
Lecture-11: Behavior at stationarity

1 Limiting behavior

We are interested in characterizing the large system behavior at stationarity, i.e. we are interested in
evaluating

lim
N→∞

lim
t→∞

AN (t). (1)

Recall that AN : Ω → MN (Z)R+ is a CTMC, and the limiting random variable limt→∞ AN (t) has a
distribution, we denote it by πN ∈ M(MN (Z)) when it exists. That is, for each a ∈ MN (Z)

πN
a ≜ lim

t→∞
P
{
AN (t) = a

}
.

Definition 1.1 (rest points). Consider the mean-field model ȧ = f(a) for a density dependent family
of CTMCs (AN : Ω → M(Z)R+ : N ∈ N). The set of rest points for the Mckean-Vlasov equations are
denoted by

S ≜ {a ∈ M(Z) : f(a) = 0} .

Remark 1. We observe that if a(0) ∈ S, then a(t) = a(0) for all t ∈ R+.

The stationary limit of solution of Mckean-Vlasov equation is a rest point of the ordinary differential
equation, and given by a solution of f(a) = 0 and denoted by a∗ ∈ S. That is,

lim
t→∞

lim
N→∞

AN (t) = lim
t→∞

a(t) ∈ S. (2)

One of the key question is to find the conditions under which the two limits in (1) and (2) are equal.

Assumption 1.2 (Irreducibility). Assume that the CTMC AN : Ω → MN (Z)R+ is irreducible for
each N .

Remark 2. We observe that MN (Z) ≜
{
α ∈

{
0, 1

N , . . . , 1
}Z

:
∑

z∈Z αz = 1
}

is a finite set. We observe

that
∑

z∈Z Nαz = 1, where Nαz ∈ {0, . . . , N}. That is, (Nαz : z ∈ Z) is a partition of N , and hence

the cardinality of MN (Z) is given by |MN (Z)| = (N+|Z|−1)!
N !(|Z|−1)! .

Proposition 1.3. Under Assumption 1.2 for CTMC AN : Ω → MN (Z)R+ , there exists a unique
stationary distribution πN ∈ M(MN (Z)).

Proof. Since the CTMC AN is irreducible and has a finite state space MN (Z), it is positive recurrent
with a unique stationary distribution πN ∈ M(MN (Z)).

2 Limiting behavior of Mckean-Vlasov ODE

Definition 2.1. The solution to the Mckean-Vlasov ordinary differential equation for a mean-field model
ȧ = f(a) can be represented by a non-linear map Φt : M(Z) → M(Z) defined for any initial condition
a(0) ∈ M(Z) and t ∈ R+ as

Φt(a(0)) ≜ a(t) = a(0) +

∫ t

0

f(a(s))ds.

Definition 2.2 (Invariant). Consider the map Φ associated with the solution to the Mckean-Vlasov
equation for a mean-field model. A set A ⊆ M(Z) is an invariant set with respect to map Φ if
Φt(A) = A for all t ∈ R+.

Remark 3. If a(0) ∈ A ⊆ M(Z) and A is an invariant set for map Φ associated with the Mckean-Vlasov
equation, then a(t) ∈ A for all t ∈ R+.
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Example 2.3 (Rest points). We recall that Φt(S) = S for all t ∈ R+ and hence the set of rest
points is an invariant set for map Φ.

Definition 2.4 (Attractor). A compact invariant set G ⊆ M(Z) is an attractor set, if there exists
an open neighborhood O of G such that every trajectory initiated in O remains in O and converges to G.
That is, Φt(O) = O and limt→∞ Φt(O) ⊆ G.

Remark 4. An attractor set is compact and invariant and has an open neighborhood that is an invariant
set, such that for all initial conditions in this open neighborhood, the rest points are in the attractor.

Definition 2.5. For any subset B ⊆ M(Z) and ϵ > 0, we define

Bϵ(B) ≜

{
a ∈ M(Z) : inf

b∈B
∥a− b∥TV ⩽ ϵ

}
.

Definition 2.6 (Stability). A compact invariant set G ⊆ M(Z) is called Lyapunov stable if for any
ϵ > 0 there exists a δ > 0 such that Φt(Bδ(G)) ⊆ Bϵ(G) for all t ∈ R+. A compact invariant set G ⊆ M(Z)
is called asymptotically stable if it is both Lyapunov stable and an attractor. A compact invariant set
G ⊆ M(Z) is globally asymptotically stable if it is asymptotically stable and all trajectories converge
to G.

Example 2.7 (SIS epidemic model). Recall that the McKean-Vlasov equation for the SIS model
for all t ∈ R+ is given by

ȧ1(t) = (1− a1)α+ (1− a1)a1β − a1.

The rest points for the Mckean-Vlasov equation for the SIS model are solutions to the equation
−α

β + a1(
1+α
β − 1) + a21 = 0, and given by the following two rest points

r1 =
−( 1+α

β − 1) +
√

( 1+α
β − 1)2 + 4α

β

2
> 0, r2 =

−( 1+α
β − 1)−

√
( 1+α

β − 1)2 + 4α
β

2
< 0.

In particular, we can write ȧ1 = −β(a1 − r1)(a1 − r2). The solution to this dynamical equation for
all t ∈ R+ is

a1(t) =
r1(a1(0)− r2)e

(r1−r2)βt − r2(a1(0)− r1)

(a1(0)− r2)e(r1−r2)βt − (a1(0)− r1)
.

For external infection rate α = 0, we have r1 = 0, r2 = 1 − 1
β . Thus, we can write the evolution of

the fraction of infected individuals as

a1(t) =
r2βa1(0)e

βr2t

βa1(0)eβr2t − β(a1(0)− r2)
=

a1(0)(β − 1)e(β−1)t

β − 1− βa1(0)(1− e(β−1)t)
.

Consider the case when β > 1. If a1(0) = r1 = 0, then a1(t) = r1 = 0 for every t ⩾ 0. If a1(0) > 0,
then limt→∞ a1(t) = r2 = 1− 1

β . It follows that r2 is an attractor, but r1 is not an attractor.

Remark 5. The set of rest points S need not be an attractor set, i.e. not all rest points are attractors.
Sometimes even if the set of rest points is unique the solution to the McKean-Vlasov equation may not
converge to the rest point at stationarity, i.e. even if S = {ξ0}, yet limt→∞ a(t) ̸= ξ0. This is an example
of an unstable equilibrium. Another example of when all equilibria are unstable is when ȧ = Ba where
all eigenvalues of B are imaginary. It is also possible that a dynamical system has some stable and
unstable equilibria.

3 Stationary limit of finite particle system

Lemma 3.1. Assume the Lipschitz assumption on the transition rates of a single particle in empirical
distribution and Assumption 1.2 on the irreducibility of CTMC AN . Let a∗ ∈ S be a globally asymptoti-
cally stable equilibrium. Then, for each ϵ > 0, there exists T > 0, such that ∥Φt(a(0))− a∗∥ < ϵ for any
initial condition a(0) ∈ M(Z) and time t ⩾ T .
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Proof. We will show this using the following steps.

Step 1. Lyapunov stability. Fix ϵ > 0. By Lyapunov stability of compact invariant set {a∗}, there
exists δ > 0 such that if ∥a(0)− a∗∥ < δ, then ∥a(t)− a∗∥ < ϵ for every t ∈ R+.

Step 2. Global asymptotic tsability. From the global asymptotic stability of compact invariant set
{a∗}, we know that all trajectories converge to a∗. Thus, we can define a finite stopping time

τa(0) ≜ inf

{
t ∈ R+ : ∥Φt(a(0))− a∗∥ <

δ

2

}
. (3)

Since the Lipschitz property of transition rates implies the Lipschitz property of rate func-
tion f , we can bound the difference of trajectories at time t for two different initial conditions
a(0), a′(0) ∈ M(Z) as

∥Φt(a(0))− Φt(a
′(0))∥ ⩽ ∥a(0)− a′(0)∥+M

∫ t

0

∥Φs(a(0))− Φs(a
′(0))∥ ds.

From Gronwall’s inequality applied to the above equation, we obtain ∥Φt(a(0))− Φt(a
′(0))∥ ⩽

∥a(0)− a′(0)∥ eMt. In particular, there exists a neighborhood Oa(0) such that for every a′(0) ∈
Oa(0), ∥∥Φτa0

(a(0))− Φτa0
(a′(0))

∥∥ <
δ

2
. (4)

From the definition of stopping time τa(0) in (3), the property of neighborhood Oa(0) in (4), and

the triangle inequality for any a′(0) ∈ Oa(0), we obtain
∥∥Φτa(0)

(a′(0))− a∗
∥∥ < δ. From Lyapunov

stability of compact invariant set {a∗}, it follows that ∥Φt(a
′(0))− a∗∥ < ϵ for any a′(0) ∈ Oa(0)

and t ⩾ τa(0).

Step 3. Compactness of M(Z). The compact set M(Z) can be covered with a finite open sub-cover
{Ob : b ∈ F} for some finite subset F ⊂ M(Z). Defining a finite stopping time T ≜ maxb∈F τb,
we obtain that ∥Φt(a)− a∗∥ < ϵ for any initial condition a ∈ M(Z) and all times t ⩾ T .

Theorem 3.2 (Asymptotic convergence and independence at stationarity). Assume the Lips-
chitz assumption on the transition rates of a single particle in empirical distribution and Assumption 1.2
on the irreducibility of CTMC AN . Let a∗ ∈ S be a globally asymptotically stable equilibrium. Then,

1. For all a ∈ M(Z), we have limN→∞ P {AN (∞) = a} = 1{a=a∗}.

2. For any finite F ⊆ N, we have limN→∞ P
(
∩n∈F

{
XN

n (∞) = zn
})

=
∏

n∈F a∗zn .

Proof. We denote the distribution of AN (t) by πAN (t) such that for any a ∈ MN (Z), we have

πAN (t)
a ≜ P

{
AN (t) = a

}
.

1. If πAN (0) = πAN (∞), then πAN (t) = πAN (∞) for all t ∈ R+. SinceM(M(Z)) is a compact set, for any

sequence (πAN (∞) : N ∈ N) ⊆ M(M(Z)), there exists a converging sub-sequence, (πANℓ (∞) : ℓ ∈ N)
such that limℓ→∞ π

ANℓ (∞)
a → π∗

a for all a ∈ M(Z). We observe that if πAN (0) = πAN (∞), then

πAN (t) = πAN (∞) for all t ∈ R+. Since we have limℓ→∞ π
ANℓ (0)
a = π∗

a for all a ∈ M(Z), it

follows that limℓ→∞ π
ANℓ (t)
a = π∗

a for all t ∈ R+ and a ∈ M(Z). From the continuity of map
Φt : M(Z) → M(Z), we have limN→∞ AN (t) = Φt(limN→∞ AN (0)). Thus, we have π∗ = π∗ ◦Φ−1

t ,
i.e. π∗ is stationary under the map Φt. From global asymptotic stability of a∗, we observe that for
every ϵ > 0 there exists Tϵ > 0 such that support(π∗ ◦Φ−1

t ) = support(π∗) ⊆ Bϵ(a
∗) for all t ⩾ Tϵ.

Since the choice of ϵ > 0 was arbitrary, it follows that support(π∗) = {a∗}, i.e. π∗
a = 1{a=a∗} for

all a ∈ M(Z).

2. Let Φn ∈ Cb(Z) be bounded continuous functions for all n ∈ N, then it suffices to show that

lim
N→∞

E
∏
n∈F

Φn(X
N
n (∞)) =

∏
n∈F

⟨Φn, a
∗⟩ .

We will show the result for |F | = 1 and |F | = 2, and the result for general finite F follows by
induction. We note that if the distribution of (XN

n (0) : n ∈ [N ]) is exchangeable, then so is the
distribution of (XN

n (t) : n ∈ [N ]) at all t ∈ R+.
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|F | = 1. Without any loss of generality, we assume F = {1}. From exchangeability, we can write

EΦ1(X
N
1 (∞)) = E

[ 1

N

N∑
n=1

Φ1(X
N
n (∞))

]
= E

〈
Φ1, A

N (∞)
〉
.

Since limN→∞ π
AN (∞)
a = 1{a∗=a} for all a ∈ M(Z), the result follows.

|F | = 2. Without any loss of generality, we assume F = {1, 2}. From exchangeability, we can write

E
[
Φ1(X

N
1 (∞))Φ2(X

N
2 (∞))

]
= E

[ 1

N(N − 1)

N∑
m̸=n=1

Φ1(X
N
m (∞))Φ2(X

N
n (∞))

]
.

Further, we can write

E
[ 〈

Φ1, A
N (∞)

〉 〈
Φ2, A

N (∞)
〉 ]

=
1

N2
E
[ N∑
n=1

Φ1(X
N
n (∞))Φ2(X

N
n (∞))+

N∑
m ̸=n=1

Φ1(X
N
m (∞))Φ2(X

N
n (∞))

]
.

Since limN→∞ π
AN (∞)
a = 1{a∗=a} for all a ∈ M(Z), the result follows.
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