Lecture-10: Kurtz’s theorem: proof

1 Kurtz’s theorem

Assumption 1.1. Consider a density-dependent family of CTMCs ((XV : @ — (Z™)}) : N € N). For
each N, state € 2V, empirical distribution of states a(r) € M(Z), and z,w € Z, the transition rate

N
Qfﬁj : M(Z) — R for a single particle n is Lipschitz continuous in the empirical distribution.

Lemma 1.2. Let X : Q — X®+ be a random process and o € RN are constants, then for any finite
T € Ry, sup;epy il < C, and x> 0, we have
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Proof. Let « > 0, then we observe that sup;cjo 7 |21, i Xi(t)|| < C 30 supsepo | Xi(t)]. Tt follows

that
M3 suwp X)) < —= ¢ €4 sup wX;(t)|| <z .
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The result follows from taking complements on both sides. O

Definition 1.3. We define h : [~1,00) — R as h(t) = (1 +¢)In(1 + ) — ¢ for all t > —1.

Lemma 1.4 (Gronwall inequality). Consider a bounded function u : [0,T] — R such that u(t) < a +
bfo s)ds for all t € [0,T]. Then u(t) < ae® for all t € [0,T].

Proof. We define v : [0,T] — R as v(t) = e~ fo s)ds for all t € [0,T]. Then, we have for all t € [0,T]

d —bt —bt

—o(t) = -b < .
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Recalling that v(0) = 0 and integrating on both sides, we get v(t) < %(1—e~") for all ¢ € [0,7]. Multiplying
with be® followed by adding a on both sides, we get the result. O

Theorem 1.5 (Kurtz). Consider an N interacting particle CTMC XN : Q — X®+ with associated empirical
distribution AN : Q — M(Z)®+ such that (AN : N € N) is a density-dependent family of CTMCs with mean
field model

a(t) = f(a(t)), teRy.
If (a) Assumption holds such that f : M(Z) — R* is M-Lipschitz and (b) limy_oo AN (0) — a(0) in
distribution, then for a fized Tye > 0 and h : [—1,00) — Ry defined in Deﬁnitz’on we have
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P{dr(AN,a) > €} < P{HAN(O) —a(0)]| > % MT} +Ce

where sup,, .cz [lew — €| < C1 and [Z|(|Z] - 1) < C.

Proof. We will show this using following steps.



Step 1. Time change. Let N, , : Q — ZEJ“ be independent Poisson counting processes with unit rates for

all z,w € 2. We define X, ,, : Ry — Ry as Au(s) & NAY (s )Qiﬁ;ﬁV (AN (5)) as the inbtantaneous

rate of transition from state AV (s) to AV (s) — e, + e,. Then, the measure A, ,,(0,t] = fo 2w
defined for all ¢ € R, is the mean number of transitions for particles in state z to btate w. Recall that

f(a) = Zzez Ew;éz %(ew - ez)NazQﬁlév (a)v and thus ZZEZ Ew;‘éz %(ew - ez))‘z,w(s) = f(AiV(S))

Thus, we can write

AN (1) / FAN (s + 33+ N (A (0.1]) — A 0.1]].

z€Z w;ﬁz

Step 2. Lipschitz property. Using triangle inequality and M-Lipschitz property of mean-field model f,
we can write

40~ a0 < 1470~ a0 a1 [/ 14206 = alo st 32 3 ew e W0
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Step 3. Bounding martingale error. Let » £ |Z| and |le,, — e,|| < C}, then from Lemma and union
bound, we have
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From Assumption it follows that max, .4 Qfg < Q. From the definition of A,,, we get
A (0,8 = fo NAN ) fg (AN (s))ds < NQt. It follows that for all w,z € Z

sup  Now(t) = sup Noyw(AL,(0,1]).
te[0,NQT] te[0,T)

Hence, P{supte[o’ﬂ Now(Asw(0,8]) > x} < P{Supte[O,NQT] N,yw(t) > x} for all z > 0. From
Lemma 77, we obtain
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Step 4. Applying Gronwall. Applying union bound and , we observe that

t
P{ sup HAN —a(t)H —M/ HAN(S))—a(S)HdS >26}
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< P{]|AN(0) = a(0)|| > €} + 2r(r — 1)~ N o=DEaT),
Recall that HAN (s) — a(s)H is bounded on [0,7], and thus we can apply Gronwall inequality to
u(t) £ [[AN(t) — a(t)|| for all t € Ry. In particular, if supyeo, 7y (u(t) Mfo s)ds) < 2e, then
SUDye0,7] u(t)e=MT < 2e. Therefore, we obtain

P{ sup ||AN(t) —a(t)| e MT > 26} < P{HAN(O) —a(0)|| > €} +2r(r - 1)efNQTh(r(r—1)501QT).
te[0,T]

The result follows from the definition of a(0) and taking €’ = 2eeMT. O



2 Asymptotic independence

Theorem 2.1 (DeFinetti). If XV (0) : Q — 2V is exchangeable for all N € N and limy_,o, AN (0) = a(0),
then for all finite F C N and z € ZF', we have

Jim P Oer {XN(0) = 2,} = PNper {X2(0) = 2, }.

—00

Remark 1 (Propagation of chaos). The above theorem is called Boltzmann property or chaos. The theorem
states that initial chaos propagates.

Theorem 2.2. Fizt € Ry and F C [N] finite. Let XN(0) : Q@ — X = ZN be an exchangeable random
vector, imy o0 AN (0) — a(0) in distribution, and Assumption holds. Then imy o0 (XY (t),n € F) =
(Un(t),n € F) in distribution for U(t) : Q — RN ii.d. with distribution a(t).

Proof. Since X7 (0) is exchangeable and the marginal evolution of each particle is identical and depends
only on the empirical distribution AV, it follows that that XV (¢) is exchangeable at all times t € R,. Let
®,, € Cp(Z) be any bounded continuous function for all n € F. Then it suffices to show that

lim E d, H Ed,( H (@n,al(t)),
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where (a,b) £ >, b2, for all b € Cy(2) and a € M(Z). We will show this for |F| € {1,2} and it follows
for any finite ' by induction.

|F| =1. Without loss of generality, we take F' = {1}. From the exchangeability of X (t), we get

Ed, (XN () = { ZN: (XNt }:E<<I>1,AN(t)>. 2)

Since AN (t) — a(t) in distribution, we have limy o, E <<I>1, AN(t)> = (Py,a(t)) = E®y(Uy).

|F'| =2. Without loss of generality, we take F' = {1,2}. We look at the following difference

2 2 2
EHcI» H (@, AN (t) H (@, AN (1) H ®,,, a(t)
n=1 n=1 n=1

We observe that the RHS of the above equation is sum of two difference. We use exchangeability
property of X to write the following equation

E[@1 (X7 (1) 22(X5" (1)) = NN-DE D (XY () @a(X 0 (1)) (3)
n#m

From exchangeability property of X%V, adapting for 1, @5, we also write the following,

2

EJ] (®..AY(1) {ﬁ: Z (XN (1) P (X0 (¢t ))} (4)

n=1 n#m

Since @1, 5 are bounded, we define v £ sup,c, |®1(2)| V |®2(z)| < co. Taking the difference of
and , we upper bound the first difference as

v? 1) 2 N 20?2
h _ < —.
—+(1 )Enll Du(XN (1) < 5
We can rewrite the second difference as
D Bi(z (B(AY (1)? = a.(1)*) + ) @1 ( w)(BAY (£) A (1) — a.(t)aw (1)),
z€Z w#z



For w # z, we can write the difference
EAY (1AL (1) — a-(0)au (1) = E[(AX (1) — 0 (1)) AN ()] + 0= (VE(AN (1) — au ().

Since limy_,00 AN (t) = a(t) in distribution, AN (t),a(t) € M(Z), and v is the upper bound on
|®1], |®2| we can upper bound the second difference as

Y VE(AN (1) - ax(1)® + 207 Y E(AN () - ax(1)).

ZE€EZ Z€EZ

Taking limit N — oo, we get the result.
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