
REGULAR CODES ARE NOT ASYMPTOTICALLY GOOD
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ABSTRACT. In this note, we prove that the family of regular codes is not asymptoticallygood.

The notation follows that in [2]. All codes considered are binary linear codes.H7 refers to the
[7, 4] binary Hamming code.

Definition 1. A binary linear code is regular iff it does not contain as a minor any code equivalent
toH7 or H⊥

7
.

It follows from the theorem that the family of regular codes, which we will denote byR. Fur-
thermore,R is closed under the taking of code duals,i.e., the dual of a regular code is also regular.
This is because a codeC containsH7 as a minor iff its dualC⊥ containsH⊥

7
as a minor. It can

further be shown [3, p. 437] thatR is closed under the operations of direct sum, 2-sum, 3-sum and
3-sum; these operations are defined further below.

Recall from coding theory that a code familyC is calledasymptotically goodif there exists a
sequence of[ni, ki, di] codesCi ∈ C, with limi ni = ∞, such thatlim infi ki/ni andlim infi di/ni

are both strictly positive. Informally, in an asymptotically good code family, minimumdistance and
dimension can both grow linearly with the length of the code.

The purpose of this note is to show the following theorem.

Theorem 1. The family of regular codes is not asymptotically good.

To prove Theorem 1, we need the following results.

Theorem 2([6]). A code is graphic if and only if it does not contain as a minor any code equivalent
to one of the codesH7, H⊥

7
, C(K5)

⊥ andC(K3,3)
⊥.

Corollary 3. A code is cographic if and only if it does not contain as a minor any code equivalent
to one of the codesH7, H⊥

7
, C(K5) andC(K3,3).

In the statement of the above theorem and corollary,K5 is the complete graph on five vertices,
while K3,3 is the complete bipartite graph with three vertices on each side.C(K5)

⊥ is the[10, 4, 4]
code with generator matrix









1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1









,
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while C(K3,3)
⊥ is the[9, 5, 3] code with generator matrix













1 0 0 0 0 1 1 0 0
0 1 0 0 0 0 1 1 0
0 0 1 0 0 0 0 1 1
0 0 0 1 0 1 0 0 1
0 0 0 0 1 1 1 1 1













.

We recall the definition of the 2-sum of codesC andC′. (For the definition ofS1(C, C′), see [2].)

Definition 2 (2-sum). LetC, C′ be codes of length at least three, such that

(P1) 0 . . . 01 is not a codeword ofC, and the last coordinate ofC is not identically zero;
(P2) 10 . . . 0 is not a codeword ofC′, and the first coordinate ofC′ is not identically zero.

Then,S1(C, C′) is called the2-sumof C andC′, and is denoted byC ⊕2 C
′.

We following properties of 2-sum were proved in [2].

Proposition 4. LetC andC′ be codes for whichC ⊕2 C
′ can be defined.

(a)dim(C ⊕2 C
′) = dim(C) + dim(C′) − 1.

(b) If dim(C) > 1, thend(C ⊕2 C′) ≤ d(C \ {n}), wheren is the length ofC. Similarly, if
dim(C′) > 1, thend(C ⊕2 C

′) ≤ d(C′ \{1}).

We give below definitions of 3-sum and3-sum that may be verified to be equivalent to the defi-
nitions given in [2].

Definition 3 (3-sum). LetC, C′ be codes of length at least seven, such that

(A1) C punctured at all but its last three coordinates yields{0, 1}3, andC shortened at all but its
last three coordinates yields{000, 111}; and

(A2) C′ punctured at all but its first three coordinates yields{0, 1}3, andC′ shortened at all but
its first three coordinates yields{000, 111}.

Then,S3(C, C′) is called the3-sumof C andC′, and is denoted byC ⊕3 C
′.

Definition 4 (3-sum). LetC, C′ be codes of length at least seven, such that

(B1) C punctured at all but its last three coordinates yields{000, 011, 101, 110}, andC shortened
at all but its last three coordinates yields{000}; and

(B2) C′ punctured at all but its first three coordinates yields{000, 011, 101, 110}, andC′ short-
ened at all but its first three coordinates yields{000}.

Then,S3(C, C′) is called the3-sumof C andC′, and is denoted byC ⊕3 C
′.

The following properties of 3-sum and3-sum are important.

Proposition 5 ([2]). For codesC andC′ be codes for whichC ⊕3 C
′ can be defined, we have

(C⊕3C
′)
⊥

= C⊥⊕3 C
′⊥.

Proposition 6. LetC andC′ be codes for whichC ⊕3 C
′ can be defined.

(a) dim(C ⊕3 C
′) = dim(C) + dim(C′) − 2.

(b) If dim(C) > 2 or if C is 3-connected, thend(C ⊕3 C
′) ≤ d(C \{n − 2, n − 1, n}), where

n is the length ofC. Similarly, if dim(C′) > 2 or if C′ is 3-connected, thend(C ⊕3 C
′) ≤

d(C′ \{1, 2, 3}).

Proof. (a) was proved in [2].
(b). It was shown in [2] that ifdim(C) > 2, thend(C ⊕3 C

′) ≤ d(C \{n − 2, n − 1, n}).
So, suppose thatC is 3-connected. From (B1) in Definition 4, we see thatdim(C) ≥ 2. Assume

thatdim(C) = 2. By (B1) again, the generator matrix ofC may be taken to be[A D], whereA
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is a 2 × (n − 3) matrix, andD =

[

1 0 1
0 1 1

]

. Any column ofA induces a 1-separation ofC.

Furthermore, any non-zero column inA would be a repetition of a column ofD, which induces a
2-separation ofC. As C is 3-connected, both of these are impossible. Hence,C cannot have length
greater than three, which means that it cannot be involved in a3-sum.

Thus, ifC is 3-connected, we must havedim(C) > 2. ¤

The following is a celebrated decomposition theorem of Seymour [4].

Theorem 7 ([3], Theorem 13.2.4). Every regular codeC can be constructed by means of direct-
sums, 2-sums and 3-sums (or, instead,3-sums) starting with codes each of which is equivalent to
a minor ofC, and each of which is either graphic, cographic or equivalent toR10, which is the
[10, 5, 4] code with parity-check matrix













1 1 0 0 1 1 0 0 0 0
1 1 1 0 0 0 1 0 0 0
0 1 1 1 0 0 0 1 0 0
0 0 1 1 1 0 0 0 1 0
1 0 0 1 1 0 0 0 0 1













.

The rest of this note is a proof of Theorem 1.

Let Γ denote the family of graphic codes, co-Γ the family of cographic codes, andΓ = Γ∪co-Γ.
Note that, by virtue of Theorem 2 and Corollary 3,Γ is minor-closed.

The following result was proved in [2].

Lemma 8. Let r ∈ (0, 1). For any codeC ∈ Γ with lengthn ≥ 2 and rate> r, we have

d(C) ≤
4 log n

log(1 + r)
. (1)

Thus, the family of graphic codes is not asymptotically good. The following shows that the
family of cographic codes is also not asymptotically good.

Lemma 9. Let r ∈ (0, 1). For any codeC ∈ co-Γ with rate> r, we haved(C) < 2/r.

Proof. Consider an[n, k] codeC ∈ co-Γ with rate > r. Then,C = C(G)⊥ for some connected
graphG = (V, E). Therefore,k/n = (|V | − 1)/|E| > r, from which we obtain|V |/|E| > r.

Now, the average degree ofG is δ = 2|E|/|V | < 2/r. Hence, some vertex ofG has degree<
2/r. As the edges around any vertex form a cutset ofG, the cardinality of the smallest cutset ofG is
less than2/r. We finish the proof by observing thatd(C) is equal to the cardinality of the smallest
cutset ofG. ¤

Corollary 10. Γ is not an asymptotically good code family.

Let D be a finite collection of codes, and letΓ + D be the set of all codes that can be expressed
asC1⊕2C2 or C1 ⊕3 C2, with C1 ∈ Γ andC2 ∈ D. The following result should not be surprising.

Lemma 11. For any finite collection of codesD, the familyΓ + D is not asymptotically good.

Proof. Definedmax(D) = max{d(C′) : C′ is a minor of some code inD}. We will show that, for
r ∈ (0, 1), if C is a code inΓ + D with rate larger thanr, then

d(C) ≤ max

{

dmax(D), 2/r,
4 log n

log(1 + r)

}

. (2)
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So, letC be an[n, k] code inΓ + D with k/n > r. Now,C = C1⊕2C2 or C = C1 ⊕3 C2 for some
C1 ∈ Γ andC2 ∈ D. In particular, note thatC must have length at least 4.

Suppose first thatdim(C2) ≤ 2. Then,C2 cannot contain a minor equivalent to any of the codes
H7, H⊥

7
, C(K5), C(K5)

⊥, C(K3,3) andC(K3,3)
⊥, since each of these codes has dimension at least

3. So, by Theorem 2 and Corollary 3,C2 is graphic as well as cographic.
If C1 ∈ Γ, then so isC, asΓ is closed under the operations of 2-sum and3-sum (seee.g. [5,

Chapter 8]). Therefore, (2) holds by the bound in (1). On the other hand, if C1 ∈ co-Γ, then so isC.
This is becauseΓ is closed under 2-sum and 3-sum, which implies (by duality — cf. Proposition 5)
that co-Γ is closed under 2-sum and3-sum. Hence, (2) holds by Lemma 9.

If dim(C2) > 2, then by Propositions 4(b) and 6(b), we have thatd(C) ≤ d(C′) for some minor
C′ of C2. So, once again, (2) holds, this time by definition ofdmax(D). ¤

We have all the preliminary results needed to prove Theorem 1. We can actually prove something
slightly stronger at no extra cost, so we might as well do so. We need the following definition.

Definition 5. LetD be a finite family of codes. A minor-closed code familyC is said to beD-regular
if for any connected codeC ∈ C, at least one of the following holds:

(i) C ∈ Γ ∪ D;
(ii) C is equivalent toC1⊕2C2 or C1 ⊕3 C2 for some 3-connected codeC1 ∈ Γ∪D, dim(C1) > 1,

and some codeC2 ∈ C.

The dual form of Theorem 2.5(a) in [1] shows that the following code families areD-regular:1

• regular codes, withD = {R10}
• codes having no minor equivalent toH7, with D = {H⊥

7
, R10}

• codes having no minor equivalent toH⊥
7

, with D = {H7, R10}

Theorem 2.5(a) in [1] is essentially a more refined version of Seymour’s decomposition theorem
(Theorem 7).

We can now state our main result which, by the above remark, includes Theorem 1 as a special
case.

Theorem 12. For any finite code familyD, the family ofD-regular codes is not asymptotically
good.

The proof goes as follows. LetC be aD-regular family of codes for some finite code familyD.
Without loss of generality, we may assume thatD is minor-closed. Forr ∈ (0, 1), defineNr to be
the least positive integer such that for alln > Nr,

0 <
1

log(1 + r − 2/n)
<

2

log(1 + r)
and 0 <

1

r − 2/n
<

2

r
.

Note that sincelimn→∞ 1/ log(1 + r − 2/n) = 1/ log(1 + r), andlimn→∞ 1/(r − 2/n) = 1/r,
such anNr does exist. Now, define

dmax(r, D) = max{d(C) : C ∈ C and has length at mostNr, or C ∈ D}.

Note, in particular, that sinceD is taken to be minor-closed, we havedmax(r, D) ≥ dmax(D),
wheredmax(D) is as defined in the proof of Lemma 11.

We now have the definitions needed to state the next result, which shows thatcodes inC can-
not have both dimension and minimum distance growing linearly with codelength. It is clear that
Theorem 12 follows directly from this result.

1The dual version of Theorem 2.5(a) does not explicitly assert that the3-connected codeC1 ∈ Γ ∪ D can be taken to
have dimension larger than 1, but this can be readily added to the statementof that theorem.
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Lemma 13. Let r ∈ (0, 1). If C ∈ C is an[n, k, d] code withk/n > r, then

d ≤ max

{

dmax(r, D), 4/r,
8 log n

log(1 + r)

}

. (3)

Proof. From the definition ofdmax(r, D), and the bounds in (1) and (2), it is obvious that the
statement of the lemma holds for all codes inΓ ∪D ∪ (Γ + D). The proof that the statement holds
for all codes inC is by induction on codelength for a fixedr ∈ (0, 1).

So, fix anr ∈ (0, 1). If n0 is the smallest length of a non-trivial code inC, then a length-n0 code
in C cannot be decomposed into smaller codes, and so must be inΓ ∪ D. Therefore, the statement
of the lemma holds for the base case of length-n0 codes.

Now, suppose that for somen > n0, (3) holds for all codesC′ ∈ C of lengthn′ ≤ n− 1 and rate
larger thanr. Let C ∈ C be a[n, k, d] code withk/n > r. If C = C1 ⊕ C2 for some (non-empty)
codesC1 andC2 in C, then at least one ofC1 andC2 has rate larger thanr, and so (3) holds forC by
the induction hypothesis. We may thus assume thatC is connected.

If C ∈ Γ ∪ D ∪ (Γ + D), there is nothing further to be proved; so we will henceforth assume
that this is not the case. In particular, by Definition 5,C may be assumed to be eitherC1 ⊕2 C2 or
C1 ⊕3 C2 for some 3-connected[n1, k1] codeC1 ∈ Γ ∪ D, with k1 > 1, and some[n2, k2] code
C2 ∈ C. Furthermore,C2 /∈ Γ∩ co-Γ, sinceC /∈ Γ∪ (Γ + D). In particular, this means thatk2 ≥ 3,
since ifk2 ≤ 2, then it would follow from Theorem 2 thatC2 is both graphic and cographic.

We consider the caseC = C1 ⊕2 C2 first. By Proposition 4(b), we haved ≤ min{d(C′
1
), d(C′

2
)},

whereC′
1

= C1 \{n1} andC′
2

= C2 \{1}. SinceC′
1

is a minor ofC1, andΓ ∪ D is minor-closed,
we haveC′

1
∈ Γ ∪ D. Similarly, C′

2
is in the minor-closed familyC. Furthermore, note that for

i = 1, 2, C′
i is an[n′

i, k
′
i] code, wheren′

i = ni − 1 andk′
i = ki − 1. Thus,n = n′

1
+ n′

2
, and from

Proposition 4(a), we also havek = k1 + k2 − 1 = k′
1
+ k′

2
+ 1.

Now, if k′
1
/n′

1
> r, then the statement of the lemma holds forC′

1
, since it is inΓ ∪ D. Similarly,

if k′
2
/n′

2
> r, then the statement of the lemma holds forC′

2
by the induction hypothesis, since

n′
2
≤ n − 1. In both cases, (3) holds forC, as we haved(C) ≤ min{d(C′

1
), d(C′

2
)} andn′

i < n.
So, we are left with the situation whenk′

i/n′

i ≤ r for i = 1, 2. But in this case, sincek/n =
(k′

1
+ k′

2
+ 1)/(n′

1
+ n′

2
) > r, we must havek′

1
/n′

1
> r − 1/n′

1
; otherwise, we would have

k′
2

> (n′
1
+n′

2
)r−1−k′

1
≥ (n′

1
+n′

2
)r−1− (rn′

1
−1) = rn′

2
, which would mean thatk′

2
/n′

2
> r.

If C′
1
∈ D or n′

1
≤ Nr, thend(C′

1
) ≤ dmax(r, D). Otherwise,C′

1
is either graphic or cographic, with

n′
1

> Nr, and so, by Lemmas 8 and 9, and the definition ofNr,

d(C′

1) ≤ max

{

2

r − 1/n′
1

,
4 log n′

1

log(1 + (r − 1/n′
1
))

}

≤ max

{

2

r − 2/n′
1

,
4 log n′

1

log(1 + (r − 2/n′
1
))

}

≤ max

{

4

r
,

8 log n′
1

log(1 + r)

}

.

Sinced ≤ d(C′
1
) andn′

1
< n, we have that (3) holds forC.

Finally, we deal with the case whenC = C1 ⊕3 C2. The approach is essentially the same as that
in the 2-sum case. This time, we defineC′

1
= C1 \{n1 − 2, n1 − 1, n1} andC′

2
= C2 \{1, 2, 3}.

For i = 1, 2, we now find thatC′
i is an[n′

i, k
′
i] code, wheren′

i = ni − 3 andk′
i = ki − 2. Thus,

n = n′
1
+n′

2
, and via Proposition 6(a),k = k′

1
+k′

2
+2. Furthermore,C1 is 3-connected andk2 ≥ 3

(shown above), and so, by Proposition 6(b), we haved(C) ≤ min{d(C′
1
), d(C′

2
)}. If eitherk′

1
/n′

1
or

k′
2
/n′

2
is larger thanr, then (3) holds forC, either becauseC′

1
∈ Γ ∪ D or because of the induction

hypothesis. So suppose thatk′
i/n′

i ≤ r for i = 1, 2. Sincek/n = (k′
1

+ k′
2

+ 1)/(n′
1

+ n′
2
) > r,

we must havek′
1
/n′

1
> r − 2/n′

1
; otherwise, we would obtaink′

2
/n′

2
> r. If C′

1
∈ D or n′

1
≤ Nr,
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thend(C′
1
) ≤ dmax(r, D); otherwise,C′

1
is either graphic or cographic withn′

1
> Nr, and so, by

Lemmas 8 and 9, and the definition ofNr, we have

d(C′

1) ≤ max

{

2

r − 2/n′
1

,
4 log n′

1

log(1 + (r − 2/n′
1
))

}

≤ max

{

4

r
,

8 log n′
1

log(1 + r)

}

.

Sinced ≤ d(C′
1
), andn′

1
< n, we see that (3) holds forC. The proof of the lemma is now

complete. ¤
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