
Lecture-06: Interacting particle Markov processes

1 Interacting particle systems

Consider a continuous time Markov process XN : Ω → XR+ with countable state space X ⊆ R+ defined over
probability space (Ω,F, P ) that models an interacting particle system of N particles, where state of each
particle at time t is denoted by XN

n (t) : Ω → Z. Then the aggregate state space X ≜ ZN is exponentially
growing in the number of particles N .

Proposition 1.1. When the evolution of each particle is independent for process X, the generator matrix

of the joint process is QXN

=
⊗

n∈[N ] Q
XN

n , and the joint distribution is given by πXN

=
⊗

n∈[N ] π
XN

n .

Remark 1. When the evolution of N particles is not independent, finding the invariant distribution π ∈ M(X)
maybe too challenging.

Definition 1.2. For a countable set Z and finite N ∈ N, we define the set of probability measures on Z as

MN (Z) ≜

{
α ∈

{
0,

1

N
, . . . , 1

}Z

:
∑
z∈Z

αz = 1

}
.

Definition 1.3. For the N interacting particle process XN , we define the associated empirical state distribu-
tion process AN ∈ MN (Z)R+ defined at time t as AN

z (t) ≜ 1
N

∑N
n=1 1{XN

n (t)=z}. When the state XN (t) = x,

we denote the associated empirical state distribution as a ≜ 1
N

∑
z∈Z ez

∑N
n=1 1{xn=z}.

Proposition 1.4. If the evolution XN
n of particle n in the interacting particle process XN depends on the

state XN
n (t) and other particles m ∈ [N ] only through the empirical distribution AN (t) and this evolution is

identical, then the empirical distribution process AN is a Markov process.

Proof. Since process X is a CTMC, there is only one possible transition in an infinitesimal time. Thus
the only possible transitions for process XN are x → y = x − xnen + ynen for some particle n ∈ [N ] and
xn, yn ∈ Z. It follows that the possible transitions for empirical distribution process AN are of the form
a → b = a− 1

N ez +
1
N ew for some z, w ∈ Z. From the hypothesis, we have

QXN

xy =

N∑
n=1

f(xn, yn, a)1{yn ̸=xn}.

For any a, b ∈ MN (Z) such that a → b is a possible transition, we can write N(b− a) = −ez + ew, and the
corresponding transition rate as

QAN

ab =

N∑
n=1

QXN

xy 1{(xn,yn)=(z,w)} =

N∑
n=1

1{(xn,yn)=(z,w)}f(z, w, a).

It follows that the transition rates QAN

ab depend only on a, b, and the result follows.

Remark 2. Will show the Kurtz’s theorem that implies that under some conditions

π(1)
z = lim

t→∞
lim

N→∞
AN

z (t) = lim
t→∞

P {X1(t) = z} .

We will show the asymptotic independence of particles for any finite subset F ⊆ [N ], under certain conditions,
i.e.

lim
t→∞

P
(
∩n∈F {Xn(t) = zn}

)
=

∏
n∈F

π(1)
zn .
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1.1 Susceptible-infected-susceptible (SIS) epidemic model

Consider a population of N individuals, where XN
n (t) indicates that the individual n is infected at time t

and susceptible otherwise. The fraction of susceptible individuals at time t is

AN
0 (t) ≜

1

N

N∑
n=1

1{XN
n (t)=0}.

Assumption 1.5. We assume that each infected individual recovers independently after a random time
distributed exponentially with mean 1. Further, each infected individual has an independent random infection
time distributed exponentially with mean 1/β and infects a susceptible individual selected uniformly at
random. In addition, we assume that each susceptible individual has a random immune time distributed
exponentially with mean 1/α after which it can get infected by an external source.

Proposition 1.6. Defining Z ≜ {0, 1} and X ≜ ZN , we observe that X : Ω → XR+ is a continuous time
Markov chain with generator matrix Q : X× X → R defined for all x, y ∈ X as

QXN

x,y =


x̄n(α+ βa1), y = x+ x̄nen,

xn, y = x− xnen,

−Na0(α+ βa1)−Na1, y = x.

Proof. Consider a single infected individual and its i.i.d. exponentially distributed inter-infection time se-
quence T : Ω → RN

+ with rate β and i.i.d. indicator sequence ξ : Ω → {0, 1}N for infecting a susceptible

individual from the population. Let τ ≜ {n ∈ N : ξn = 1} be the first time a susceptible person is infected
by this individual and we assume that no-other transition takes place until this time. Then, we observe that∑τ

n=1 Tn is exponentially distributed with rate βEξ. To see this, we observe that for θ > −β and p = Eξ

Ee−θ
∑τ

n=1 Tn = E
( β

θ + β

)τ

=
p β
β+θ

1− βp̄
β+θ

=
βp

θ + βp
.

At any time t, the remaining recovery time and infection time to a susceptible individual for an infected
individual n are denoted by Yn(t) and Zn(t) respectively, and the remaining immune time for a susceptible
individual is denoted by Wn(t). The transition time in a state x at time t is given by

min

{
min

XN
n (t)=1

{Yn(t), Zn(t)} , min
XN

n (t)=0
Wn(t)

}
.

ForAN (t) = a, we observe that there areNa0 susceptible andNa1 infected individuals and Yn(t), Zn(t),Wn(t)
are independent exponential random variables with rates 1, βa0, α respectively. It follows that the transition
times are exponentially distributed with rate Na1(1 + βa0) +Na0α.

The probability of nth individual to get infected from being susceptible is

P

{
min

{
Wn(t), min

XN
m(t)=1

{Zm,n(t)}
}

< min

{
min

XN
m(t)=1

Ym(t), min
n′ ̸=n

{
Wn′(t), min

XN
m(t)=1

{Zm,n′(t)}
}}}

,

where min
{
Wn(t),minXN

m(t)=1 {Zm,n(t)}
}

is exponentially distributed with mean α + a1β independent

of min
{
minXN

m(t)=1 Ym(t),minn′ ̸=n

{
Wn′(t),minXN

m(t)=1 {Zm,n′(t)}
}}

exponentially distributed with mean

Na1 + (Na0 − 1)(α + βa1). It follows that this probability is α+a1β
Na1+Na0(α+βa1)

. Similarly, we can find the

probability of nth individual to become susceptible from being infected as 1
Na1+Na0(α+βa1)

.

Remark 3. That is, for stateXN (t) = x and associated empirical distributionAN (t) = a ≜ ( 1
N

∑N
n=1 x̄n,

1
N

∑N
n=1 xn),

we can isolate the generator matrix for particle n as

Q
XN

n
xn,yn =

{
(α+ βa1), (xn, yn) = (0, 1)

1, (xn, yn) = (1, 0).
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Corollary 1.7. For the Markov process XN , the associated empirical distribution process AN : Ω →
MN (Z)R+ is a continuous time Markov chain with the generator matrix QAN

: MN (Z) × MN (Z) → R
is defined for all a, b ∈ MN (Z) as

QAN

a,b ≜


Na0α+ a0Na1β, b = a− 1

N e0 +
1
N e1,

Na1, b = a+ 1
N e0 − 1

N e1,

−Na0α− a0Na1β −Na1, b = a.

Proof. We observe that the state evolution of particle n depends on its current state xn ∈ Z and is coupled
with other particles via the empirical distribution AN

1 (t) = 1
N

∑N
n=1 xn. We observe that possible transitions

for xn are from 0 and 1 and from 1 to 0. This results in transitions for empirical distribution from a →
a − 1

N e0 +
1
N e1 and from a → a + 1

N e0 − 1
N e1. The former transition takes place when any xn transitions

from 0 → 1 and the latter for transition 1 → 0. It follows that

QAN

a0
=

∑
n∈[N ]:xn=0

Qx,x+en , QAN

a1
=

∑
n∈[N ]:xn=1

Qx,x−en .

1.2 Random multiple access

Consider N devices trying to access a wireless channel in a non-coordinated fashion. For each device n, we
denote by XN

n (t) the number of transmission attempts at time t. Let r be the maximum number of attempts
after which the head of line packet is discarded. We denote the state space for each device as Z ≜ {0, . . . , r},
the number of attempts they have made.

Assumption 1.8. We assume that each device makes a transmission attempt after waiting for an inde-
pendent and random amount of time distributed exponentially. If a device has made z ∈ Z transmission
attempts, then the mean waiting time is 1/cz. A transmission attempt is successful, if no other device
transmits during its transmission attempt waiting time, and the number of transmission attempts return to
0, otherwise they increment by unity. If the transmission attempt fails rth time, the head of the line packet
is discarded and the number of attempts returns to zero.

Definition 1.9. We define inner product of vectors c ∈ RZ
+ and a ∈ MN (Z) as ⟨c, a⟩ ≜

∑
z∈Z czaz.

Proposition 1.10. Defining X ≜ ZN and assuming an infinite backlog of packets, we observe that X : Ω →
XR+ is a continuous time Markov chain with the associated generator matrix is defined for all x, y ∈ X as

QXN

xy =

{
cxn , y = x− xnen,

N ⟨c, a⟩ − cxn
, y = x+ en.

Proof. At a time t, we denote the excess transmission attempt time for particle n by Yn(t). Then, the
probability of successful transmission attempt by nth device as

P
(
∩m̸=n {Yn(t) < Ym(t)}

)
= E

∏
m ̸=n

e
−cXN

m(t)Yn(t) = Ee−(
∑

z ̸=xn
NAN

z (t)cz+(NAN
xn

(t)−1)cxn )Yn(t).

From the definition of ⟨c, a⟩ and the fact that Yn(t) is exponential with rate cxn
, we get

P
(
∩m̸=n {Yn(t) < Ym(t)}

)
=

cxn

N ⟨c, AN (t)⟩
.

Given that AN (t) = a at time t, then we observe that Naz devices have made z attempts, and the rate of
attempts from them is Nazcz. It follows that the holding rate for any state x ∈ X with empirical distribution
a ∈ MN (Z) is given by N ⟨c, a⟩, and the result follows.

Corollary 1.11. For the continuous time Markov chain X : Ω → XR+ , the associate empirical distribution
process AN : Ω → MN (Z)R+ is a continuous time Markov chain with the associated generator matrix is
defined for all a, b ∈ MN (Z) as

QAN

ab =

{
N ⟨c, a⟩ −Nczaz, b = a− 1

N ez +
1
N ez+1,

Nczaz, b = a− 1
N ez +

1
N e0.
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