
Lecture-08: Convergence to mean-field model

1 Classical approach

Definition 1.1. Let X ≜ ZN for countable Z. Consider an N interacting particle CTMC XN : Ω → XR+

with associated empirical distribution AN : Ω → M(Z)R+ such that (AN : N ∈ N) is a density-dependent
family of CTMCs. We let denote AN (∞) the stationary empirical distribution of N particle CTMC, and
a : R+ → M(Z) denote the solution of the associated mean-field model and a∗ ∈ M(Z) denote its equilibrium
point.

Classical approach to show convergence in distribution of limN→∞ AN (∞) → a∗ involves the following
three steps.

1. Show the convergence of CTMCs to the trajectory of the mean-field model for any finite time interval
[0, t]. That is, we show

lim
N→∞

sup
{
d(AN (s), a(s)) : s ∈ [0, t]

}
= 0,

where d : M(Z)×M(Z) → R+ is some measure of distance. This can be proved using different tech-
niques including Kurtz’s theorem, propagation of chaos, or the convergence of the transition semigroup
of CTMCs.

2. Show the asymptotic stability of the mean-field model. That is, we show limt→∞ a(t) = a∗. Lyapunov
theorem or LaSalle invariance principle can often be used for proving the stability. This implies that

lim
t→∞

lim
N→∞

AN (t) = lim
t→∞

a(t) = a∗

3. Show the exchange of limits. That is, limN→∞ limt→∞ AN (t) = limt→∞ limN→∞ AN (t). This shows
the convergence of the stationary distribution, i.e. limN→∞ limt→∞ AN (t) = a∗.

2 Ordinary differential equations

Definition 2.1. For any d-dimensional Euclidean space Rd, we define d-norm for any x ∈ Rd as

∥x∥d ≜
( d∑

i=1

|xi|d
) 1

d

.

Definition 2.2. The space of continuous functions from interval [0, T ] to Rd is denoted by C([0, T ],Rd).
We can define a sup norm on this space for each f ∈ C([0, T ],Rd) and a norm ∥∥ on Rd as

∥f∥ ≜ sup
t∈[0,T ]

∥f(t)∥ . (1)

We can define a metric on C([0, T ],Rd) as dT (f, g) ≜ ∥f − g∥.
Theorem 2.3. The normed vector space C([0, T ],Rd) with the norm defined in (1) is complete, and hence
a Banach space.

Definition 2.4. The space of continuous functions from interval R+ → Rd is denoted by C(R+,Rd). For
any functions f, g ∈ C(R+,Rd), we can define corresponding projections on C([0, T ],Rd) as f1[0,T ], g1[0,T ],

and denote a metric on C(R+,Rd) as dT (f, g) ≜
∥∥(f − g)1[0,T ]

∥∥. We define another metric as

d(f, g) ≜
∑
T∈N

2−T (dT (f, g) ∧ 1). (2)

Theorem 2.5. The metric defined in (2) metrizes the topology on vector space C(R+,Rd) that renders
projections to finite time as continuous functions.
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3 Convergence in probability

For a density-dependent family of empirical distribution CTMCs (AN : Ω → M(Z)R+ : N ∈ N), the sample
path of distribution process is AN (t). The solution a : R+ → M(Z) to the corresponding McKean-Vlasov
equation is deterministic. For a fix T , one can view sample path (AN (t) : t ∈ [0, T ]) and (a(t) : t ∈ [0, T ]) as
elements of space C([0, T ],M(Z)).

Remark 1. The sequence of random paths ((AN (t) : t ∈ [0, T ]) : N ∈ N) converge in probability to (a(t) :
t ∈ [0, T ]), if for every ϵ > 0, we have

lim
N→∞

P
{
dT (A

N , a) > ϵ
}
= lim

N→∞
P

{
sup

t∈[0,T ]

∥∥AN (t)− a(t)
∥∥ > ϵ

}
= 0.

4 Total variation distance

Consider state space X ≜ ZN for N particle system, where each particle n ∈ [N ] has a countable state space
Z. The closeness of two distributions on Z can be measured by the following distance metric.

Definition 4.1. The total variation distance between two probability distributions µ, ν ∈ M(X) is
defined by

dTV(µ, ν) ≜ ∥µ− ν∥TV ≜ max {|µ(A)− ν(A)| : A ⊆ X} .

Remark 2. This definition is probabilistic in the sense that the distance between µ and ν is the maximum
difference between the probabilities assigned to a single event by the two distributions.

Proposition 4.2. Let µ, ν ∈ M(X), and B ≜ {x ∈ X : µ(x) ⩾ ν(x)}, then

∥µ− ν∥TV =
1

2

∑
x∈X

|µ(x)− ν(x)| =
∑
x∈B

[µ(x)− ν(x)].

Proof. Consider an event A ⊆ X. Since µ(x)− ν(x) < 0 for any x ∈ A ∩Bc, we have

µ(A)− ν(A) =
∑
x∈A

(µ− ν)(x) ⩽
∑

x∈A∩B

(µ− ν)(x) ⩽
∑
x∈B

(µ− ν)(x) = µ(B)− ν(B).

Similarly, we observe that (ν − µ)(x) > 0 for all x ∈ A \B, and hence

ν(A)− µ(A) =
∑
x∈A

(ν − µ)(x) ⩽
∑

x∈A∩Bc

(ν − µ)(x) ⩽
∑
x∈Bc

(ν − µ)(x) = ν(Bc)− µ(Bc) = µ(B)− ν(B).

Since A ⊆ X was arbitrary event, it follows that supA⊆X |µ(A)− ν(A)| ⩽ µ(B) − ν(B), and the equality is
achieved for A = B and A = Bc. Thus, we get that

∥µ− ν∥TV =
1

2
[µ(B)− ν(B) + ν(Bc)− µ(Bc)] =

1

2

∑
x∈X

|µ(x)− ν(x)| .

Proposition 4.3. For probability distributions µ, ν ∈ M(X), total variation distance ∥µ− ν∥TV is a metric.

Proof. We verify that the total variation distance satisfies the following three necessary properties for it to
be distance metric. Let µ, ν, π ∈ M(X).
Positivity, i.e. ∥µ− ν∥TV ⩾ 0 and equals zero iff µ = ν. Note from Proposition 4.2 that ∥µ− ν∥TV =∑

x∈B [µ(x) − ν(x)], where B = {x ∈ X : µ(x) ⩾ ν(x)}, hence ∥µ− ν∥TV ⩾ 0. The set B can not be
empty as µ and ν are probability distributions and one can not dominate the other for all x ∈ X.
Similarly µ(x) = ν(x) for all x ∈ B iff B = X. Thus, ∥µ− ν∥TV = 0 iff µ = ν.

Symmetry, i.e. ∥µ− ν∥TV = ∥ν − µ∥TV. To verify symmetry, we note that

∥µ− ν∥TV = µ(B)− ν(B) = ν(Bc)− µ(Bc) = ∥ν − µ∥TV .
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Triangle inequality, i.e. ∥µ− ν∥TV ⩽ ∥µ− π∥TV + ∥π − ν∥TV. This follows from the triangle inequality
for absolute value function and noting that

∥µ− ν∥TV =
1

2

∑
x∈X

|µ(x)− ν(x)| ⩽ 1

2

∑
x∈X

|µ(x)− π(x)|+1

2

∑
x∈X

|π(x)− ν(x)| = ∥µ− π∥TV+∥π − ν∥TV

Proposition 4.4. Let µ, ν ∈ M(X) and F ≜
{
f ∈ RX : maxx∈X |f(x)| ⩽ 1

}
be a set of observables, then

∥µ− ν∥TV =
1

2
sup

{∑
x∈X

f(x)µ(x)−
∑
x∈X

f(x)ν(x) : f ∈ F

}
.

Proof. Since maxx |f(x)| ⩽ 1, it follows that

1

2

∣∣∣∣∣∑
x

f(x)(µ(x)− ν(x))

∣∣∣∣∣ ⩽ 1

2

∑
x

|µ(x)− ν(x)| = ∥µ− ν∥TV .

For the reverse inequality, we define f∗(x) ≜ 1{x∈B} −1{x/∈B} in terms of set B ≜ {x ∈ X : µ(x) ⩾ ν(x)}. It
is clear that maxx |f(x)| = 1, and we have

1

2

∣∣∣∣∣∑
x

f∗(x)(µ(x)− ν(x))

∣∣∣∣∣ = 1

2

∑
x

|µ(x)− ν(x)| = ∥µ− ν∥TV .

4.1 Coupling and total variation distance

Definition 4.5. A coupling of two probability distributions µ, ν ∈ M(X) is a pair of random variables
(X,Y ) : Ω → X2 defined on a single probability space (Ω,F, P ) such that the marginal distribution of X
is µ and the marginal distribution of Y is ν. That is, a coupling (X,Y ) satisfies P {X = x} = µ(x) and
P {Y = y} = ν(y) for all x, y ∈ X.

Remark 3. A coupling always exists since any two distributions µ and ν, can always have an independent
coupling.

Definition 4.6. For distributions µ, ν ∈ M(X), the coupling (X,Y ) is optimal if ∥µ− ν∥TV = P {X ̸= Y } .

Remark 4. When the two distributions are not identical, it will not be possible for the random variables to
always have the same value. Total variation distance between µ and ν determines how close can a coupling
get to having X and Y identical.

Proposition 4.7. Let µ, ν ∈ M(X), then ∥µ− ν∥TV = inf {P {X ̸= Y } : (X,Y ) a coupling of distributions (µ, ν)} .

Proof. For any coupling (X,Y ) of the distributions µ, ν and any event A ⊆ X, we have

µ(A)− ν(A) = P {X ∈ A} − P {Y ∈ A} ⩽ P {X ∈ A, Y /∈ A} ⩽ P {X ̸= Y } .

Therefore, it follows that ∥µ− ν∥TV ⩽ P {X ̸= Y } for all couplings (X,Y ) of distributions µ, ν.
Next we find a coupling (X,Y ) for which ∥µ− ν∥TV = P {X ̸= Y }. In terms of the setB = {x ∈ X : µ(x) ⩾ ν(x)},

we can write

p ≜
∑
x∈X

µ(x) ∧ ν(x) = µ(Bc) + ν(B) = 1− (µ(B)− ν(B)) = 1− ∥µ− ν∥TV .

By the definition of p, we have γ3 ≜ µ∧ν
p ∈ M(X). Using the definition of B, we also define the following

two distributions γ1, γ2 ∈ M(X) as

γ1 ≜
µ− ν

∥µ− ν∥TV

1B , γ2 ≜
ν − µ

∥µ− ν∥TV

1Bc .
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We define a binary random variable ξ : Ω → {0, 1} such that Eξ = p, and the conditional distribution of
(X,Y ) given ξ such that

P ({(X,Y ) = (x, y)} | ξ) = γ3(x)1{x=y}ξ + (1− ξ)γ1(x)γ2(y)1{x ̸=y}.

Since γ1, γ2, γ3 are distributions, it follows that P {(X,Y ) = (x, y)} = pγ3(x)1{x=y}+(1−p)γ1(x)γ2(y)1{x̸=y}
is a joint distribution function. From the definition of the set B, we observe that

P {X = x} = pγ3(x) + (1− p)γ1(x) = µ(x) ∧ ν(x) + (µ(x)− ν(x))1{x∈B} = µ(x)

P {Y = y} = pγ3(y) + (1− p)γ2(y) = µ(y) ∧ ν(y) + (ν(y)− µ(y))1{y/∈B} = ν(y).

That is, (X,Y ) is a coupling of the distributions µ, ν and P {X ̸= Y } = 1− p = ∥µ− ν∥TV.

4


	Classical approach
	Ordinary differential equations
	Convergence in probability
	Total variation distance
	Coupling and total variation distance


