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Abstract—The distributed, low-feedback, timer scheme is used
in several wireless systems to select the best node from the
available nodes. In it, each node sets a timer as a function of a
local preference number called a metric, and transmits a packet
when its timer expires. The scheme ensures that the timer of the
best node, which has the highest metric, expires first. However,
it fails to select the best node if another node transmits a packet
within Δ s of the transmission by the best node. We derive
the optimal metric-to-timer mappings for the practical scenario
where the number of nodes is unknown. We consider two cases
in which the probability distribution of the number of nodes
is either known a priori or is unknown. In the first case, the
optimal mapping maximizes the success probability averaged
over the probability distribution. In the second case, a robust
mapping maximizes the worst case average success probability
over all possible probability distributions on the number of nodes.
Results reveal that the proposed mappings deliver significant
gains compared to the mappings considered in the literature.

Index Terms—Multiple access, selection, timer, opportunistic
transmission, collision, robust design.

I. INTRODUCTION

SELECTION is an important technique that is used to
enhance the performance of several wireless systems. For

example, in a cooperative relaying system, the relay best
suited to forward the source’s message to the destination is
selected [1], [2]. Scheduling, which is used in cellular systems
to harness multi-user diversity, is also a form of selection
since the user with the highest signal-to-noise ratio (SNR) is
selected [3, Chap. 6]. In wireless sensor networks (WSNs),
selecting the node that senses is used to improve network
lifetime [4], [5]. In vehicular ad hoc networks (VANETs),
vehicle selection is used to speed up information dissemina-
tion [6]–[8]. Implementing various notions of fairness, such as
proportional fairness and max-min fairness, can also be shown
to be a selection problem [9].

In all the systems mentioned above, selection occurs as
follows. Each node maintains a preference number called a
metric that is a function of local parameters such as channel
gains or measurements of the node. For example, in amplify-
and-forward relaying, the metric of a relay is the harmonic
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mean of the source-to-relay and relay-to-destination channel
gains [1], and in proportional fair scheduling, the metric of a
node is the ratio of its instantaneous channel gain to its average
channel gain [10]. Instead, in [8], the metric is a function of
the vehicle’s speed and position. The goal of selection is to
help a common node called sink identify the node with the
highest metric, which is called the best node.

A fundamental issue with selection is that each node knows
only its own metric and not that of the other nodes because the
nodes are geographically separated. Therefore, a distributed
selection algorithm is needed to identify the best node. The
timer-based selection scheme is a popular and important
example of a distributed selection scheme [1], [5], [9], [11]. In
it, the nodes use a common monotone non-increasing (MNI)
metric-to-timer mapping f(·). A node i with metric μi sets
its timer as Ti = f(μi) and transmits a small timer packet
when its timer expires. The timer packet typically contains
only the node’s identity. The MNI property ensures that the
first packet to reach the sink is from the best node. The timer
scheme is attractive because it is simple to implement and
requires limited feedback signaling from the sink.

However, due to its distributed nature, the timer scheme can
fail to select the best node. This occurs under the following
two scenarios: (i) the timer of the best node does not expire
within the stipulated selection duration of Tmax, or (ii) the
timer of the second best node expires within a vulnerability
window Δ after the expiry of the best node’s timer. This results
in a collision of the two timer packets, as a result of which the
sink fails to decode the timer packet from the best node. Δ is
determined by the physical layer capabilities of the system.
Typically, it is a sum of the maximum propagation delay,
switching time, and maximum time synchronization error. In
case the system does not possess carrier sensing capability
or if it is susceptible to the hidden nodes problem, Δ also
accounts for the timer packet duration [1], [12].

The probability of selecting the best node, which is a
fundamental measure of how effective the selection scheme is,
depends on the metric-to-mapping. In [11], an optimal timer
mapping that maximizes the success probability was shown
to be a staircase mapping, in which timers expire only at
{0,Δ, 2Δ, . . . , NΔ} or not at all. Here, N =

⌊
Tmax

Δ

⌋
and

�·� denotes the floor function. However, [11] assumed that
all the nodes know the total number of nodes in the system.
However, this is often not the case in practice.

• Cooperative Decode-and-Forward (DF) Relaying: Con-
sider a cooperative system in which a source first broad-
casts a message to a set of DF relays. One of the relays
that decoded the source’s message is selected to forward
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the message to the destination. The number of relays
that decode the source’s message is a function of the
source-to-relay channel gains and, hence, is a random
variable (RV) that is not known a priori to the source or
the destination.

• Opportunistic Wireless Local Area Networks (WLANs):
Opportunistic media access control (MAC) schemes for
WLANs, e.g., [13], exploit multi-user diversity by mak-
ing nodes with higher SNRs transmit earlier. Since
WLAN traffic is bursty, the number of nodes that have
packets to send is an RV and is not known to the access
point (AP) or any other node in the network.

• Event Detection in WSNs: In a WSN, an event may be
simultaneously detected by a number of sensor nodes.
However, it is sufficient for one node to convey it to the
fusion center. However, the fusion center does not a priori
know how many nodes detected the event.

The random backoff that is used in [14]–[16] can also
be thought of as a timer scheme, albeit a randomized one.
However, there are three important differences between these
schemes and the selection scheme considered in this paper. In
the former, the objective is for the system to receive as many
packets as possible from all the nodes in the system and ensure
congestion control. On the other hand, in a selection scheme,
the objective is to reliably select the best node. Secondly, there
is no notion of a best node in [14]–[16]. Thirdly, while we use
a deterministic metric-to-timer mapping, the timer is chosen
randomly from within a window of values in [14]–[16].

A. Contributions

In this paper, we develop optimal timer mappings when the
number of nodes in the system is unknown. This is done for
two general models: (i) unknown number of nodes with a prior
distribution that is known to all the nodes, and (ii) unknown
number of nodes with an unknown distribution. In the known
prior distribution model, we maximize the average success
probability, which is the success probability averaged over the
prior distribution on the number of nodes. In the unknown
distribution model, the only available knowledge is that the
number of nodes lies anywhere between kmin and kmax, where
kmin ≤ kmax. Here, we maximize the worst case average
success probability.

For the known prior distribution model we first show that
the optimal timer mapping has a discrete, staircase structure,
in which any node’s timer expires either at 0,Δ, 2Δ, . . . ,
or not at all. When the number of nodes is a binomial or
a Poisson RV, we show that it is characterized by a simple
recursion in the number of timer levels. The choice of these
distributions, which we shall refer to as priors, is motivated
by the examples discussed earlier. For example, if all the
source-to-relay channel gains are independent and identically
distributed (i.i.d.) [1], [2], [17], then the number of DF relay
nodes that decode the source’s message is a binomial RV.
In WSNs, when the sensor nodes are spread uniformly in a
geographical area with a density λ, the number of nodes that
detect the event can be modeled as a Poisson RV with mean
λA, where A is the area across which the event is detected. In
WLANs, the number of nodes with a packet to transmit has
also been modeled as a Poisson RV in [18].

For the unknown distribution model, we again show that the
MNI mapping that maximizes the worst case average success
probability, which we shall refer to as the robust mapping,
has a discrete staircase structure. We develop structural re-
sults about the optimal mapping that help compute it easily.
Compared to the schemes proposed in the literature, we show
that the robust mapping not only achieves the highest worst
case success probability, but it also has the narrowest success
probability band, which is the range of values of the average
success probability. This shows its robustness to uncertainty.
The optimal and robust mappings also serve as fundamental
performance benchmarks for distributed selection schemes.

The timer schemes developed above have applications to
emergency message dissemination in VANETs [6], [7], relay
discovery in cooperative communication systems [1], [2], and
sensor node selection in wireless sensor networks [5].

The paper is organized as follows. Section II describes the
system model. The timer mappings when the prior distribution
is known and unknown are developed in Sec. III and Sec. IV,
respectively. Our conclusions follow in Sec. V.

II. SYSTEM MODEL AND TIMER SCHEME

Consider a system with k nodes and a sink. Neither the
nodes nor the sink know k. Each node i maintains a metric
μi ∈ R

+, which is not known to any other node, where R
+

denotes the set of positive real numbers. The goal is for the
sink to find the best node i∗, where

i∗ = argmax
i∈{1,2,...,k}

μi. (1)

We assume that the metrics are i.i.d. The independence as-
sumption is justifiable as the metric depends on a local prop-
erty of the node, such as the node’s channel gain, which decor-
relates with distance. The identicalness assumption ensures
analytical tractability and is commonly made in the selection
literature [1], [5], [13], [19], [20]. We shall investigate the
case with non-identical metrics later in Sec. III-C3. Without
loss of generality, we assume that the metrics are uniformly
distributed in the interval [0, 1].1

A node i sets its timer Ti as a function of its metric μi as
Ti = f(μi), where f : [0, 1] → [0,∞) is an MNI function.
When the timer of a node expires, it transmits a timer packet.
Furthermore, nodes whose timers expire after Tmax do not
transmit. The timer packet contains the identity of the node to
enable the sink to identify which node transmitted. If two or
more nodes transmit within a time window of Δ, a collision
occurs and the sink cannot decode any of the transmissions.
However, if only one node transmits, the receiver can decode
the timer packet successfully [18, Chap. 4], [13], [19], [22].
This assumption is justified because the timer packet is a low
payload packet, and its packet error rate can be made small
by a conservative choice of the fading margin.

1This is because every node i can generate a new metric yi as yi = F (μi),
where F is the cumulative distribution function (CDF) of the metric, which
will be uniformly distributed over [0, 1]. Since F is a monotone non-
decreasing function, the node with the highest yi is the same as the node
with the highest μi. Assuming that the nodes know F is justifiable because
a statistic such as the CDF varies at a time scale that is several orders
of magnitude slower than that of the metric. The CDF can be estimated
accurately using CDF estimation techniques [21].
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Fig. 1. Illustration of a staircase metric-to-timer mapping for a maximum
selection duration of Tmax and a vulnerability window Δ.

Motivated by the examples discussed earlier, we consider
the following two models:

1) Unknown number of nodes with known prior distribu-
tion: In this model, the probability distribution of the
number of nodes is known a priori. As discussed earlier,
we consider the following two priors:

a) Binomial prior, in which the maximum possible
number of nodes is K and the probability that the
number of nodes is r is

Pr[k = r] =

(
K

r

)
pr(1−p)K−r, for 0 ≤ r ≤ K.

(2)
We shall refer to p as the participation probability.

b) Poisson prior, in which the average number of
nodes is λ. Thus, the probability that the number
of nodes is r is

Pr[k = r] = e−λλ
r

r!
, for r ≥ 0. (3)

2) Unknown number of nodes with unknown distribution:
In this case, all we are given is that k can be any number
between kmin and kmax, where 0 < kmin ≤ kmax < ∞.2

III. UNKNOWN NUMBER OF NODES WITH KNOWN PRIOR

Our goal is to find the optimal timer mapping that max-
imizes the average success probability. We first show that a
timer mapping, of the form shown in Figure 1, is optimal.
This result holds for any prior.

Theorem 1: There exists an MNI timer mapping that
maximizes the average success probability in which timers
expire either only at 0,Δ, . . . , NΔ, or not at all, where
N =

⌊
Tmax

Δ

⌋
. When the metric μ lies in the interval

[1− αN [0], 1), the timer expires immediately at time 0.
When μ lies in [1− αN [0]− αN [1], 1− αN [0]), the timer
expires at time Δ. In general, for i = 0, 1, . . . , N , when
μ ∈

[
1−∑i

j=0 αN [j], 1−∑i−1
j=0 αN [j]

)
, the timer expires

2Note that kmin = 0 is not considered because, in this case, the worst case
probability is always 0 and cannot be improved upon.

at iΔ. Timers of nodes whose metrics lie in the interval[
0, 1−∑N

j=0 αN [j]
)

do not expire at all.
Proof: The proof is presented in Appendix A.

The mapping looks like a staircase with the height of
each stair being Δ and the length of the jth stair given
by αN [j]. We, therefore, call it a staircase mapping. We
shall refer to αN [j] as the j th stair length and N as the
number of timer levels, which is completely determined by
Tmax and Δ. Thus, the problem reduces to optimizing the
N + 1 stair lengths αN [0], αN [1], . . . , αN [N ]. We denote
the (N + 1)-tuple (αN [0], αN [1], . . . , αN [N ]) by αN . The
staircase mapping is easy to implement in practice since each
node needs to maintain a lookup table with N + 1 entries.

The above result generalizes the result in [11], which only
proved that the staircase mapping is optimal when the number
of nodes is known. Intuitively, this result is similar to the well
known result in the MAC literature that slotted Aloha has a
higher throughput than unslotted Aloha because the former
reduces the probability of collisions by forcing the nodes to
transmit only at the beginning of a time slot [18].

A. Optimal Timer Mapping for Binomial Prior

As shown in Appendix B, the average success probability
PN (αN ) is given by

PN (αN ) = Kp

N∑
i=0

αN [i]

⎛
⎝1− p

i∑
j=0

αN [j]

⎞
⎠

K−1

. (4)

Therefore, the optimization problem can be stated as follows:

OB : maximize
αN

PN (αN ) (5)

subject to
N∑
j=0

αN [j] ≤ 1, (6)

αN [i] ≥ 0; for 0 ≤ i ≤ N. (7)

We now show that the N + 1 positivity constraints of (7) in
problem OB are all inactive. Thus, the optimization problem is
only constrained by (6). Let α∗

N [0], α∗
N [1], . . . , α∗

N [N ] denote
the optimal stair lengths.

Lemma 1: α∗
N [j] > 0, for j ∈ {0, 1, . . . , N}.

Proof: The proof is relegated to Appendix C.
The intuition behind this result is as follows. If any one of

the α∗
N [j] were to be zero, then the N -level timer effectively

reduces to a (N − 1)-level timer, and, hence, cannot do better
than the optimal (N − 1)-level timer.

With the above result, we now present the complete solution
to the problem OB. It has a recursive structure.

Theorem 2: Let βN = (βN [0], βN [1], . . . , βN [N ]) be gen-
erated as follows:

βN [i]=

{
1
p

(
1−PN−1(βN−1[0],...,βN−1[N−1])
K−PN−1(βN−1[0],...,βN−1[N−1])

)
, if i = 0

(1− pβN [0])βN−1[i− 1], if 1 ≤ i ≤ N
,

(8)
where β0[0] =

1
Kp and PN (·) is given by (4).

If
∑N

j=0 βN [j] ≤ 1 then α∗
N = βN . Otherwise,

α∗
N [i] =

{
1
p

(
1−Lη

N−1(α
∗
N−1)

K−Lη
N−1(α

∗
N−1)

)
, if i = 0,

(1− pα∗
N [0])α∗

N−1[i− 1], if 1 ≤ i ≤ N,
(9)
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where

Lη
N (α∗

N ) = PN (α∗
N ) + η

⎛
⎝1− p

N∑
j=0

α∗
N [j]

⎞
⎠

K

, (10)

and α∗
0[0] = 1

p

(
1−η
K−η

)
. Here, η > 0 is chosen such that∑N

j=0 α
∗
N [j] = 1, and such a choice of η always exists.

Proof: The proof is given in Appendix D.
Comments: The recursion in (8) is similar to that in [11,

(2)], except for the presence of the extra scaling factor p in
our case. However, due to the constraint in (6), the stair lengths
in [11] and α∗

N [j] need not be scaled versions of each other,
except when p is small. Furthermore, η is found numerically,
as is typical of several constrained optimization problems in
wireless systems [3].

We see that N , K , and p together determine whether the
constraint in (6) is active or not. The following lemma provides
a sufficient condition for this. The utility of this result is that
for this case, the optimal solution is given by βN itself; the
recursion in (9) is not required.

Lemma 2: α∗
N = βN if the average number of nodes Kp

is greater than or equal to N + 1.
Proof: The proof is relegated to Appendix E.

B. Optimal Timer Mapping with Poisson Prior

We now consider the case when the number of nodes k is a
Poisson RV with mean λ. From Theorem 1, we know that there
is an MNI staircase metric-to-timer mapping that is optimal.
As shown in Appendix F, the average success probability is

PN (αN ) = λ

N∑
i=0

αN [i]e−λ
∑i

j=0 αN [j]. (11)

Therefore, the average success probability maximization prob-
lem can be stated as

OP : maximize
αN

PN (αN ) (12)

subject to

N∑
j=0

αN [j] ≤ 1, (13)

αN [i] ≥ 0; for 0 ≤ i ≤ N. (14)

Let α∗
N = (α∗

N [0], . . . , α∗
N [N ]) denote the solution of prob-

lem OP . Then, similar to Lemma 1 for the binomial case, the
following lemma shows that none of the stair lengths can be
zero.

Lemma 3: α∗
N [j] > 0, for all j ∈ {0, 1, . . . , N}.

Proof: The proof is similar to that in Appendix C and is
not repeated here to conserve space.

The intuition behind this result is the same as that for
Lemma 1. With the above result, the following theorem
provides the solution to the problem OP .

Theorem 3: Let βN = (βN [0], βN [1], . . . , βN [N ]) be gen-
erated as follows:

βN [i] =

{
1−PN−1(βN−1[0],...,βN−1[N−1])

λ , if i = 0,
βN−1[i− 1], if 1 ≤ i ≤ N,

(15)
where β0[0] =

1
λ and PN (·) is given by (11).
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Fig. 2. Poisson and binomial priors: Optimal stair lengths for different values
of K , p, and λ (N = 10).

If
∑N

j=0 βN [j] ≤ 1 then α∗
N = βN . Otherwise,

α∗
N [i] =

{
1−Hγ

N−1(α
∗
N−1)

λ , if i = 0,
α∗
N−1[i− 1], if 1 ≤ i ≤ N,

(16)

where

Hγ
N (α∗

N ) = PN (α∗
N ) + γe−λ

∑N
j=0 α∗

N [j], (17)

and α∗
0[0] = 1−γ

λ . Here, γ > 0 is chosen such that∑N
j=0 α

∗
N [j] = 1, and such a choice of γ always exists.

Proof: The proof is relegated to Appendix G.
Note that for γ = 0, the recursion in (16) reduces to that

in (15). As in the binomial case, γ is found numerically.
A sufficient condition for βN , which is analogous to

Lemma 2, to be the solution of OP is as follows.
Lemma 4: α∗

N = βN if λ ≥ N + 1.
Proof: The proof is relegated to Appendix H.

Determining the optimal stair lengths for a general prior
distribution is an open problem. However, the Poisson prior
design can be applied to a more general class of distributions
using the Brun’s sieve result [23, Chap. 10].

C. Numerical Results

We now present numerical results to better understand the
optimal mapping and also to benchmark its performance.

1) Optimal Stair Lengths: Figure 2 plots the optimal stair
lengths as a function of the stair index j for various λ for
the Poisson prior and K and p for the binomial prior. We
observe here that for larger λ or Kp the stair lengths increase
as j increases. However, for smaller values of λ or Kp the
stair lengths become almost equal. When λ = Kp we see that
for smaller stair indices, the stair lengths of the two priors
are almost equal. However, for larger indices, the stair lengths
are larger for the Poisson prior than for the binomial prior.
Further, notice that as K → ∞ and p → 0, with Kp = λ, the
two stair lengths tend to be equal. This is intuitive because, in
this case, the binomial distribution converges to the Poisson
distribution [24, Chap. 2].

2) Benchmarks and Performance Comparisons: To better
understand the performance of the optimal mapping, we
benchmark it against four designs: (i) Design for K nodes:
Here, the stair lengths are designed assuming K nodes are
present in the system always, i.e., by setting p = 1 in
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Theorem 2. (ii) Design for average node count: Here, the
stair lengths are instead designed assuming that the number
of nodes in the system is equal to its average value. (iii) Equal
stair length mapping [13]: Here, all the stair lengths are set
to 1

N+1 . (iv) Inverse mapping [1]: Here, the mapping is given
by f(μ) = c/μ, where c > 0 is a constant and is optimized
numerically to maximize the average success probability. We
also plot the probability that at least one node is present in
the system; this equals 1 − (1 − p)K for the binomial prior
and 1− e−λ for the Poisson prior. It is an upper bound on the
selection probability because any selection is bound to fail if
there are no nodes in the system.

Figure 3 plots the average success probability of the various
timer mappings for the binomial prior as a function of the
number of timer levels N . We see that the average success
probability of the optimal mapping increases with N , and is
very close to the upper bound. For example, for N = 20 and
p = 0.01, it is 99% of the upper bound. Further, we see that for
p = 0.5, the design for average node count performs almost as
well as the optimal mapping. However, when p is small, e.g.,
p = 0.01, the design for average node count has a 29% lower
average success probability. The optimal mapping achieves
6% more average success probability than the design for K
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Fig. 5. Binomial prior: Comparison of average success probability vs. the
participation probability p for different values of N (K = 10).

nodes for p = 0.5 when N = 20; for p = 0.01 this increases
markedly to 715%. While the equal stair length mapping is
close to optimal for small p, as we saw already in Figure 2,
for p = 0.5, its average success probability is 44% lower than
that of the optimal mapping. The average success probability
of the inverse mapping is not plotted in order to avoid clutter.
Its performance is the worst among all schemes. For example,
when N = 20 and p = 0.5, its average success probability is
0.37, while that of the optimal mapping is 0.92. We, therefore,
do not consider it in the rest of this section. Figure 4 plots
the corresponding results for the Poisson prior. The trends are
similar to those in Figure 3.

Figure 5 plots the average success probability for the
binomial prior as a function of the participation probability
p for N = 5 and N = 10. For the optimal mapping, we
observe that the average success probability is very close to
its upper bound when p is small and is, thus, limited by the
absence of nodes to select form. Consequently, increasing N
for p < 0.1 does not increase the average success probability.
However, for larger p, this trend changes. For example, when
p = 0.6, we see that the optimal mapping’s average success
probability increases by 21% when N is increased from 5 to
30. The trends for the average success probability as a function
of λ for the Poisson prior are qualitatively similar.

3) Non-identical Metrics: To understand the impact of
the non-identicalness of the metrics, we consider below a
wireless system with K nodes and a sink, in which a node
has data to transmit with probability p. Thus, it participates
in the selection process with probability p. To model the
fact that metrics of the nodes are not identical, we set the
mean of the channel power gain hi of node i to be h0θ

i−1,
for i = 1, 2, . . . ,K . The further θ is away from unity, the
more statistically non-identical the metrics are. The channels
are mutually independent, and undergo Rayleigh fading. The
objective is to select the node with the highest channel power

gain. A node i sets is metric μi as μi = 1 − e−
hi
h0 . This

ensures that the metrics of all the nodes lie between 0 and 1,
as required by the proposed scheme.3 In this case, the average

3It requires the nodes to know the largest mean channel power gain. Since
this is a statistic, it changes at a rate that is orders of magnitude slower than
the instantaneous channel gains. It can, therefore, be estimated by the sink
and communicated to all the nodes.
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Fig. 6. Net throughput as a function of selection duration (K = 20, p = 0.4,
and Tc = 40Δ).

success probability, in fact, increases marginally from 0.749
for θ = 1 to 0.753 for θ = 0.9 and to 0.8 for θ = 0.1. This is
because the above transformation ensures that the distribution
of a non-best node’s metric is likely to be skewed towards 0
than 1, which reduces the collision probability.

4) Net Throughput Comparisons: We now study the im-
pact of the selection scheme on the net throughput of the
system. This performance measure captures the time spent on
selection, the impact of reliability of the selection process
in selecting the best node, and the benefits obtained from
opportunistic selection.

As in Sec. III-C3, we consider a system with K nodes and a
sink, in which each node has data to transmit with probability
p. The channel power gains remain constant for a coherence
time Tc and change independently thereafter. The channel
power gains of the nodes are i.i.d. and are exponentially
distributed with a mean of 10 dB. The sink needs to select the
node with the highest channel power gain and then transmits
data to it. The selection phase runs for a duration of Tmax+Δ
and is immediately followed by the data transmission phase,
which lasts for a duration of Tc −Tmax −Δ.4 For illustration
purposes, the data transmission rate is log2(1 + hsel), where
hsel is the channel power gain of the selected node.

Figure 6 compares the net throughput of several timer-based
selection schemes. Also plotted are the net throughputs of
genie-aided selection and polling:

1) Genie-aided selection: In this, after the selection dura-
tion of Tmax + Δ, the sink is told by a genie who the
best node is. This serves as an upper bound for all the
timer-based selection schemes.

2) Polling: In this, all the K nodes sequentially reveal their
metrics to the sink. This takes a duration of KΔ to
select.

We see that the proposed scheme markedly outperforms the
other schemes except when N ≤ 1. For a selection duration
of 8Δ, the proposed scheme achieves 35%, 52%, and 150%
higher net throughput than polling, equal stair length timer,
and optimized inverse timer, respectively. Notice that there
exists an optimal choice of selection duration at which the net

4The selection duration is Tmax + Δ because a timer, in the worst case,
can expire at Tmax. A Δ duration after this is allowed so that the sink can
receive this transmission.

throughput is maximized.

IV. UNKNOWN NUMBER OF NODES WITH UNKNOWN

DISTRIBUTION

We now consider the general case where even the prob-
ability distribution of the number of nodes is unknown. All
we know is that k lies between kmin and kmax, where
0 < kmin ≤ kmax < ∞. Our goal is to arrive at a robust design
that maximizes the worst case average success probability over
all possible probability distributions. The approach in Sec. III
can be interpreted as a softer version of the formulation
pursued here because the success probability with k nodes
is weighted by the probability that there are k nodes in the
system.

Let P be the set of all probability distributions on the set
K = {kmin, kmin + 1, . . . , kmax}. For each distribution Q ∈
P , let Q(i) denote the probability that the number of nodes
is i. Further, Q(i) = 0 if i /∈ K. Let Si(f) be the success
probability when i nodes contend with timer mapping f . Then
the average success probability, given a distribution Q on the
number of nodes, which we denote by EQ[Si(f)], is given by

EQ[Si(f)] =
∑
i∈K

Q(i)Si(f). (18)

The optimization problem can be stated as follows:

OU : maximize
f is MNI

minimize
Q∈P

EQ[Si(f)]. (19)

The following result shows that it is sufficient to search for
the optimal mapping over the space of only (kmax−kmin+1)
point mass distributions instead of over the set P , whose size
is uncountably infinite.

Lemma 5: The two problems minimizeQ∈P EQ[Si(f)]
and minimizei∈K Si(f) are equivalent, i.e.,

minimize
Q∈P

EQ[Si(f)] = minimize
i∈K

Si(f). (20)

Proof: The proof is relegated to Appendix I.
The following theorem shows that the optimal mapping is

again a staircase mapping.
Theorem 4: The MNI staircase mapping in which the

timers expire either at 0,Δ, 2Δ, . . . , NΔ or not at all, solves
OU .

Proof: The proof is relegated to Appendix J.
As in Sec. III, the stair lengths αN = (αN [0], . . . , αN [N ])
completely determine such a staircase mapping. Thus, it
suffices to optimize αN . We denote the success probability
when k nodes contend as ΛN,k(αN ), which from Appendix B
is given by

ΛN,k(αN ) =

N∑
i=0

kαN [i]

⎛
⎝1−

i∑
j=0

αN [j]

⎞
⎠

k−1

. (21)

Therefore, the optimization problem can be restated as:

OU ′ : maximize
αN

minimize
k∈K

ΛN,k(αN), (22)

subject to

N∑
j=0

αN [j] ≤ 1, (23)

αN [j] ≥ 0. (24)
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Since ΛN,kmin(αN ),ΛN,kmin+1(αN ), . . . ,ΛN,kmax(αN )
are continuous functions in αN , the function
mink∈K ΛN,k(αN ) is also a continuous function in αN .
Further, the constraint region of αN , defined by (23) and (24),
is closed and bounded. Since a continuous function over a
closed bounded set always attains its maximum [25], there
exists an α∗

N = (α∗
N [0], α∗

N [1], . . . , α∗
N [N ]) that lies in the

constraint region that solves the problem OU ′. However, the
function G(αN ) = mink∈K ΛN,k(αN ) is a non-convex and
non-differentiable function.

We, therefore, use the fmincon function of MATLAB,
which uses sequential quadratic programming, to numerically
solve OU ′. We have observed that it always solves the opti-
mization problem. The reason why it does so is that G(αN ),
although non-differentiable on the entire constraint set, is
infinitely differentiable over a dense subset of the constraint
set.5 Secondly, if the algorithm reaches a non-differentiable
point, then it computes a second derivative, assuming the
function to be smooth, and uses it to proceed further.

A. Numerical Results

To build intuition, let kmin = (1 − δ)K and kmax = (1 +
δ)K , where δ characterizes the uncertainty in the knowledge
of the number of nodes. We shall refer to δ as the uncertainty.

Figure 7 plots the stair lengths of the robust mapping
for different values of δ and K for N = 9. We observe
that α∗

N [j] increases as j increases. Thus, the mapping gets
more aggressive in making nodes transmit when the time
that remains for selection decreases, as was also the case in
Sec. III for the known prior case. Further, as δ increases or
K decreases, the stair length α∗

N [j] of the robust mapping
increases as j increases.

In order to better visualize and compare the performance
of the timer schemes, we plot the success probability band,
which is the range of values of the average success probability,
of each scheme. Figure 8 plots the success probability bands
for: (i) design for K nodes, (ii) inverse mapping, and (iii) ro-
bust mapping. Notice that the success probability band for the
robust mapping is significantly narrower than all the other

5A subset A of a set S is called dense if every point of S either belongs
to A or is a limit point of A [25].
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schemes (K = 100 and N = 5).

schemes, which shows its robustness to uncertainty in the
number of nodes. The inverse mapping fares poorly compared
to the robust mapping, despite its parameters being separately
optimized for each δ. Another key observation is that the worst
case success probability of the robust mapping increases as N
increases, and is markedly better than all the other schemes.

Figure 9 plots the success probability bands as a function of
δ. We observe that the success probability band of the inverse
mapping and the design for K nodes widens appreciably as δ
increases. However, for the robust mapping, it remains narrow.
The equal stair mapping is not shown to avoid clutter. It is the
least robust to uncertainty among all the above schemes. For
example, when δ = 0.9 and N = 20, its success probability
varies from 0.05 to 0.9. Further, for smaller N , its worst case
success probability is almost zero, even when δ is as small as
0.3.

V. CONCLUSIONS

The probability with which the popular, distributed timer-
based selection scheme selects the best node depends on
the monotonically non-increasing metric-to-timer mapping it
uses. We developed optimal timer mappings for the practical
scenario in which the number of nodes in the system is not
known. Two models for unknown number of nodes, namely,
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known prior and unknown prior distribution, were considered.
For both models, we saw that an optimal timer mapping
is a staircase mapping in which the timers expire either at
0,Δ, . . . , NΔ or not at all.

For the binomial and Poisson priors, which arise in several
systems, we showed that the optimal stair lengths can be
computed using a recursion in the number of timer levels. This
is unlike the ad hoc mappings proposed in the literature, which
strive to provide an explicit functional form for the mapping.
For the unknown prior case, the proposed robust mapping
achieves the highest worst case success probability among all
the mappings and has the narrowest success probability band.

APPENDIX

A. Proof of Theorem 1

Let f : [0, 1] → [0,∞) be an MNI mapping. Define a new
mapping g as follows:

g(μ) =

{ ⌊
f(μ)
Δ

⌋
Δ, if f(μ) ≤ Tmax,

Tmax + ε, if f(μ) > Tmax,
(25)

where ε > 0. This ensures that a node does not transmit if its
timer expires after Tmax. This new mapping g can be shown
to be an MNI mapping because f is MNI. Further, g has the
same structure as described in Theorem 1. We show below
that for any k ∈ N and for any realization of the metrics
ζ1, . . . , ζk, using g results in a success if using f results in a
success. Thus, the average success probability of g is greater
than or equal to that of f .

If k = 0, then the success probability is 0 for both g and f
since there are no nodes in the system. If k = 1 and the user’s
metric is ζ1, then from (25), g(ζ1) ≤ Tmax if f(ζ1) ≤ Tmax.
Thus, g will result in a success whenever f results in a success.

Now, consider the last case where k ≥ 2. Let [i] denote the
node with the ith highest metric among the k nodes. There are
only two cases in which f succeeds: (i) When f(ζ[2]) > Tmax

and f(ζ[1]) ≤ Tmax: In this case, from (25), g(ζ[1]) ≤ Tmax

and g(ζ[j]) = Tmax + ε, for all j 	= 1. Thus, only the best
node transmits its timer packet even with g and a success will
occur. (ii) When f(ζ[2]) ≤ Tmax and |f(ζ[1]) − f(ζ[2])| > Δ:
In this case, from (25), we get g(ζ[2]) ≤ Tmax. Furthermore,
from the property of the floor function, |g(ζ[1])−g(ζ[2])| > Δ.
Thus, even in this case, a success will occur and g will select
the best node.

B. Derivation of (4)

Let ΛN,k(αN ) denote the success probability when k nodes
participate in the selection process. Recall from Appendix A
that μ[1] ≥ μ[2] ≥ · · · ≥ μ[k]. Summing over the mutually
exclusive events in which the best node’s metric lies in the
ith interval, for 0 ≤ i ≤ N , we get

ΛN,k(αN ) =
N∑
i=0

Pr

⎡
⎣μ[1] ∈

⎡
⎣1− i∑

j=0

αN [j], 1−
i−1∑
j=0

αN [j]

⎞
⎠

and μ[2] ≤ 1−
i∑

j=0

αN [j]

⎤
⎦ .

Since the metrics μ1, . . . , μk are i.i.d. and μ[k] ≤ · · · ≤ μ[2],
we get

ΛN,k(αN )

=

N∑
i=0

kPr

⎡
⎣μ1∈

⎡
⎣1− i∑

j=0

αN [j], 1−
i−1∑
j=0

αN [j]

⎞
⎠

and μl ≤ 1−
i∑

j=0

αN [j], for 2 ≤ l ≤ k

⎤
⎦ ,

=

N∑
i=0

kαN [i]

⎛
⎝1−

i∑
j=0

αN [j]

⎞
⎠

k−1

. (26)

Since k is a binomial RV, the average success probability
PN (αN ) is given by

PN (αN ) =

K∑
k=0

(
K

k

)
pk(1− p)K−kΛN,k(αN ). (27)

Substituting (26) yields

PN (αN ) =

K∑
k=0

(
K

k

)
pk(1− p)K−k

N∑
i=0

kαN [i]

×
⎛
⎝1−

i∑
j=0

αN [j]

⎞
⎠

k−1

. (28)

Interchanging the two summations and using the binomial
expansion yields (4).

C. Proof of Lemma 1

Let there be a j ∈ {0, 1, . . . , N} such that α∗
N [j] =

0. Since the metrics are uniformly distributed over [0, 1],
the success probability of the mapping with stair lengths
α∗
N [0], . . . , α∗

N [N ] would be same as that of a mapping with
stair lengths αN [0], . . . , αN [N ], where αN [i] = α∗

N [i], for
i < j, αN [i] = α∗

N [i + 1], for j ≤ i < N , and αN [N ] = 0.
Thus, it suffices to argue that α∗

N [N ] cannot be equal to 0.
This is easy to see because, for an ε1 that is sufficiently small,

PN(α
∗
N[0], . . . , α

∗
N[N− 1], ε1) > PN(α

∗
N[0], . . . , α

∗
N[N− 1], 0).

This follows because PN (αN [0], . . . , αN [N ]) is an increasing
function of αN [N ] at αN [N ] = 0. The right hand partial
derivative of PN (αN [0], . . . , αN [N ]) with respect to αN [N ]
at αN [N ] = 0 is given by

∂PN (αN [0], . . . , αN [N ])

∂αN [N ]+

∣∣∣∣
αN [N ]=0

=
∂Kp

∑N
i=0 αN [i]

(
1− p

∑i
j=0 αN [j]

)K−1

∂αN [N ]

∣∣∣∣∣∣∣
αN [N ]=0

.

This equals Kp
(
1− p

∑N−1
i=0 αN [i]

)K−1

, which is positive

when
∑N−1

i=0 αN [i] ≤ 1.
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D. Proof of Theorem 2

Define an auxiliary function Lη
N(αN ) as

Lη
N (αN ) = PN (αN ) + η

⎛
⎝1− p

N∑
j=0

αN [j]

⎞
⎠

K

, (29)

where η ≥ 0. Here,
(
1− p

∑N
j=0 αN [j]

)K

can be interpreted
as a displeasure function that characterizes the displeasure
or penalty when the constraint

∑N
j=0 αN [j] ≤ 1 is not met.

Physically, it is the average probability that no node’s timer
expires; we shall, therefore, call it the average idle probability.
In the first part of the proof, we derive the optimal α̃N that
maximizes Lη

N(αN ). In the second part, we show that α̃N

also solves OB for an appropriate choice of η.
Derivation of α̃N : Lη

N (αN ) can be shown to be equal to

Lη
N(αN ) = KpαN [0] (1− pαN [0])

K−1

+Kp

N∑
i=1

αN [i]

⎛
⎝1−p

i∑
j=0

αN [j]

⎞
⎠

K−1

+η

⎛
⎝1−p

N∑
j=0

αN [j]

⎞
⎠

K

.

Taking (1− pαN [0])K as a common factor from the last two
terms, we get

Lη
N(αN ) = KpαN [0] (1− pαN [0])

K−1
+ (1− pαN [0])

K

× Lη
N−1

(
αN [1]

1− pαN [0]
, . . . ,

αN [N ]

1− pαN [0]

)
. (30)

Thus,

Lη
N(αN ) ≤ KpαN [0] (1− pαN [0])

K−1

+ (1− pαN [0])
K
Lη
N−1(α̃N−1), (31)

where α̃N−1 = (α̃N−1[0], . . . , α̃N−1[N − 1]) maximizes
Lη
N−1. Furthermore, from (30) and (31), given any αN [0] ∈

(0, 1), the upper bound in (31) can indeed be achieved by
setting

αN [j] = (1− pαN [0]) α̃N−1[j − 1], for 1 ≤ j ≤ N. (32)

Hence, we have

max
αN

Lη
N (αN ) = max

αN [0]∈(0,1)

{
KpαN [0] (1− pαN [0])

K−1

+(1− pαN [0])K Lη
N−1(α̃N−1)

}
. (33)

Using the first order condition, this maximum is achieved

when αN [0] = 1
p

(
1−Lη

N−1(α̃N−1)

K−Lη
N−1(α̃N−1)

)
. Thus, using (32), we see

that α̃N is given by

α̃N [i] =

{
1
p

(
1−Lη

N−1(α̃N−1)

K−Lη
N−1(α̃N−1)

)
, if i = 0,

(1− pα̃N [0]) α̃N−1[i− 1], if 1 ≤ i ≤ N.
(34)

For N = 0, it can be easily shown that α̃0[0] =
1
p

(
1−η
K−η

)
maximizes

Lη
0(α0[0]) = Kpα0[0] (1− pα0[0])

K−1
+ η (1− pα0[0])

K
.

We now investigate the solution for two special values of
η, namely, 0 and 1.

a) α̃N for η = 0: For η = 0, Lη
N(αN ) = PN (αN ) and the

recursion in (34) and its initial condition are the same as that
in (8). Thus, α̃N = βN , where βN is given by (8).

b) α̃N for η = 1: For η = 1, Lη
N (αN ) is given by

Lη
N(αN ) = PN (αN ) +

⎛
⎝1− p

N∑
j=0

αN [j]

⎞
⎠

K

. (35)

This is nothing but the sum of the success and idle probabili-

ties because
(
1− p

∑N
j=0 αN [j]

)K

is the probability that no
node’s timer expires; thus, it is upper bounded by 1. This upper
bound is achieved when α̃N [i] = 0, for all i ∈ {0, 1, . . . , N}.
Hence, for η = 1,

∑N
j=0 α̃N [j] = 0.

Note: The unconstrained maximization of Lη
N(αN ) can

also be stated and solved as a (N + 1)-horizon dynamic
programming problem [26] whose action space at time i is
the stair length αN [i − 1], for 1 ≤ i ≤ N + 1. Its state
space is the entire metric interval, and the state at time i is
1 − p

∑N
j=0 αN [j], for 1 ≤ i ≤ N + 1, and (33) can be

interpreted as the Bellman equation.
Proof of optimality of α∗

N : If
∑N

j=0 βN [j] ≤ 1, then βN is
feasible and solves problem OB. Hence, α∗

N = βN .
Consider now the case where

∑N
j=0 βN [j] > 1. Then, from

the intermediate value theorem [25], there is an η ∈ (0, 1) such
that

∑N
j=0 α̃N [j] = 1.6 Clearly, such an α̃N is also feasible.

Further, for this η, the auxiliary function is given by

Lη
N (α̃N ) = PN (α̃N ) + η (1− p)

K
. (36)

By definition, for any feasible αN , we have Lη
N(α̃N ) ≥

Lη
N (αN ). From (29), this implies that

PN (α̃N ) ≥ PN (αN ) + η

⎡
⎢⎣
⎛
⎝1−p

N∑
j=0

αN [j]

⎞
⎠
K

− (1− p)
K

⎤
⎥⎦ .

(37)
Since

∑N
j=0 αN [j] ≤ 1 and η ≥ 0, it follows that

η

[(
1− p

∑N
j=0 αN [j]

)K

− (1− p)
K

]
≥ 0. Hence, for every

feasible αN , PN (α̃N ) ≥ PN (αN ). Therefore, α∗
N = α̃N .

E. Proof of Lemma 2

We first show that βN [j] ≤ 1
Kp , for 0 ≤ j ≤ N . From (8),

βN [0] =
1

p

(
1− PN−1(βN−1)

K − PN−1(βN−1)

)
. (38)

Since PN−1(βN−1) ≥ 0, we get βN [0] ≤ 1
Kp . Applying the

recursion in (8) repeatedly, we get

βN [j] = βN−j [0]

j−1∏
i=0

(1−pβN−i[0]) ≤ βN−j[0] ≤ 1

Kp
.

(39)

6To apply the intermediate value theorem, we need to show that α̃N [j],
for j = 0, 1, . . . , N , are continuous functions in η. We use induction on
N to establish this. First, for N = 0, α̃0[0] = 1

p

(
1−η
K−η

)
, which is a

continuous function in η, for 0 ≤ η ≤ 1. Let α̃N [j], for 0 ≤ j ≤ N , be
continuous functions in η for some N ≥ 0. This implies that Lη

N (α̃N ) is
also a continuous function in η. Invoking (34), we infer that α̃N+1[j], for
j = 0, 1, . . . , N , are continuous functions in η.
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Hence,
∑N

j=0 βN [j] ≤ N+1
Kp . Therefore, if N+1

Kp ≤ 1 then∑N
j=0 βN [j] ≤ 1. Hence, from Theorem 2, it follows that

α∗
N = βN and η = 0.

F. Derivation of (11)

Averaging the expression for the probability of success
in (26) in Appendix B over the distribution of k, we get

PN (αN ) =

∞∑
k=0

e−λλ
k

k!

N∑
i=0

kαN [i]

⎛
⎝1−

i∑
j=0

αN [j]

⎞
⎠

k−1

.

(40)

Interchanging the two summations and using the Taylor series
expansion for ex yields (11).

G. Proof of Theorem 3

The ideas in this proof are similar to those in Appendix D.
We, therefore, only highlight the key steps. For the Poisson
prior, define the auxiliary function Hγ

N (αN ) as

Hγ
N (αN ) = PN (αN ) + γe−λ

∑N
j=0 αN [j], (41)

for γ ≥ 0. As in the binomial prior case, we first derive the
optimal α̃N = (α̃N [0], . . . , α̃N [N ]) that maximizes Hγ

N (αN )
and then show that it solves OP , provided γ is chosen
appropriately. The term γe−λ

∑N
j=0 αN [j] can be interpreted as

a displeasure function [27] that characterizes the penalty when
the constraint in (13) is not met.

1) Derivation of α̃N :7 From (41) and (11), we get

Hγ
N (αN ) = λαN [0]e−λαN [0] + λ

N∑
i=1

αN [i]e−λ
∑i

j=0 αN [j]

+ γe−λ
∑N

j=0 αN [j]. (42)

Taking e−λαN [0] as a common factor from the last two terms,
we get

Hγ
N (αN ) = λαN [0]e−λαN [0]

+ e−λαN [0]Hγ
N−1(αN [1], . . . , αN [N ]), (43)

≤ λαN [0]e−λαN [0] + e−λαN [0]Hγ
N−1(α̃N−1),

(44)

where α̃N−1 = (α̃N−1[0], . . . , α̃N−1[N − 1]) maximizes
Hγ

N−1. Hence, from (43) and (44), given any αN [0] ∈ (0, 1),
the upper bound in (44) can be achieved by setting

αN [j] = α̃N−1[j − 1], for 1 ≤ j ≤ N. (45)

Furthermore, it can be shown that λαN [0]e−λαN [0] +
e−λαN [0]Hγ

N−1(α̃N−1) is maximized when αN [0] =
1−Hγ

N−1(α̃N−1)

λ . Thus, α̃N follows the recursion in (16).
Finally, for N = 0, α̃0[0] =

1−γ
λ maximizes Hγ

0 (α0[0]) =
λα0[0]e

−λα0[0] + γe−λα0[0].
For γ = 0, Hγ

N (αN ) = PN (αN ) and the recursion in (16)
reduces to (15). Thus, α̃N = βN , for γ = 0.

7As in the binomial prior case, maximizing Hγ
N (αN ) can be stated as a

finite-horizon dynamic program.

3) With the above results, we now prove the optimality of
α∗

N . If
∑N

j=0 βN [j] ≤ 1, then βN is feasible and, hence,
solves OP . Therefore, α∗

N = βN .
Else, if

∑N
j=0 βN [j] > 1, then applying the intermediate

value theorem [25], there exists an η ∈ (0, 1) such that∑N
j=0 α̃N [j] = 1.8 Clearly, α̃N is feasible. Further, for this

choice of γ,

Hγ
N (α̃N ) = PN (α̃N ) + γe−λ. (46)

By definition, for any feasible αN , we have Hγ
N (α̃N ) ≥

Hγ
N (αN ). From (41), it follows that

PN (α̃N )≥ PN (αN ) + γ
[
e−λ

∑N
j=0 αN [j]− e−λ

]
≥ PN (αN ),

(47)
because

∑N
j=0 αN [j] ≤ 1 and γ ≥ 0. Hence, for every αN ,

PN (α̃N ) ≥ PN (αN ). Therefore, α∗
N = α̃N .

H. Proof of Lemma 4

From (15), we have

βN [j] = βN−1[j − 1] = · · · = βN−j [0], for 0 ≤ j ≤ N.
(48)

Further, since Hγ
N−1(βN ) ≥ 0,

βN [0] =
1−Hγ

N−1(βN)

λ
≤ 1

λ
. (49)

Thus, βN [j] ≤ 1
λ , for 0 ≤ j ≤ N . Hence,

∑N
j=0 βN [j] ≤

N+1
λ . Thus, if N + 1 ≤ λ then

∑N
j=0 βN [j] ≤ 1. Using

Theorem 3, this implies that α∗
N = βN and γ = 0.

I. Proof of Lemma 5

It suffices to prove that EQ[Si(f)] is minimized when Q
is a point mass distribution, which puts the entire probability
mass at one point i, for some i ∈ K.

Since K is finite, there exists an i∗ ∈ K such that Si∗(f) ≤
Si(f), for every i ∈ K. Hence, for any distribution Q, we have
Si∗(f) ≤ EQ[Si(f)]. Further, this lower bound for EQ[Si(f)]
is achieved when Q is chosen to be a point mass distribution
at i∗. Hence, the result follows.

J. Proof of Theorem 4

Let f : [0, 1] → [0,∞) be an MNI mapping. Recall that
Sk(f) is the success probability when k nodes participate. As
in Appendix A, define a new mapping g as follows:

g(μ) =

{ ⌊
f(μ)
Δ

⌋
Δ, if f(μ) ≤ Tmax,

Tmax + ε, if f(μ) > Tmax,
(50)

where ε > 0. Using the same arguments as in Appendix A,
one can show that for any k ∈ K and for any realization of the
metrics, using g results in a success whenever using f results
in a success. Thus, Sk(g) ≥ Sk(f), for all k ∈ K. Hence,
mink∈K Sk(g) ≥ mink∈K Sk(f). Hence, the optimal solution
is an MNI staircase function.

8As in Appendix D, it can be shown that α̃N [j]s are continuous functions
of γ. Further,

∑N
j=0 α̃N [j] = 0 when γ = 1.
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