REGULAR CODES ARE NOT ASYMPTOTICALLY GOOD

NAVIN KASHYAP

ABSTRACT. In this note, we prove that the family of regular codes is not asymptotigaliy.

The notation follows that in [2]. All codes considered are binary linealeso; refers to the
[7,4] binary Hamming code.

Definition 1. A binary linear code is regular iff it does not contain as a minor any cagiéelent
to Hr or H.

It follows from the theorem that the family of regular codes, which we wilhate byR. Fur-
thermorefR is closed under the taking of code duals,, the dual of a regular code is also regular.
This is because a codgcontainsH; as a minor iff its duaC containsH> as a minor. It can
further be shown [3, p. 437] th& is closed under the operations of direct sum, 2-sum, 3-sum and
3-sum; these operations are defined further below.

Recall from coding theory that a code famiyis calledasymptotically goodf there exists a
sequence ofin;, k;, d;] codesC; € €, with lim; n; = oo, such thatim inf; k; /n; andlim inf; d; /n;
are both strictly positive. Informally, in an asymptotically good code family, minindistance and
dimension can both grow linearly with the length of the code.

The purpose of this note is to show the following theorem.

Theorem 1. The family of regular codes is not asymptotically good.
To prove Theorem 1, we need the following results.

Theorem 2([6]). A code is graphic if and only if it does not contain as a minor any code atgnt
to one of the codeX(7, Hi, C(K5)* andC(K33)*.

Corollary 3. A code is cographic if and only if it does not contain as a minor any codevatgnt
to one of the codek(7, H+, C(K5) andC(K33).

In the statement of the above theorem and coroll&ryjs the complete graph on five vertices,
while K3 3 is the complete bipartite graph with three vertices on each €id€s )= is the[10, 4, 4]
code with generator matrix

1000111000
0100100110
0010010101}
0001001011
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while C(K3 3)* is the[9, 5, 3] code with generator matrix

100001100
01 000O0T1T1FQO0
001 0O0O0OO0OT1S1
000101001
000O0OT1T11T1T1

We recall the definition of the 2-sum of codesandC’. (For the definition ofS; (C, ('), see [2].)

Definition 2 (2-sum) LetC, C’ be codes of length at least three, such that
(P1) 0...01is not a codeword of, and the last coordinate @f is not identically zero;
(P2) 10...0is not a codeword of’, and the first coordinate at’ is not identically zero.
Then,S;(C,C") is called the2-sumof C and(’, and is denoted bg &2 C'.

We following properties of 2-sum were proved in [2].

Proposition 4. LetC and(’ be codes for whiclf &5 C’ can be defined.
(@) dim(C @2 ") = dim(C) 4+ dim(C’) — 1.
(b) If dim(C) > 1, thend(C @2 C') < d(C \ {n}), wheren is the length ofC. Similarly, if
dim(C’) > 1, thend(C @2 C") < d(C’'\{1}).
We give below definitions of 3-sum arddsum that may be verified to be equivalent to the defi-
nitions given in [2].
Definition 3 (3-sum) LetC, C’ be codes of length at least seven, such that
(A1) C punctured at all but its last three coordinates yields 1}3, andC shortened at all but its
last three coordinates yield$00, 111}; and
(A2) C’ punctured at all but its first three coordinates yielfls 1}3, andC’ shortened at all but
its first three coordinates yield$00, 111}.
Then,S3(C,C’) is called the3-sumof C andC’, and is denoted b§ &3 C'.

Definition 4 (3-sum) LetC, C’ be codes of length at least seven, such that

(B1) C punctured at all but its last three coordinates yie{d®0, 011, 101, 110}, andC shortened
at all but its last three coordinates yield800}; and

(B2) C’ punctured at all but its first three coordinates yielg¥)0, 011, 101,110}, andC’ short-
ened at all but its first three coordinates yield300}.

Then,S3(C,C’') is called the3-sumof C andC’, and is denoted bg &3 C'.
The following properties of 3-sum arsdsum are important.
Proposition 5([2]). For codesC and(’ be codes for whicll ¢3 C’ can be defined, we have
(CasC)t =ctasc.

Proposition 6. LetC andC’ be codes for whicl€ ©3 C’ can be defined.
(@) dim(C &3 (") = dim(C) + dim(C") — 2.
(b) If dim(C) > 2 or if C is 3-connected, thed(C ©3C’) < d(C \{n — 2,n — 1,n}), where
n is the length of. Similarly, if dim(C’) > 2 or if C’ is 3-connected, thed(C ©3C’) <
d(C’'\{1,2,3}).

Proof. (a) was proved in [2].

(b). It was shown in [2] that iflim(C) > 2, thend(C ®3C’) < d(C \{n —2,n—1,n}).

So, suppose thdt is 3-connected. From (B1) in Definition 4, we see tthah(C) > 2. Assume
thatdim(C) = 2. By (B1) again, the generator matrix 6fmay be taken to bA D], where A



1 01
01 1
Furthermore, any non-zero column.would be a repetition of a column @, which induces a
2-separation of. AsC is 3-connected, both of these are impossible. Hefi@annot have length
greater than three, which means that it cannot be involvedisuam.

Thus, ifC is 3-connected, we must hadén(C) > 2. O

isa2 x (n — 3) matrix, andD = . Any column of A induces a 1-separation 6f

The following is a celebrated decomposition theorem of Seymour [4].

Theorem 7 ([3], Theorem 13.2.4) Every regular cod& can be constructed by means of direct-
sums, 2-sums and 3-sums (or, insteagdums) starting with codes each of which is equivalent to
a minor ofC, and each of which is either graphic, cographic or equivalenf@, which is the
[10, 5, 4] code with parity-check matrix

11001100060
11 10001O00O06O0
011100O01O00O0
001110O0O0T1F0
1001100O0O01

The rest of this note is a proof of Theorem 1.

LetI" denote the family of graphic codes, €dhe family of cographic codes, amtd=I"Uco-T.
Note that, by virtue of Theorem 2 and Corollaryl3is minor-closed.
The following result was proved in [2].

Lemma 8. Letr € (0,1). For any code € T" with lengthn > 2 and rate> r, we have

4logn
< — .
d(C) = log(1 4+ r)

)
Thus, the family of graphic codes is not asymptotically good. The followirmyvshthat the
family of cographic codes is also not asymptotically good.

Lemma 9. Letr € (0, 1). For any cod&’ € co-I" with rate > r, we havel(C) < 2/r.

Proof. Consider ar[n, k] codeC € coT with rate > r. Then,C = C(G)* for some connected
graphG = (V, E). Thereforek/n = (|V| —1)/|E| > r, from which we obtainV'|/|E| > r.

Now, the average degree Gfis 6 = 2|E|/|V| < 2/r. Hence, some vertex ¢f has degree<
2/r. As the edges around any vertex form a cuts&t,ahe cardinality of the smallest cutset®fs
less thar2/r. We finish the proof by observing thd{C) is equal to the cardinality of the smallest
cutset ofg. 0

Corollary 10. T is not an asymptotically good code family.

Let ® be a finite collection of codes, and [Et+ © be the set of all codes that can be expressed
asC1P2Cs or C1 d3 Co, With C; € T'andCs € . The following result should not be surprising.

Lemma 11. For any finite collection of code®, the familyl’ + ® is not asymptotically good.

Proof. Defined,ax(®) = max{d(C’) : C’ is a minor of some code i®}. We will show that, for
€ (0,1), if Cis a code i + © with rate larger tham, then

4logn }

log(1+ ) @

d(C) S max {dmax(g)a 2/7‘7



So, letC be an[n, k] code inT" + D with k/n > r. Now,C = C1®2Cs or C = C; ©3 Co for some
C, € T andC, € ®. In particular, note that must have length at least 4.

Suppose first thatim(C2) < 2. Then,C, cannot contain a minor equivalent to any of the codes
Hr, Ha, C(K5), C(K5)t, C(K33) andC(K33)*, since each of these codes has dimension at least
3. So, by Theorem 2 and Corollary@, is graphic as well as cographic.

If C; € T, then so iC, asT is closed under the operations of 2-sum &ssum (seee.g. [5,
Chapter 8]). Therefore, (2) holds by the bound in (1). On the othed h&C; € co-T', then so <.
This is becaus€ is closed under 2-sum and 3-sum, which implies (by duality — cf. Proposijion 5
that coT is closed under 2-sum arddsum. Hence, (2) holds by Lemma 9.

If dim(C2) > 2, then by Propositions 4(b) and 6(b), we have #@) < d(C’) for some minor
C’ of C5. So, once again, (2) holds, this time by definitiondgf. (D). O

We have all the preliminary results needed to prove Theorem 1. We callagttove something
slightly stronger at no extra cost, so we might as well do so. We need therifodjaefinition.

Definition 5. Let® be a finite family of codes. A minor-closed code family said to beD-regular
if for any connected code € ¢, at least one of the following holds:
(i) CeTuD; B
(i) Cisequivalentt@;®2Cy or Cy @3 C, for some 3-connected code € TUD, dim(Cy) > 1,
and some codé, € ¢.

The dual form of Theorem 2.5(a) in [1] shows that the following coailias are®-regular’
e regular codes, witld = {R;o}
e codes having no minor equivalentg;, with ® = {Hi, Rio}
e codes having no minor equivalent?d)%, with ® = {H7, Rio}
Theorem 2.5(a) in [1] is essentially a more refined version of Seymoacsrdposition theorem
(Theorem 7).

We can now state our main result which, by the above remark, includesérheloas a special
case.

Theorem 12. For any finite code family®, the family of©-regular codes is not asymptotically
good.

The proof goes as follows. L& be a®-regular family of codes for some finite code family
Without loss of generality, we may assume t®ais minor-closed. For € (0, 1), defineN, to be
the least positive integer such that foralt> N,,

0< L < 2 and 0 < L < 2
log(1+7—2/n) log(l+r) r—2/n " r

Note that sincéim,, .o, 1/log(1 +r — 2/n) = 1/log(1 + r), andlim, . 1/(r —2/n) = 1/r,
such an¥V, does exist. Now, define

dmax(r,®) = max{d(C) : C € € and has length at mos{,, orC € ©}.

Note, in particular, that sinc® is taken to be minor-closed, we ha¥g.«(r,®) > dnax(D),
whered,,.x (D) is as defined in the proof of Lemma 11.

We now have the definitions needed to state the next result, which showsothest in¢ can-
not have both dimension and minimum distance growing linearly with codelengshclear that
Theorem 12 follows directly from this result.

IThe dual version of Theorem 2.5(a) does not explicitly assert the-tt@nected codé; € T' U D can be taken to
have dimension larger than 1, but this can be readily added to the stateftiesittheorem.



Lemma 13. Letr € (0,1). If C € €is an|n, k, d| code withk/n > r, then

1
d< max{dmax(r,i)), 4/r, ] 8logn }

og(l+r) 3)

Proof. From the definition ofdy,.x(7,®), and the bounds in (1) and (2), it is obvious that the
statement of the lemma holds for all codeg’in ® U (T + D). The proof that the statement holds
for all codes in¢ is by induction on codelength for a fixede (0, 1).

So, fixanr € (0,1). If ng is the smallest length of a non-trivial codednthen a lengthz, code
in € cannot be decomposed into smaller codes, and so mustibe iD. Therefore, the statement
of the lemma holds for the base case of lenggheodes.

Now, suppose that for some> ng, (3) holds for all code€’ € ¢ of lengthn’ < n — 1 and rate
larger thanr. LetC € € be a[n, k, d] code withk/n > r. If C = C; @ Cs for some (non-empty)
codesC; andCs in €, then at least one @, and(C, has rate larger than and so (3) holds fof by
the induction hypothesis. We may thus assumedhatconnected.

If C e TUD U (T + D), there is nothing further to be proved; so we will henceforth assume
that this is not the case. In particular, by DefinitiorCanay be assumed to be eith@&r®, Co or
Cy @3 Cy for some 3-connecteph, k1] codeC; € T U D, with k; > 1, and soméns, k2] code
Cy € €. FurthermoreC, ¢ T'NcoT, sinceC ¢ T U (T + D). In particular, this means thag > 3,
since ifke < 2, then it would follow from Theorem 2 thd&h is both graphic and cographic.

We consider the case= C; @9 Co first. By Proposition 4(b), we havé < min{d(C}), d(C})},
whereC] = C; \{n1} andC} = Cy \ {1}. SinceC; is a minor ofC;, andT" U ® is minor-closed,
we haveC; € T'UD. Similarly, C} is in the minor-closed family. Furthermore, note that for
i =1,2,Clis an[n}, k] code, wherex, = n; — 1 andk] = k; — 1. Thus,n = n} + n}, and from
Proposition 4(a), we also have= ki + ko — 1 =k} + k), + 1.

Now, if &} /n/ > r, then the statement of the lemma holds@¢rsince it is inI" U ®. Similarly,
if k5/nY, > r, then the statement of the lemma holds grby the induction hypothesis, since
ny < n — 1. In both cases, (3) holds fd}, as we havel(C) < min{d(C}),d(C)} andn} < n.

So, we are left with the situation whei/n] < r for i = 1,2. But in this case, sincé/n =
(K} + k5 + 1)/(n} + nf) > r, we must haved|/n} > r — 1/n; otherwise, we would have
Ky > (nf +nb)r—1—Fk; > (n} +nb)r—1—(rn} —1) = rn}, which would mean that, /n}, > r.

If C{ € ® orn) < N,,thend(C]) < dmax(r,®). Otherwise(] is either graphic or cographic, with
n} > N,, and so, by Lemmas 8 and 9, and the definitiotNpf

2 4logn
dc/ < 1
€ < e s )
< ma 2 4logn}
= W T2/ Tog(1+ (r — 2/1))
<

{4 8log n} }
maxq —, ——— /.
r’ log(l+7)

Sinced < d(C}) andn/ < n, we have that (3) holds fat.

Finally, we deal with the case whéh= C; ©3C,. The approach is essentially the same as that
in the 2-sum case. This time, we defile= C; \{n1 — 2,71 — 1,n1} andC, = C3 \{1,2,3}.
Fori = 1,2, we now find thaC; is an[n}, k/] code, where:, = n; — 3 andk] = k; — 2. Thus,
n = n) +n), and via Proposition 6(a};, = k| + k} + 2. Furthermore(; is 3-connected ank, > 3
(shown above), and so, by Proposition 6(b), we h&@® < min{d(C}),d(C})}. If eitherk} /n/ or
k4 /nb is larger thamr, then (3) holds foc, either becaus€| € I U D or because of the induction
hypothesis. So suppose thidyn; < r fori = 1,2. Sincek/n = (k| + kb, + 1)/(n} + nb) > r,
we must have] /n} > r — 2/n); otherwise, we would obtaik,, /n5, > r. If C{ € D orn} < N,,
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thend(C]) < dmax(r,D); otherwise (] is either graphic or cographic with}, > N,, and so, by
Lemmas 8 and 9, and the definition &f., we have
2 4logn 4 8logn)
"< 1 < Zo o b
i <mo{ - 2 Tog (1T (7 - 2/n1>>} <max {1 it

Sinced < d(C}), andn} < n, we see that (3) holds faf. The proof of the lemma is now
complete. O
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