linearly with the number
of nodes. This limits the Doppler spread that the system can
handle and reduces the fraction of time available for data
transmission.

The following two different approaches successfully address
the problem of distributed selection with the help of a sink
node that coordinates the selection process.

1) Splitting-based selection [12], [13]: In it, all nodes
whose metrics lie in between two thresholds transmit in a
time slot. In each slot, the sink feeds back an idle outcome,
if no node transmitted (no signal), success outcome if one
node transmitted (decodable signal), and collision outcome
if multiple nodes transmitted and interfered with each other
(undecodable signal). The thresholds are updated based on
this feedback. The splitting scheme is guaranteed to select the
best node. For this, it requires less than 2.52 slots, on average,
even for the worst case of an asymptotically large number of
nodes [12]. Its speed of selection and scalability make it quite
appealing.

2) Single-stage Timer Backoff-based Selection [7], [11],
[14], [15]: In it, every node sets a timer as a function of its
metric. When its timer expires, the node transmits a contention
packet to the sink. The metric-to-timer mapping is such that
the timer of the best node always expires first. However, the
scheme will fail to select the best node if, for example, the
timer of another node expires within a duration Δ of the expiry
of the timer of the best node [16].
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Different metric-to-timer mappings have been proposed in
the literature [7], [11], [14], [15]. In [14], an optimal metric-to-
timer mapping that maximizes the probability of success given
a maximum selection duration Tmax is derived. The optimal
mapping turns out to have a special structure – in it, the timers
can either expire only at 0,Δ, . . . , NΔ, where N =

⌊
Tmax

Δ

⌋
and �·� denotes the floor function, or not expire at all. We
shall refer to N as the number of timer levels henceforth.

3) Comparisons and Open Issues: The splitting and timer
schemes have their advantages and drawbacks. The splitting
scheme is fast when measured in terms of the number of
slots required on average to select the best node. However, it
requires feedback in every slot, which increases the duration
of a slot and, thus, the total time required to select the best
node. Therefore, modifying the splitting scheme to reduce
its average selection time after accounting for its feedback
overheads is a relevant problem.

Unlike the splitting scheme, the timer scheme does not
require any feedback, except for a broadcast at the end by
the sink to inform which node has been selected. However,
the timer scheme cannot guarantee selection of the best node.
It is, therefore, of interest to integrate the timer scheme with
an appropriate collision resolution mechanism and, thereby,
guarantee selection of the best node. In [17], Tmax is doubled
every time a selection failure occurs. Instead, in [18], the
metrics are randomized in case of a failure. However, such
randomization degrades overall system performance since the
best node may not get selected. Also, the selection may not
even be fast.

B. Contributions

In this paper, we propose a novel selection scheme that
is different from the approaches pursued in the literature. It
is scalable and is faster than the splitting scheme when the
feedback overhead is accounted for, and, unlike the timer
scheme, guarantees selection of the best node. It combines the
best features of the splitting scheme, namely, fast contention
resolution and scalability, and the timer scheme, namely, low
feedback.

The scheme runs as follows. First, the single-stage optimal
timer scheme is run. If a collision occurs, then the timer
scheme is rerun, but with its parameters suitably adjusted.
Only the best node and the other nodes that collided with
it rescale their metrics and participate in the next stage.
Similarly, if no timer expires, then all the nodes rescale their
metrics and the timer scheme is rerun. This process is repeated
until a success occurs. Each timer stage is followed by the
feedback of an idle, success, or collision outcome by the sink
to enable the nodes to rescale their metrics.

Several new ideas are introduced in the proposed scheme
compared to the splitting and timer schemes. First, the number
of timer levels in each timer stage depends on the outcomes.
Second, the discrete structure of the single-stage optimal
timer scheme, which was proved in [14], is exploited by the
proposed scheme to obtain finer information about the time at
which the contention packet of the best node is involved in a
collision. Third, our approach effectively introduces contention
resolution in the timer scheme.

We develop analytical expressions for the average time
required by the scheme to select the best node and minimize it.
We also derive several new properties about the single-stage
optimal timer scheme [14], which are useful in the design
and analysis of the proposed scheme. The optimal parameter
settings reveal that the number of timer levels should be
decreased once a collision occurs. This is contrary to the timer
window doubling approach of [17]. The optimal number of
timer levels in each stage is shown to be proportional to the
square root of the ratio of feedback duration F and Δ.

We also present an extensive set of results that benchmark
the net throughputs achieved by the proposed scheme and
several other schemes considered in the literature such as
splitting, single-stage timer, polling, threshold-based random
access [18], and O-CSMA/CA [17]. The net throughgput
comparison correctly accounts for all the time overheads of
the selection process. It is pertinent because different schemes
adopt different compromises between spending time on select-
ing the best node, settling for a node that is not the best node,
and spending the available time for transmitting data using
the selected node. The results show that the proposed scheme
achieves the highest net throughput among all the benchmark
schemes and requires markedly fewer feedback messages than
splitting and O-CSMA/CA.

The paper is organized as follows. Section II describes
the system model and the single-stage optimal timer scheme.
We develop the proposed selection scheme in Section III.
Numerical results and performance comparisons are presented
in Section IV. Our conclusions follow in Section V. Several
mathematical derivations are relegated to the Appendix.

II. SYSTEM MODEL AND TIMER-BASED SELECTION

We shall use the following notation henceforth. R denotes
the set of all real numbers. The sum

∑m
i=n is defined to be zero

for m < n. The ceil function is denoted by �·�. The probability
of an event A is denoted by Pr [A]. The expectation of an RV
X is denoted by E [X ]. The conditional expectation of an RV
X , conditioned over an event A, is denoted by E [X |A]. The
notation X ∼ U [a, b) shall indicate that the RV X is uniformly
distributed over the interval [a, b).

As mentioned, we consider a system that consists of K
nodes and a sink. Each node i knows its metric μi, which
is not known to any other node. The goal is to find the best
node i∗, where i∗ = argmaxi∈{1,2,...,K} μi. The metrics are
assumed to be independent and identically distributed (i.i.d.)
across nodes. The independence of μis is motivated by the
fact that the metrics are typically a function of local channel
gains, which decorrelate across a distance of a wavelength [2,
Chap. 3]. Assuming that the metrics are statistically identical
ensures analytical tractability and is commonly assumed in the
selection literature, e.g., [7], [11], [12], [15], [17], [18].

The nodes are assumed to know K and the continuous
cumulative distribution function (CDF) of μi, C(·), as has also
been assumed in [12], [17]–[19]. Physically, this is possible
because the number of nodes and the CDF of the metric vary
at a time scale that is several orders of magnitude slower than
channel fading [2]. For example, the BS in a cellular system
or the access point in a wireless local area network (WLAN)
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can keep track of the number of nodes it is serving and can
broadcast it periodically to the nodes.1 Therefore, without loss
of generality, μi is assumed to be uniformly distributed over
[0, 1), i.e., μi ∼ U [0, 1). This is because the transformation
μ̃i = C(μi) ensures that μ̃i ∼ U [0, 1) [21].

We also assume that a transmission by a single node always
succeeds, whereas, when two or more nodes transmit simulta-
neously, a collision occurs and the receiver cannot decode any
of the transmissions, as has also been assumed in [12], [13],
[22], [23]. Further, the feedback packet transmitted by the sink
is assumed to be received reliably by the nodes. In practice,
this is ensured by allowing for a sufficient fading margin in
the link budget of the system, which is feasible given the small
payload of the contention and feedback packets.

A. Single-Stage Timer Scheme Basics

In the single-stage timer scheme, each node i sets a timer
Ti = f(μi), where f : [0, 1) → [0, Tmax] is the metric-to-
timer mapping. When the timer expires at time Ti, the node
transmits a contention packet to the sink communicating its
identity. Using a monotonically non-increasing deterministic
mapping ensures that the timer of the best node always expires
first.

The sink, thus, just waits for the first packet to reach it,
which by design is from the best node. Therefore, at the end of
the selection duration Tmax, it broadcasts a feedback message
to all the nodes informing them which node has been selected.
We denote F to be the duration from the end of the timer stage,
Tmax, to the instant at which each node correctly receives
the feedback message. If the timers of the best node and the
second best node expire within a duration Δ of each other,
then the sink fails to decode the packet from the best node,
and the single-stage timer scheme fails. Here, Δ is called the
vulnerability window [7], [16].

Both Δ and F are system-dependent parameters. Broadly
speaking, their values depend on which of the following two
categories the system belongs to; both are of interest to us [24],
[25].

• No hidden nodes and each node can do carrier-sensing:
In such a system, Δ is a sum of the maximum prop-
agation delay between the nodes, the switching time
required by a half-duplex node to switch from the receive
mode to the transmit mode, and the maximum time
synchronization error among the nodes and the sink [7].
This ensures that the nodes whose timers expire Δ after
the timer of the best node do not transmit and collide
with the contention packet of the best node. Further,
F is the sum of the contention packet2 and feedback

1However, in a cooperative decode-and-forward relaying scenario, where a
source node communicates to a destination node with the help of intermediate
relay nodes, the number of relays that successfully decode the transmission by
the source is a random variable, and depends on the instantaneous realizations
of the source-to-relay channels. In such a case, the algorithm needs to be
designed keeping in mind the total number of relays and the statistics of the
number of relays that can decode the transmission by source, as has been
done in [20].

2Note that the contention packet duration is included in F because the sink
will transmit its feedback message only after it has received the contention
packet transmitted by the node. In the case under consideration, the node can
start transmitting its contention packet as late as NΔ.

packet durations, maximum propagation delay between
the nodes and the sink, the switching time, and the maxi-
mum time synchronization error among the nodes and the
sink. It also accounts for protocol-specific overheads such
as mandatory silence durations between two successive
transmissions on the channel [26]. In this case, F/Δ
exceeds 1 and can be large.

• Presence of hidden nodes or when the nodes cannot
do carrier-sensing: In such a system, Δ is the sum
of the maximum propagation delay between the nodes
and the sink, the contention packet duration, and the
maximum time synchronization error.3 This ensures that
the contention packet of the best node is completely
received by the sink before it begins to receive contention
packets sent by nodes whose timers expire Δ later. The
value of F is the same as in the previous category,
except that now it does not account for the contention
packet duration.4 In this case, F/Δ is smaller than in
the previous category, but it can exceed unity because of
protocol-specific overheads [14].

1) Single-Stage Optimal Timer Mapping: An optimal
metric-to-timer mapping that maximizes the probability
of selecting the best node was derived in [14]. In it,
the timer of a node expires only at 0,Δ, 2Δ, . . . , NΔ,
where N = �Tmax

Δ �, or not at all. When the met-
ric μ lies in the interval [1− αN,K [0] , 1), then the
timer expires immediately. When μ lies in the interval
[1− αN,K [0]− αN,K [1] , 1− αN,K [0]), the timer expires at
time Δ. In general, for i = 0, 1, . . . , N , when μ lies in the
interval

[
1−∑i

j=0 αN,K [j] , 1−∑i−1
j=0 αN,K [j]

)
, the timer

expires at iΔ. Timers of nodes whose metrics lie in the interval[
0, 1−∑N

j=0 αN,K [j]
)

do not expire at all.

It can be seen that the optimal mapping resembles a
staircase, in which all the stairs have the same height of Δ,
but have different lengths. The mapping is shown in Figure 1.
As mentioned, we shall refer to N as the number of timer
levels. We shall refer to αN,K [i] as the ith stair length and
the interval (iΔ, (i + 1)Δ] as the ith slot.

Specifying the stair lengths αN,K [i], for i = 0, . . . , N ,
completely specifies the optimal timer mapping. The optimal
stair lengths that maximize the probability of success PN,K

are given by the following recursion [14]:

αN,K [j] =

{
1−PN−1,K

K−PN−1,K
, j = 0

(1 − αN,K [0])αN−1,K [j − 1] , 1 ≤ j ≤ N
,

(1)
where α0,K [0] = 1

K . The success probability PN,K is given
in terms of the stair lengths as

PN,K = K
N∑
i=0

αN,K [i]

⎛⎝1−
i∑

j=0

αN,K [j]

⎞⎠K−1

. (2)

3In this case, Δ does not include the switching time duration because
the transmission of the contention packet by all the nodes is delayed by the
switching time duration.

4In [7], a flag frame is broadcast in every slot by the sink in order to handle
hidden nodes. However, this increases the size of Δ. In our scheme, a flag
frame is not required since feedback is sent at the end of the timer stage.
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Fig. 1. Illustration of the optimal metric-to-timer mapping when the selection
duration is Tmax. Here, N =

⌊
Tmax
Δ

⌋
.

Note that the optimal stair lengths are unequal, unlike [17].
From the above recursion, we see that stair lengths are a
function of the number of timer levels and the number of
nodes. Both these parameters need to be specified in order to
completely specify the single-stage optimal timer mapping.

B. Properties of the Single-Stage Optimal Timer Scheme

In Appendix A, we derive the following new results about
the single-stage optimal timer scheme with N timer levels
designed for K nodes. These results help in the design of the
proposed scheme in the next section.

1) The success probability is given by

PN,K =

(
K − 1

K − PN−1,K

)K−1

, (3)

for N ≥ 0 and K ≥ 2, with P−1,K defined to be
0. Further, for K = 2 nodes, the success probability
expression simplifies to

PN,2 =
N + 1

N + 2
. (4)

2) The success probability PN,K strictly increases as N
increases and strictly decreases as K increases. Thus,
increasing the number of timer levels increases the
success probability, while increasing the number of
nodes decreases the success probability.

3) We say that a collision occurs in slot s when the timers
of the best node and at least one other node expire at
time sΔ. Let Y

(s)
N,K denote the number of nodes that

collided in slot s given that a collision has occurred in
the slot s and no transmission in any slot before the slot
s. Then, the distributions of Y (s)

N,K and Y
(0)
N−s,K are the

same for all s = 0, . . . , N . Thus, their expected values
are also equal.

4) The average value of Y
(s)
N,K lies between 2 and 2.4 for

any N ≥ 0, K ≥ 2, and s = 0, . . . , N .

III. PROPOSED MULTI-STAGE TIMER SCHEME

When a single-stage optimal timer designed for N timer
levels and K nodes is run, one of the following three outcomes
occurs:

• Success: This occurs when the timer of the best node
expires and the timer of the second best node does not
expire in the same time slot as the best node’s timer.

• Collision in slot s: This occurs when the timers of the
best node and the second best node expire at sΔ, i.e., a
collision occurs in slot s.

• Idle: This occurs when the metrics of all the nodes lie in
the interval

[
0, 1−∑N

j=0 αN,K [j]
)

.

The key idea of the proposed scheme is to run the single-
stage timer scheme multiple times depending on the outcomes.
A timer stage with N timer levels is run for a duration of
(N +1)Δ. This is followed by a broadcast of its outcome by
the sink, which is a success, idle, or collision, which takes a
duration of F . In case of a collision, the sink also broadcasts
the slot number in which the collision occurred. This process
is continued until a success occurs.

The main design question that arises is how many timer
levels to choose for each stage and for how many nodes to
design each stage for. In order to gain insights into this design
problem, we first consider the special case of K = 2 nodes.
Thereafter, we consider the general case with K > 2 nodes.

A. System with Two Nodes (K = 2)

A priori, we know that the metrics of the two nodes are
uniformly distributed in the interval [0, 1). Let an N -level
single-stage timer designed for K = 2 nodes be run. The
idle and collision outcomes provide useful information about
where the metric of the best node lies. This is brought out by
the following two observations.

Observation 1: A collision outcome in slot s implies
that both the nodes must have transmitted in that slot.
Therefore, conditioned on this event, the metrics of both
the nodes must be uniformly distributed in the interval[
1−∑s

j=0 αN,2[j] , 1−
∑s−1

j=0 αN,2[j]
)

. Therefore, the fol-
lowing RV

νi =
μi − 1 +

∑s
j=0 αN,2[j]

αN,2[s]
, (5)

is uniformly distributed over the interval [0, 1) for both nodes,
namely i = 1, 2.

Observation 2: An idle outcome implies that the timer of
neither node expired. Therefore, conditioned on this event,
the metrics of both the nodes must lie in the interval[
0, 1−∑N

j=0 αN,2[j]
)

. Therefore, the following RV

νi =
μi

1−∑N
j=0 αN,2[j]

, (6)

is uniformly distributed over the interval [0, 1) for both nodes,
namely i = 1, 2.

The above two observations show how the metrics should
be rescaled in the event of a collision or idle, so that a new
timer stage can be run. Notice that when a collision or an idle
slot occurs, the number of nodes that will participate in the
next time stage is always two. Therefore, all the timer stages
are designed with the same number of timer levels N and for
two nodes. Notice also that the rescaling of μi to νi preserves
order, i.e., μ1 > μ2 if and only if ν1 > ν2.
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1) Specification of Proposed Scheme: The proposed
scheme is as follows:

Initialization: Given K = 2 and N , evaluate αN,2[i], for
0 ≤ i ≤ N . A node i sets its metric νi as νi ← μi.

Transmission rule: A node i whose metric lies in the interval[
1−∑s

j=0 αN,2[j] , 1−
∑s−1

j=0 αN,2[j]
)

transmits at sΔ.

Feedback from sink: After a time of (N +1)Δ, after which
no timer expires, the sink feeds back an outcome.5 The sink
feeds back an idle outcome, if no transmission occurred, a
success outcome if one node transmitted and it, thus, could
decode the transmission, or a collision outcome, if the first
slot in which a transmission occurred resulted in a collision.
The sink also feeds back the index of the slot in which the
collision occurred.

On success outcome: Then the scheme terminates.
On idle outcome: Then each node i rescales its metric to

νi ← νi
1−∑

N
j=0 αN,2[j]

and the N -level timer scheme is rerun.

On collision in slot s outcome: Then each node i rescales
its metric to νi ← νi−1+

∑s
j=0 αN,2[j]

αN,2[s]
and the N -level timer

scheme is rerun.
Comments: Since the rescalings in (5) and (6) preserve

order, it is guaranteed that the first successful transmission
to the sink is from the best node. The pseudo-code for the
scheme is given in Figure 2.

Data: K = 2, N , μ1, and μ2

Evaluate αN,2[i], for 0 ≤ i ≤ N ;
begin

νi ← μi, for i = 1, 2; outcome ← NIL;
while outcome �= SUCCESS do

Run N -level timer scheme designed for 2 nodes;
Metric of node i is νi;
Sink feeds back outcome;
if outcome = COLLISION in slot s then

νi ← νi−1+
∑s

j=0 αN,2[j]

αN,2[s]
;

end
else if outcome = IDLE then

νi ← νi
1−∑N

j=0 αN,2[j]
;

end
end

end

Fig. 2. Proposed scheme for a system with 2 nodes.

2) Analysis: We now derive an expression for the average
time required to select the best node and the number of timer
levels N∗ that minimizes it.

Theorem 1: For a system with two nodes, the average time
T2 required to select the best node is given by

T2 = (N + 2)Δ+

(
N + 2

N + 1

)
F. (7)

For F > 0, N∗ =
√

F
Δ − 1, if

√
F
Δ − 1 is an integer, else, it

is either
⌊√

F
Δ − 1

⌋
or
⌈√

F
Δ − 1

⌉
. For F = 0, N∗ = 0.

Proof: The proof is relegated to Appendix B.

5In the no hidden node case, the sink will wait for the transmission by the
nodes to end and only then commence transmission of its feedback packet.
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Fig. 3. Probability mass function of the number of nodes that collided at
sΔ given that a collision occurred in slot s (N = 10 and K = 100).

Theorem 1 shows that the optimal number of levels that a
timer stage should use is proportional to

√
F/Δ. Therefore,

as F increases, the number of levels in every timer stage
increases. From the properties of the single-stage optimal
timer scheme in Section II-B, this implies that the probability
of success of a single timer stage increases. Thus, as the
feedback overhead increases, the proposed scheme chooses
a larger number of levels in each timer stage. By doing so,
it reduces the odds of subsequently using more timer stages
and, consequently, more feedback.

B. General System with K > 2 Nodes

As in the two nodes case, it can be seen that, in case of an
idle outcome, the following rescaling of metrics from μi to νi
ensures that νi ∼ U [0, 1) for all the nodes:

νi =
μi

1−∑N
j=0 αN,K [j]

. (8)

Similarly, in case of a collision outcome in slot s, the following
rescaling ensures that νi ∼ U [0, 1) for the nodes that collided,
one of which is the best node:

νi =
μi − 1 +

∑s
j=0 αN,K [j]

αN,K [s]
. (9)

As before, the above rescalings also preserve order.
As in the K = 2 nodes case, in the event of an idle outcome,

all the nodes that participated in the current timer stage should
participate again in the next timer stage. However, in case
of a collision outcome, the number of nodes that collided is
a random variable and is not known. It can take any value
between 2 and K . Therefore, for this outcome, it is not obvious
how many nodes to design the next timer stage for. Figure 3
plots the probability mass function of the number of nodes
that collided given that a collision has occurred in slot s, for
N = 10 and K = 100. We observe for all the slots that the
probability that two nodes collided is much larger than the
probability that three or more nodes collided. Therefore, once
a collision occurs, one can design all the subsequent timer
stages for two nodes.

We note that such an intuition has also been used in the
design of the splitting scheme [12] and the first come first
serve (FCFS) multiple access protocol [23]. Another result that
supports the above conclusion is Theorem 2, which is stated
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in Appendix A. It shows that the average number of nodes
that collided, given that a collision has occurred in slot s, lies
in a narrow range between 2 and 2.4 for any N ≥ 0, K ≥ 2,
and s ∈ {0, 1, . . . , N}. From the Markov inequality [21], it
then follows that the probability that at least l nodes collide
is less than 0.4/ (l − 2), for l ≥ 3. This rules out the subtle
possibility that the rest of the probability mass is concentrated
on an event that involves a collision among q nodes, where q
grows with K .

1) Proposed Scheme for K > 2 Nodes: In summary, before
the first collision outcome occurs, each timer stage should
be designed for K nodes. However, once a collision occurs,
the number of nodes the timer stage should be designed for
drops to two. Therefore, for K > 2, the proposed scheme
starts with a timer stage designed for K nodes with NI

timer levels. It persists with this timer stage until a collision
occurs. Thereafter, in case of a collision, it switches to a timer
stage designed for two nodes. Since the number of nodes has
changed, the number of timer levels is also changed to NC .
The two parameters NI and NC will be optimized later on.

The scheme is specified as follows:

Initialization: Given K , NI , and NC , evaluate αNI ,K [i], for
0 ≤ i ≤ NI , and αNC ,2[i], for 0 ≤ i ≤ NC . A node i sets its
metric νi as νi ← μi.

Transmission rule: Run the NI-level single-stage timer
scheme designed for K nodes if no collision has occurred
previously or if it is the first timer stage. If, on the other hand,
a collision has occurred previously, then run the NC -level
single-stage timer scheme designed for 2 nodes.

Feedback: The sink feeds back an idle outcome, if no trans-
mission occurred, a success outcome if one node transmitted,
and it, thus, could decode the transmission, or a collision
outcome otherwise. In case of a collision outcome, the sink
also feeds back the index of the slot in which the collision
occurred.

On success outcome: The scheme terminates.

On collision in slot s outcome: Each node i that was
involved in the collision rescales its metric to the new metric
νi ← νi−1+

∑s
j=0 αNI,K[j]

αNI,K[s] , if no collision has occurred before,

and to νi ← νi−1+
∑s

j=0 αNC,2[j]

αNC,2[s]
, if a collision has occurred

before. All nodes not involved in the collision do not partici-
pate in any of the subsequent timer stages.6

On idle outcome: If a collision had occurred before, then
each node i that participated in the previous timer stage,
rescales its metric value to νi ← νi

1−∑NC
j=0 αNC,2[j]

and the

NC -level timer is run. On the other hand, if no collision had
occurred in any of the previous timer stages then each node
i rescales its metric value to νi ← νi

1−∑NI
j=0 αNI,K[j]

and the

NI -level timer scheme is run.

The pseudo-code of this scheme is given in Figure 4.

As shown in Appendix C, the average selection time TK of

6A node can determine if it was involved in a collision in slot s or not
from the feedback broadcast by the sink.

Data: K , μ1, . . . , μK , NI , and NC

Evaluate αNI ,K [i], for 0 ≤ i ≤ NI , and αNC ,2[i], for
0 ≤ i ≤ NC ;
begin

νi ← μi, ∀i = 1 to K; outcome ← NIL;
and Collision-occurred ← NO;
while outcome �= SUCCESS do

if Collision-occurred = NO then
Run NI -level timer designed for K nodes;
Metric of node i is νi;
Sink feeds back outcome;
if outcome = COLLISION in slot s then

νi ← νi−1+
∑s

j=0 αNI,K[j]

αNI,K[s] and
Collision-occurred ← YES;

end
else if outcome = IDLE then

νi ← νi

1−∑NI
j=0 αNI,K[j]

;

end
end
else

% Collision-occurred = YES
Run NC -level timer designed for 2 nodes;
Metric of node i is νi;
Sink feeds back outcome;
if outcome = COLLISION in slot s then

νi ← νi−1+
∑s

j=0 αNC,2[j]

αNC,2[s]
;

end
else if outcome = IDLE then

νi ← νi

1−∑NC
j=0 αNC,2[j]

;

end
end

end
end

Fig. 4. Proposed scheme for a system with K nodes.

the proposed scheme is given by

TK ≈ (NI + 1)Δ+ F

1−
(
1−∑NI

j=0 αNI ,K [j]
)K

+
(NC + 2)

(
Δ+ F

NC+1

)
1−

(
1−∑NI

j=0 αNI ,K [j]
)K

×
K∑
r=2

NI∑
j=0

(
K

r

)
αNI ,K [j]

r

(
1−

j∑
l=0

αNI ,K [l]

)K−r

. (10)

The value of NC , denoted by N∗
C , that minimizes TK is as

follows.
Proposition 1: For F > 0, N∗

C =
√

F
Δ − 1, if

√
F
Δ − 1

is an integer, else it is either
⌊√

F
Δ − 1

⌋
or
⌈√

F
Δ − 1

⌉
. For

F = 0, N∗
C = 0.

Proof: The proof is relegated to Appendix D.
Notice that N∗

C does not depend on K . We have, thus,
reduced the design of the optimal multi-stage timer scheme
to an optimization of a single parameter NI . This can be
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the proposed scheme (K = 5).

implemented efficiently using binary search, for example.
Figure 5 plots N∗

I , which denotes the optimal NI , and N∗
C

as a function of F
Δ . We see that both N∗

I and N∗
C increase

as F
Δ increases. This is because, as the feedback overhead

increases, the number of levels in each timer stage increases
so as to increase the success probability of each stage. This
reduces the need for subsequent timer stages and feedback.
We also observe that N∗

I ≥ N∗
C . This is because the average

number of nodes that participate after a collision decreases
from K to approximately 2.

IV. NUMERICAL RESULTS AND PERFORMANCE

IMPLICATIONS

We now evaluate the performance of the proposed scheme
using Monte Carlo simulations that use 30, 000 samples, and
compare it with several schemes in the literature, which are
briefly described below.

1) O-CSMA/CA: In O-CSMA/CA, a timer mapping with M
levels and equal stair lengths is used in the first stage. In case
of a failure, the number of levels is doubled, until it reaches
Mmax. The collided nodes participate in the next stage with
probability 1

2 . Therefore, O-CSMA/CA may not select the best
node. We use M = 7 and Mmax = 1023, as per [17], [26].

2) Polling: Each node is scheduled to transmit a contention
packet of duration P , which contains its metric value, in a
pre-assigned slot. Subsequently, the sink feeds back a message
of duration F to indicate which node has been selected. The
selection scheme requires a time KP+F to select. In both the
scenarios with and without hidden nodes, P ≥ Δ. Therefore,
we conservatively set the selection duration of the polling
scheme to be KΔ+ F .

3) Threshold-based random access [18]: This scheme al-
locates L slots for contention, which consumes a time of
LΔ+F . Note that this is again a conservative estimate. Here,
F accounts for the feedback at the end of the L slots. A node
i whose metric exceeds a threshold η transmits in each of the
L slots independently with probability q. In each slot an idle,
success, or collision outcome can occur. Among the success
slots (if any), the sink chooses one with uniform probability
and notifies the node that transmitted in that slot. In case there
is no success slot, then we assume that the selection fails and
a time duration of LΔ+ F is wasted.
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Fig. 6. Comparison of the average selection time vs. normalized feedback
overhead for various schemes (K = 5). Markers (x) indicate simulation
results for the proposed scheme, where as the solid line (–) indicates analysis
using (10).

4) Random selection: In this scheme, the sink chooses one
out of the K nodes with uniform probability. Each time the
sink does this, it takes a time of F .

A. Selection Speed and Scalability

Figure 6 compares the average selection time of the pro-
posed scheme with that of the splitting scheme as a function
of the normalized feedback overhead F

Δ for K = 5 nodes.
Also shown is the average time required to select a node
by O-CSMA/CA and the single-stage optimal timer. Since
the single-stage timer scheme cannot guarantee success, its
parameters are chosen to ensure a high success probability of
98%. The success probability of O-CSMA/CA turns out to
be 81%. We observe that the proposed scheme is faster than
all the benchmark schemes and, yet, ensures a 100% success
probability. For example, for F

Δ = 20 and K = 5, splitting,
O-CSMA/CA, and single-stage optimal timer take 50%, 28%,
and 200% more time, respectively, than the proposed scheme
to select. Moreover, the relative gains increase as F

Δ increases.
Note that when F/Δ ≤ 1, the proposed scheme reduces to
the splitting scheme of [13] in the sense that both divide the
metric interval in which a collision has occurred into two parts.
Consequently, the curves of the average selection times of the
proposed scheme and the splitting scheme merge.

Figure 7 plots the average time to select as a function of
K for F

Δ = 20. We see that the proposed scheme scales well
with K . Its average selection time increases by just 4% when
K increases from 5 to 100, which is the least increase among
all the schemes. Moreover, as K increases, the performance
gap between the proposed scheme and the benchmark schemes
increases. For example, for K = 100, splitting, O-CSMA/CA,
and single-stage optimal timer take 54%, 536%, and 244%
more time, respectively. Figures 6 and 7 also verify that
the expression in (10) for the average time required by the
proposed scheme to select is accurate.

Figure 8 plots the average number of feedback messages
required by the proposed scheme and compares it with O-
CSMA/CA and splitting. We see that far fewer feedback
messages are required by the proposed scheme. For example,
for F

Δ = 20 and K = 50, splitting and O-CSMA/CA
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require 100% and 149%, respectively, more feedback than the
proposed scheme.

B. Net Throughput Implications

The benchmark schemes mentioned above compromise on
the goal of selecting the best node in different ways. Some of
them may not select the best node in order to quickly wrap
up the selection process. However, this comes at the expense
of a lower data rate when the selected node is subsequently
used for data transmission. Therefore, to demonstrate the
relevance of the proposed scheme and to compare the diverse
approaches, we compare the net throughput achieved by all
these schemes. The net throughput takes into account the time
overheads of selection and the throughput penalties associated
with not choosing the best node.

The system that we consider consists of K nodes and a
BS, which also acts as the sink. The metric of a node i is
the channel power gain hi of the link from the BS to the
node. Here, hi is an exponential RV with unit mean, which
models Rayleigh fading. The selected node adapts its rate
as a function of its channel gain to transmit a data packet
of Q bits. For the sake of illustration, we use the Shannon
capacity formula to determine the rate as a function of channel
gain: W log2 (1 + ωρhS), where S is the selected node, ρ is
the transmit signal-to-noise ratio (SNR), W is the channel
bandwidth, and ω is the coding loss of the channel code [2,
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Fig. 9. Net throughput as a function of K for various schemes (Q =
4000 bits, F

Δ
= 20, and Δ = 10

W
).

Chap. 9]. We assume that the feedback and the contention
packets are transmitted at a constant rate independent of the
channel conditions. The channel is assumed to remain constant
for the selection and transmission durations.

Figure 9 compares the net throughput in bits/s/Hz as a
function of K of the proposed scheme and the benchmark
schemes, for Q = 4000 bits, F

Δ = 20, ω = 1, and
Δ = 10

W (i.e., 10 symbol durations).7 For the parameters
considered, we use L = 6 slots for threshold-based random
access and 8 levels for the single-stage optimal timer, as they
maximize their respective throughputs.8 We observe that the
net throughput of the proposed scheme increases with the
number of nodes, which shows its ability to exploit multiuser
diversity. At K = 100, the throughput gains over splitting,
single-stage optimal timer, threshold-based random access,
polling, and random selection are 15%, 17%, 10%, 67%, and
145%, respectively.

Figure 10 compares the net throughput of various schemes
as a function of the feedback overhead, F

Δ , for Q = 20000 bits,
K = 100, and Δ = 10

W . We see that the proposed scheme out-
performs all other schemes. As F

Δ increases, the throughput of
the splitting scheme decreases much faster than the proposed
scheme. Notice that polling outperforms both threshold-based
random access and the single-stage optimal timer. This again
reinforces the need to invest time to select the best node and
exploit multi-user diversity gains.

V. CONCLUSIONS

We proposed a novel distributed selection scheme that
inherits the best features of the timer and splitting schemes,
generalizes both of them, and guarantees best node selection.
The scheme runs in stages with the single-stage timer scheme

7In random selection, the average transmission duration for a given payload
of Q bits is unbounded for Rayleigh fading. Therefore, to address this issue,
the chosen node is allowed to transmit only if its channel gain exceeds
a threshold. Otherwise, another node is chosen, again uniformly, from the
remaining nodes. The threshold is chosen such that the channel gain of each
node exceeds it with a probability of 0.95.

8The parameters η, q, and L of the threshold-based random access scheme
are numerically optimized as a function of K , Q, and the CDF of the channel
power gain in order to maximize its net throughput and to provide as fair a
comparison as possible.
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used in every stage. The number of timer levels is either N∗
I

or N∗
C , and depends on whether a collision has occurred or not

in the past. As the feedback overhead increases, we saw that
these levels increase so as to increase the probability of success
in each stage and reduce the need for subsequent feedback.
The proposed scheme reduces to the splitting scheme only
when the feedback duration is smaller than the vulnerability
window.

We saw that the proposed scheme is much faster and
requires far fewer feedback messages than the splitting scheme
and O-CSMA/CA, which doubles the contention window
duration in case of a collision. Interestingly, in our scheme,
the timer stage duration shrinks once a collision occurs. We
saw that the proposed scheme scales well with the number
of nodes in the system, unlike the polling scheme. We also
saw that feedback-aware fast, reliable, and scalable selection
translates into a significant net throughput gain. The proposed
scheme can be speeded up further by allowing the sink to
transmit its feedback message as soon as it receives the first
contention packet instead of waiting for the entire duration of
the timer stage.

APPENDIX

A. Properties of the Single-Stage Optimal Timer Scheme

We first present a recursive expression for the success
probability of the optimal timer scheme.

Proposition 2: The probability of success satisfies the fol-
lowing recursion:

PN,K =

(
K − 1

K − PN−1,K

)K−1

, for N ≥ 0, K ≥ 2, (11)

where P−1,K � 0, for all K ≥ 1. When K = 2, it simplifies
to

PN,2 =
N + 1

N + 2
, for N ≥ 0. (12)

Proof: 1) Due to space constraints, we directly start with
(20) of [14], which relates the success probability of the
single-stage optimal timer with N levels to that with (N − 1)
levels:

PN,K=KαN,K[0] (1−αN,K [0])K−1+(1−αN,K[0])KPN−1,K .
(13)

Substituting αN,K [0] from (1) into (13) yields (11).
2) For K = 2, (11) reduces to PN,2 = 1

2−PN−1,2
. Using

induction on N , for N ≥ −1, we can show that PN,2 = N+1
N+2 .

The steps are omitted to conserve space.
We see from (12) that PN,2 is an increasing function of N .

The following result generalizes this to K ≥ 2. It proves that
PN,K strictly increases as N increases and it strictly decreases
as K increases. This result was previously shown in [14] only
for the asymptotic case of a large number of nodes.

Proposition 3: For all N ≥ 0 and K ≥ 2,

1) PN,K is a strictly increasing function in N , i.e.,
PN,K > PN−1,K .

2) PN,K is a strictly decreasing function in K , i.e.,
PN,K > PN,K+1.

Proof: We first prove the following lemma, which will
be useful in the proof.

Lemma 1: For any r ∈ (0, 1) and an integer p ≥ 2, we

have r <
(

p−1
p−r

)p−1

.

Proof: Consider a function gr(x) =
(

x−1
x−r

)x−1

, for

x ∈ R, x ≥ 2, and r ∈ (0, 1). Then, by using the first order
condition and the inequality log(a) < a− 1, for a ∈ (0, 1), it
can be shown that gr(x) is a strictly decreasing function in x.

Hence,
(

p−1
p−r

)p−1

> limm→∞
(

m−1
m−r

)m−1

= er−1 > r.

1) From Proposition 2, we have PN,K =
(

K−1
K−PN−1,K

)K−1

.

Since PN,K ∈ (0, 1) and K ≥ 2, it follows from Lemma 1
that PN,K > PN−1,K .

2) We prove PN,K+1 < PN,K using mathematical induction
over N , for N ≥ 0.

(i) N = 0 case: From Proposition 2 and P−1,K = 0,

we get P0,K =
(
K−1
K

)K−1
. It can be shown using the

first order condition and the inequality log(a) < a − 1, for
a ∈ [ 12 , 1), that the function g(x) =

(
x−1
x

)x−1
, for x ∈ R

and x ≥ 2, is a strictly decreasing function in x. Hence,(
K−1
K

)K−1
>
(

K
K+1

)K
. Therefore, the result follows.

(ii) Let PM,K+1 < PM,K be true for some M ≥ 0. From
Proposition 2, we have

PM,K = K − K − 1

(PM+1,K)
1

K−1

, (14)

and

PM,K+1 = K + 1− K

(PM+1,K+1)
1
K

. (15)

Thus, the hypothesis PM,K+1 < PM,K implies

K + 1− K

(PM+1,K+1)
1
K

< K − K − 1

(PM+1,K)
1

K−1

. (16)

This can be written as K−1

(PM+1,K)
1

K−1
<

K−(PM+1,K+1)
1
K

(PM+1,K+1)
1
K

.

Raising both sides of the inequality to the power K − 1, we
get

(K − 1)K−1

PM+1,K
<

(
K − (PM+1,K+1)

1
K

)K−1

(PM+1,K+1)
K−1
K

. (17)
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This simplifies to(
K − 1

K − (PM+1,K+1)
1
K

)K−1

<
PM+1,K

(PM+1,K+1)
K−1
K

. (18)

From Lemma 1, we also know that(
K − 1

K − (PM+1,K+1)
1
K

)K−1

> (PM+1,K+1)
1
K . (19)

Substituting this in (18) yields PM+1,K+1 < PM+1,K . Hence,
the result follows.

We now show how the stair lengths of the N -level single-
stage optimal timer, αN,K [i], are related to those of the
(N − r)-level single-stage optimal timer.

Proposition 4: For 0 ≤ r ≤ N and r ≤ i ≤ N we have,

αN,K [i] = αN−r,K [i− r]

⎛⎝1−
r−1∑
j=0

αN,K [j]

⎞⎠ . (20)

Proof: Let N ≥ 0 and K ≥ 2. For r = 0 and 0 ≤ i ≤ N
the proof is trivial. For r = 1 and 1 ≤ i ≤ N , (20) is the
same as (1), and we are done.

Now, let (20) be true for some 1 ≤ r < N and for all i
such that r ≤ i ≤ N . Call this hypothesis Hr. We shall show
that Hr+1 is also true. From (1), we know that

αN−r−1,K [i− r − 1] =
αN−r,K [i− r]

(1− αN−r,K [0])
, for r+1 ≤ i ≤ N.

(21)
Using hypothesis Hr for i = r we get

1− αN−r,K [0] =
1−∑r

j=0 αN,K [j]

1−∑r−1
j=0 αN,K [j]

. (22)

Substituting (22) into (21) yields

αN−r−1,K [i− r − 1]=αN−r,K [i− r]

(
1−∑r−1

j=0 αN,K [j]

1−∑r
j=0 αN,K [j]

)
.

(23)
Using the induction hypothesis Hr, which states that
αN−r,K [i−r]

(
1−∑r−1

j=0 αN,K [j]
)
= αN,K [i], we get

αN−r−1,K [i−r−1]
⎛⎝1−

r∑
j=0

αN,K [j]

⎞⎠= αN,K [i] , (24)

for r + 1 ≤ i ≤ N . Hence, Hr+1 is also true.
We now delve into the event in which a collision occurs.

Let X
(s)
N,K denote the number of nodes that set their timer

values to sΔ, for 0 ≤ s ≤ N . Let Y (s)
N,K denote the number of

nodes that set their timers to sΔ given that at least two nodes
have done so and no node sets its timer before sΔ.

Clearly, Pr
[
Y

(s)
N,K = l

]
= 0, for l = 0, 1, because at least

two nodes must be involved in a collision. From Baye’s rule,
we have, for l ≥ 2,

Pr
[
Y

(s)
N,K = l

]
=

Pr
[
X

(s)
N,K= l, X

(s)
N,K≥ 2, X

(s−1)
N,K = · · · = X

(0)
N,K= 0

]
Pr
[
X

(s)
N,K ≥ 2, X

(s−1)
N,K = · · · = X

(0)
N,K = 0

] .

(25)

Since l ≥ 2, the numerator in (25) is simply equal to
Pr[X(s)

N,K = l, X
(s−1)
N,K = · · · = X

(0)
N,K = 0]. Note that

this is nothing but the probability that l out of K metrics
lie in the interval

[
1−∑s

j=0 αN,K [j] , 1−∑s−1
j=0 αN,K [j]

)
and the remaining (K − l) metrics lie in the inter-

val
[
0, 1−∑s

j=0 αN,K [j]
)

. This probability is nothing but(
K
l

)
(αN,K [s])

l
(
1−∑s

j=0 αN,K [j]
)K−l

.

On the other hand, using the law of total probability, the
denominator in (25) is:

Pr
[
X

(s)
N,K ≥ 2, X

(s−1)
N,K = · · · = X

(0)
N,K = 0

]
= Pr

[
X

(s−1)
N,K = · · · = X

(0)
N,K = 0

]
− Pr

[
X

(s)
N,K = · · · = X

(0)
N,K = 0

]
− Pr

[
X

(s)
N,K = 1, X

(s−1)
N,K = · · · = X

(0)
N,K = 0

]
.

As before, each of the above probability terms can be
written in terms of the stair lengths. The final expression for
Pr[Y (s)

N,K = l] can be shown to be

Pr
[
Y

(s)
N,K = l

]
=

(
K

l

)
(αN,K [s])

l

⎛⎝1−
s∑

j=0

αN,K [j]

⎞⎠K−l

×

⎡⎢⎣
⎛⎝1−

s−1∑
j=0

αN,K [j]

⎞⎠K

−KαN,K[s]

⎛⎝1−
s∑

j=0

αN,K [j]

⎞⎠K−1

−
⎛⎝1−

s∑
j=0

αN,K [j]

⎞⎠K
⎤⎥⎦
−1

. (26)

We now show that the RVs Y
(s)
N,K and Y

(0)
N−s,K have the

same distribution.
Proposition 5: For N ≥ 0 and K ≥ 2,

1) Pr[Y (s)
N,K = l] = Pr[Y (0)

N−s,K = l], for 0 ≤ s ≤ N and
0 ≤ l ≤ K .

2) E[Y (s)
N,K ] = E[Y (0)

N−s,K ], for 0 ≤ s ≤ N .

Proof: We know that Pr
[
Y

(s)
N,K = l

]
= 0, whenever

l = 0, 1. Hence, for l = 0, 1, we have

Pr
[
Y

(s)
N,K= l

]
= Pr

[
Y

(0)
N−s,K = l

]
, (27)

for all s ∈ {0, 1, . . . , N}. For r ≥ 2, dividing the numerator

and the denominator of (26) by
(
1−∑s−1

j=0 αN,K [j]
)K

, we
get

Pr
[
Y

(s)
N,K = l

]
=

(
K
l

)
α

′
N,K [s]l

(
1− α

′
N,K [s]

)K−l

1−Kα
′
N,K [s]

(
1− α

′
N,K [s]

)K−1

−
(
1− α

′
N,K [s]

)K ,

(28)
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where α
′
N,K [s] = αN,K [s] /

(
1−∑s−1

j=0 αN,K [j]
)

. Using

Proposition 4, we know that α
′
N,K [s] = αN−s,K [0]. Substi-

tuting this in (28), we get

Pr
[
Y

(s)
N,K= l

]
=

(
K
l

)
αN−s,K [0]l (1− αN−s,K [0])K−l

1−KαN−s,K[0](1−αN−s,K [0])
K−1−(1−αN−s,K [0])

K
,

= Pr
[
Y

(0)
N−s,K= l

]
.

Since the probability mass functions of the two RVs Y (s)
N,K and

Y
(0)
N−s,K are the same, it follows that E[Y (s)

N,K ] = E[Y (0)
N−s,K ].

Theorem 2: In an N -level single-stage optimal timer, the
average number of nodes E[Y (s)

N,K ] that set their timers to sΔ,
given that at least two timers have expired at sΔ and no timer
has expired before sΔ, lies in a narrow range given by:

2 ≤ E[Y (s)
N,K ] ≤ e− 1

e− 2
< 2.4, for s = 0, 1, . . . , N. (29)

Proof: The lower bound on E[Y (i)
N,K ] is easy to see since

at least two nodes must collide in a collision. From Proposi-
tion 5, we know that E[Y (i)

N,K ] = E[Y (0)
N−i,K ]. Therefore, it is

sufficient to show, for all N ≥ 0 and K ≥ 2, that E[Y (0)
N,K ] is

upper bounded by e−1
e−2 .

Substituting j = 0 in (1) and using (11), it can be shown
that

PN,K = (1− αN,K [0])K−1 . (30)

From (26), we have E[Y (0)
N,K ] =

∑K
r=2 rPr

[
Y

(0)
N,K = r

]
=

(1−(1−αN,K[0])K−1)KαN,K[0]

1−KαN,K[0](1−αN,K[0])K−1−(1−αN,K[0])K
. Using (30), the

above expression can be recast as

E[Y (0)
N,K ] =

(1− PN,K)KαN,K[0]

1−KαN,K[0]PN,K − (1− αN,K [0])PN,K
.

(31)
Writing αN,K [0]=

1−PN−1,K

K−PN−1,K
(from (1)), we get

E[Y (0)
N,K ]=

(
1−ξ(N)(K)

)−1

, (32)

where

ξ(N)(K)=
K − 1

K

(
1

1− PN,K
− 1

1− PN−1,K

)
. (33)

Thus, to upper bound E[Y (0)
N,K ], it suffices to upper bound

ξ(N)(K), as done below. Clearly,

ξ(N)(K) ≤ sup
N≥0

sup
K≥2

K − 1

K

(
1

1− PN,K
− 1

1− PN−1,K

)
.

(34)
Let x = 1 − PN−1,K . From Proposition 2, we then have

PN,K =
(

K−1
K−1+x

)K−1

. Further, since x ∈ (0, 1), we have

ξ(N)(K) ≤ sup
K≥2

sup
x∈(0,1)

⎛⎜⎝ 1

1−
(

K−1
K−1+x

)K−1
− 1

x

⎞⎟⎠ .

Since the function 1

1−( K−1
K−1+x )

K−1 − 1
x is a monotonically

increasing function in x, for x ∈ (0, 1), we get

ξ(N)(K) ≤ sup
K≥2

(
K−1
K

)K
1− (K−1

K

)K−1
. (35)

Further,
(x−1

x )x

1−(x−1
x )

x−1 is an increasing function in x, for x ∈ R

and x ≥ 2. Therefore,

ξ(N)(K) ≤ lim
K→∞

(
K−1
K

)K
1− (K−1

K

)K−1
=

1

e− 1
.

Hence, E[Y (0)
N,K ] =

(
1− ξ(N)(K)

)−1 ≤ e−1
e−2 < 2.4.

B. Proof of Theorem 1

The first timer stage and the feedback that follows it require
a total time of (N +1)Δ+F . Three outcomes are possible at
the end of the first stage: 1) Success: The scheme terminates
and requires no more time. 2) Idle: It can be seen from the
rescaling in (6) that the scheme requires an additional time of
T2, on average, to select. 3) Collision: The rescaling in (5)
implies that, on average, T2 more time is required to select.

Let P (idle)
N,2 and P

(coll.)
N,2 denote the probabilities of idle and

collision, respectively. Then, from the law of total expectation,
we have

T2 = (N + 1)Δ+ F +
(
P

(coll.)
N,2 + P

(idle)
N,2

)
T2. (36)

However, P
(coll.)
N,2 + P

(idle)
N,2 = 1 − PN,2 = 1 − N+1

N+2 , from
Proposition 2. Substituting this in (36) yields (7).

For F > 0, it is easy to see that T2 is a strictly convex
function in N , if N ∈ R. It, thus, has a unique minimum,

which can be shown to occur at
√

F
Δ − 1 using the first

order condition. If this is an integer, then it must be the
global optimum. Else, one of the two integers nearest to it⌈√

F
Δ − 1

⌉
or
⌊√

F
Δ − 1

⌋
must be optimal. For F = 0, (7)

directly implies that N∗ = 0.

C. Derivation of (10)

Let TK denote the average selection time required to select
the best node. The first stage and its feedback will require
a time of (NI + 1)Δ + F . The scheme terminates after the
first stage in case of a success, which occurs with probability
1−P

(idle)
NI ,K

−P
(coll.)
NI ,K

, where P
(idle)
NI ,K

and P
(coll.)
NI ,K

denote idle and
collision probabilities, respectively.

From Theorem 2, we know that once a collision occurs, the
number of nodes that have collided is close to two. Therefore,
in case of a collision, an additional time of approximately T2 is
required to select the best node, on average. Similarly, in case
of an idle outcome, an additional time of TK is required to
select the best node, on average. Therefore, TK ≈ (NI+1)Δ+

F +P
(coll.)
NI ,K

T2 +P
(idle)
NI ,K

TK . Substituting (7) in this expression
gives the desired result.

D. Proof of Proposition 1

In (10), we see that TK is an affine function of T2 for any
given NI . Thus, the value of NC that minimizes TK , for a
given NI , is the one that minimizes T2. Using Theorem 1, the
result follows.
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