
Lecture-10: Kurtz’s theorem: proof

1 Kurtz’s theorem

Assumption 1.1. Consider a density-dependent family of CTMCs ((XN : Ω → (ZN )R+) : N ∈ N). For
each N , state x ∈ ZN , empirical distribution of states a(x) ∈ M(Z), and z, w ∈ Z, the transition rate

Q
XN

n
z,w : M(Z) → R for a single particle n is Lipschitz continuous in the empirical distribution.

Lemma 1.2. Let X : Ω → XR+ be a random process and α ∈ RN are constants, then for any finite
T ∈ R+, supi∈[n] |αi| ⩽ C, and x > 0, we have{

sup
t∈[0,T ]

∥∥∥∥∥
n∑

i=1

αiXi(t)

∥∥∥∥∥ > x

}
⊆

n⋃
i=1

{
sup

t∈[0,T ]

∥Xi(t)∥ >
x

nC

}
.

Proof. Let x > 0, then we observe that supt∈[0,T ] ∥
∑n

i=1 αiXi(t)∥ ⩽ C
∑n

i=1 supt∈[0,T ] ∥Xi(t)∥. It follows
that

n⋂
i=1

{
sup

t∈[0,T ]

∥Xi(t)∥ ⩽
x

nC

}
⊆

{
sup

t∈[0,T ]

∥∥∥∥∥
n∑

i=1

αiXi(t)

∥∥∥∥∥ ⩽ x

}
.

The result follows from taking complements on both sides.

Definition 1.3. We define h : [−1,∞) → R+ as h(t) ≜ (1 + t) ln(1 + t)− t for all t ⩾ −1.

Lemma 1.4 (Gronwall inequality). Consider a bounded function u : [0, T ] → R such that u(t) ⩽ a +

b
∫ t

0
u(s)ds for all t ∈ [0, T ]. Then u(t) ⩽ aebt for all t ∈ [0, T ].

Proof. We define v : [0, T ] → R as v(t) = e−bt
∫ t

0
u(s)ds for all t ∈ [0, T ]. Then, we have for all t ∈ [0, T ]

d

dt
v(t) = e−bt

(
u(t)− b

∫ t

0

u(s)ds
)
⩽ ae−bt.

Recalling that v(0) = 0 and integrating on both sides, we get v(t) ⩽ a
b (1−e−bt) for all t ∈ [0, T ]. Multiplying

with bebt followed by adding a on both sides, we get the result.

Theorem 1.5 (Kurtz). Consider an N interacting particle CTMC XN : Ω → XR+ with associated empirical
distribution AN : Ω → M(Z)R+ such that (AN : N ∈ N) is a density-dependent family of CTMCs with mean
field model

ȧ(t) = f(a(t)), t ∈ R+.

If (a) Assumption 1.1 holds such that f : M(Z) → RZ is M -Lipschitz and (b) limN→∞ AN (0) → a(0) in
distribution, then for a fixed T, ϵ > 0 and h : [−1,∞) → R+ defined in Definition 1.3, we have

P
{
dT (A

N , a) > ϵ
}
⩽ P

{∥∥AN (0)− a(0)
∥∥ >

ϵ

2eMT

}
+ Ce

−NTQ̄h( ϵ

C1CQ̄2eMT )
,

where supw,z∈Z ∥ew − ez∥ ⩽ C1 and |Z| (|Z| − 1) ⩽ C.

Proof. We will show this using following steps.
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Step 1. Time change. Let Nz,w : Ω → ZR+

+ be independent Poisson counting processes with unit rates for

all z, w ∈ Z. We define λz,w : R+ → R+ as λzw(s) ≜ NAN
z (s)Q

XN
n

zw (AN (s)) as the instantaneous

rate of transition from state AN (s) to AN (s)− ez + ew. Then, the measure Λz,w(0, t] ≜
∫ t

0
λz,w(s)ds

defined for all t ∈ R+, is the mean number of transitions for particles in state z to state w. Recall that

f(a) =
∑

z∈Z

∑
w ̸=z

1
N (ew − ez)NazQ

XN
n

zw (a), and thus
∑

z∈Z

∑
w ̸=z

1
N (ew − ez)λz,w(s) = f(AN

z (s)).
Thus, we can write

AN (t) = AN (0) +

∫ t

0

f(AN
z (s))ds+

∑
z∈Z

∑
w ̸=z

1

N
(ew − ez)

[
Nzw(Λz,w(0, t])− Λz,w(0, t]

]
.

Step 2. Lipschitz property. Using triangle inequality and M -Lipschitz property of mean-field model f ,
we can write

∥∥AN (t)− a(t)
∥∥ ⩽

∥∥AN (0)− a(0)
∥∥+M

∫ t

0

∥∥AN
z (s))− a(s)

∥∥ ds+
∥∥∥∥∥∥
∑
z∈Z

∑
w ̸=z

1

N
(ew − ez)N̄zw(Λz,w(0, t])

∥∥∥∥∥∥ .
Step 3. Bounding martingale error. Let r ≜ |Z| and ∥ew − ez∥ ⩽ C1, then from Lemma 1.2 and union

bound, we have

P

 sup
t∈[0,T ]

∥∥∥∥∥∥
∑
z∈Z

∑
w ̸=z

1

N
(ew − ez)N̄zw(Λz,w(0, t])

∥∥∥∥∥∥ > ϵ

 ⩽
∑
z∈Z

∑
w ̸=z

P

{
sup

t∈[0,T ]

∥∥N̄zw(Λz,w(0, t])
∥∥ >

Nϵ

C1r(r − 1)

}
.

(1)

From Assumption 1.1, it follows that maxz,w,a Q
XN

1
z,w ⩽ Q̄. From the definition of Λzw, we get

Λz,w(0, t] =
∫ t

0
NAN

z (s)Q
XN

1
z,w (AN (s))ds ⩽ NQ̄t. It follows that for all w, z ∈ Z

sup
t∈[0,NQ̄T ]

N̄zw(t) ⩾ sup
t∈[0,T ]

N̄zw(Λzw(0, t]).

Hence, P
{
supt∈[0,T ] N̄zw(Λzw(0, t]) > x

}
⩽ P

{
supt∈[0,NQ̄T ] N̄zw(t) > x

}
for all x > 0. From

Lemma ??, we obtain

∑
z∈Z

∑
w ̸=z

P

{
sup

t∈[0,NQ̄T ]

∥∥N̄zw(t)
∥∥ >

Nϵ

C1r(r − 1)

}
⩽ 2e

−NQ̄Th( ϵ
r(r−1)C1Q̄T

)
.

Step 4. Applying Gronwall. Applying union bound and (1), we observe that

P

{
sup

t∈[0,T ]

∣∣∣∣∥∥AN (t)− a(t)
∥∥−M

∫ t

0

∥∥AN (s))− a(s)
∥∥ ds∣∣∣∣ > 2ϵ

}

⩽ P

 sup
t∈[0,T ]

∣∣∣∣∣∣∥∥AN (0)− a(0)
∥∥+

∥∥∥∥∥∥
∑
z∈Z

∑
w ̸=z

1

N
(ew − ez)N̄zw(Λz,w(0, t])

∥∥∥∥∥∥
∣∣∣∣∣∣ > 2ϵ


⩽ P

{∥∥AN (0)− a(0)
∥∥ > ϵ

}
+ 2r(r − 1)e

−NQ̄Th( ϵ
r(r−1)C1Q̄T

)
.

Recall that
∥∥AN (s)− a(s)

∥∥ is bounded on [0, T ], and thus we can apply Gronwall inequality to

u(t) ≜
∥∥AN (t)− a(t)

∥∥ for all t ∈ R+. In particular, if supt∈[0,T ](u(t) − M
∫ t

0
u(s)ds) ⩽ 2ϵ, then

supt∈[0,T ] u(t)e
−MT ⩽ 2ϵ. Therefore, we obtain

P

{
sup

t∈[0,T ]

∥∥AN (t)− a(t)
∥∥ e−MT > 2ϵ

}
⩽ P

{∥∥AN (0)− a(0)
∥∥ > ϵ

}
+ 2r(r − 1)e

−NQ̄Th( ϵ
r(r−1)C1Q̄T

)
.

The result follows from the definition of a(0) and taking ϵ′ = 2ϵeMT .
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2 Asymptotic independence

Theorem 2.1 (DeFinetti). If XN (0) : Ω → ZN is exchangeable for all N ∈ N and limN→∞ AN (0) = a(0),
then for all finite F ⊆ N and z ∈ ZF , we have

lim
N→∞

P ∩n∈F

{
XN

n (0) = zn
}
= P ∩n∈F {X∞

n (0) = zn} .

Remark 1 (Propagation of chaos). The above theorem is called Boltzmann property or chaos. The theorem
states that initial chaos propagates.

Theorem 2.2. Fix t ∈ R+ and F ⊆ [N ] finite. Let XN (0) : Ω → X = ZN be an exchangeable random
vector, limN→∞ AN (0) → a(0) in distribution, and Assumption 1.1 holds. Then limN→∞(XN

n (t), n ∈ F ) =
(Un(t), n ∈ F ) in distribution for U(t) : Ω → RN i.i.d. with distribution a(t).

Proof. Since XN (0) is exchangeable and the marginal evolution of each particle is identical and depends
only on the empirical distribution AN , it follows that that XN (t) is exchangeable at all times t ∈ R+. Let
Φn ∈ Cb(Z) be any bounded continuous function for all n ∈ F . Then it suffices to show that

lim
N→∞

E
∏
n∈F

Φn(X
N
n (t)) =

∏
n∈F

EΦn(Un(t)) =
∏
n∈F

⟨Φn, a(t)⟩ ,

where ⟨a, b⟩ ≜
∑

z∈Z bzzz for all b ∈ Cb(Z) and a ∈ M(Z). We will show this for |F | ∈ {1, 2} and it follows
for any finite F by induction.

|F | =1. Without loss of generality, we take F = {1}. From the exchangeability of XN (t), we get

EΦ1(X
N
1 (t)) = E

[ 1

N

N∑
n=1

Φ1(X
N
n (t))

]
= E

〈
Φ1, A

N (t)
〉
. (2)

Since AN (t) → a(t) in distribution, we have limN→∞ E
〈
Φ1, A

N (t)
〉
= ⟨Φ1, a(t)⟩ = EΦ1(U1).

|F | =2. Without loss of generality, we take F = {1, 2}. We look at the following difference

E
2∏

n=1

Φn(X
N
n (t))− E

2∏
n=1

〈
Φn, A

N (t)
〉
+ E

2∏
n=1

〈
Φn, A

N (t)
〉
−

2∏
n=1

⟨Φn, a(t)⟩ .

We observe that the RHS of the above equation is sum of two difference. We use exchangeability
property of XN to write the following equation

E[Φ1(X
N
1 (t))Φ2(X

N
2 (t))] =

1

N(N − 1)
E

∑
n ̸=m

Φ1(X
N
n (t))Φ2(X

N
m (t)). (3)

From exchangeability property of XN , adapting (2) for Φ1,Φ2, we also write the following,

E
2∏

n=1

〈
Φn, A

N (t)
〉
=

1

N2
E
[ N∑
n=1

Φ1(X
N
n (t))Φ2(X

N
n (t)) +

N∑
n ̸=m

Φ1(X
N
n (t))Φ2(X

N
m (t))

]
. (4)

Since Φ1,Φ2 are bounded, we define v ≜ supz∈Z |Φ1(z)| ∨ |Φ2(z)| < ∞. Taking the difference of (3)
and (4), we upper bound the first difference as

v2

N
+
(
1− (N − 1)

N

)
E

2∏
n=1

Φn(X
N
n (t)) ⩽

2v2

N
.

We can rewrite the second difference as∑
z∈Z

Φ1(z)Φ2(z)(E(AN
z (t))2 − az(t)

2) +
∑
w ̸=z

Φ1(z)Φ2(w)(EAN
z (t)AN

w (t)− az(t)aw(t)).
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For w ̸= z, we can write the difference

EAN
z (t)AN

w (t)− az(t)aw(t) = E
[
(AN

z (t)− az(t))A
N
w (t)

]
+ az(t)E(AN

w (t)− aw(t)).

Since limN→∞ AN (t) = a(t) in distribution, AN (t), a(t) ∈ M(Z), and v is the upper bound on
|Φ1| , |Φ2| we can upper bound the second difference as∑

z∈Z

v2E(AN
z (t)− az(t))

2 + 2v2
∑
z∈Z

E(AN
z (t)− az(t)).

Taking limit N → ∞, we get the result.
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