Lecture-13: Perturbation theory

1 Perturbation theory for proof of convergence

Proposition 1.1. From the local exponential stability condition, there exist positive constants $k, c_{\ell}, c_{u}, c_{p}, \phi$ and a Lyapunov function $V: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$such that

$$
\begin{align*}
& c_{\ell}\|N h(t)\|^{2} \leqslant V(N h(t)) \leqslant c_{u}\|N h(t)\|^{2}, \tag{1}\\
& \|\nabla V(N h(t))\| \leqslant c_{p}\|h(t)\|, \tag{2}\\
& \dot{V}(N h) \leqslant-\phi V(N h), \text { for }\left\|\Phi_{t}(a)\right\| \leqslant k . \tag{3}
\end{align*}
$$

Proposition 1.2. It follows from the global asymptotic stability condition that for any $k>0$, there exists $t_{k} \in \mathbb{R}_{+}$such that $\left\|\Phi_{t}(a)\right\| \leqslant k$ for all $t \geqslant t_{k}$.

Proof. From the global asymptotic stability, we have for any initial point $a \in \mathcal{M}(z)$ and $\epsilon>0$, there exists $t_{\epsilon}>0$ such that $\left\|\Phi_{t}(a)-a^{*}\right\|<\epsilon$ for all $t>t_{\epsilon}$. Since $\left\|\Phi_{t}(a)\right\| \leqslant\left\|\Phi_{t}(a)-a^{*}\right\|+\left\|a^{*}\right\|$, the result follows.

Corollary 1.3. Under local exponential stability and global asymptotic stability conditions on the mean-field model, there exists a Lyapunov function $V: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$such that $V(N h(t)) \leqslant V\left(N h\left(t_{k}\right)\right) e^{-\phi\left(t-t_{k}\right)}$ for all $t \geqslant t_{k}$.
Proof. Recall that at time $t=t_{k}$, we have $V(N h(t)) \leqslant V\left(N h\left(t_{k}\right)\right)$. Further for times $t \geqslant t_{k}$, we have $\left\|\Phi_{t}(a)-a^{*}\right\| \leqslant k$ and hence $(\dot{V}(N h(t))+\phi V(N h(t))) e^{-\phi\left(t-t_{k}\right)} \leqslant 0$.

Lemma 1.4. Let $d \triangleq|Z|$, and consider the Mckean-Vlasov equation $\dot{a}=f(a)$ for distribution process $a: \mathbb{R}_{+} \rightarrow \mathcal{M}(\mathcal{Z})$, that satisfies the following two conditions.

Condition 1. Lipschitz partial derivatives. First order partial derivatives $\frac{\partial f_{z}(a)}{\partial a_{w}}(a)$ exist and are Lipschitz for all $w, z \in \mathcal{Z}$.

Condition 2. Stability. The mean-field model is globally asymptotically stable and locally exponentially stable.

Consider $a, b \in \mathcal{M}(Z)$ such that $\|b-a\| \leqslant \frac{\tilde{c}}{N}$ for some $\tilde{c}>0$, then there exist positive constants c and σ independent of N such that

$$
\left\|N(b-a) \nabla \Phi_{t}(a)\right\| \leqslant c e^{-\sigma t}, \quad \quad\left\|\Phi_{t}(b)-\Phi_{t}(a)-(b-a) \nabla \Phi_{t}(a)\right\|_{1} \leqslant \frac{c}{N^{2}} e^{-\sigma t}
$$

Proof. Recall that $e(t, a, b)=\Phi_{t}(b)-\Phi_{t}(a)-(b-a) \nabla \Phi_{t}(a)$ and $h(t, a, b)=(b-a) \nabla \Phi_{t}(a)$. We will fix a, b and simplify the notation to $e(t)$ and $h(t)$. Recall that

$$
\nabla_{a} f\left(\Phi_{t}(a)\right)=\sum_{i, j=1}^{d} e_{j}^{T} \frac{\partial f_{i}\left(\Phi_{t}(a)\right)}{\partial a_{j}} e_{i}=\sum_{i, j=1}^{d} e_{j}^{T} \sum_{k=1}^{d} \frac{\partial f_{i}\left(\Phi_{t}(a)\right)}{\partial \Phi_{t}(a)_{k}} \frac{\partial \Phi_{t}(a)_{k}}{\partial a_{j}} e_{i}=\nabla_{a} \Phi_{t}(a) \nabla_{\Phi_{t}(a)} f\left(\Phi_{t}(a)\right) .
$$

We can write the time derivative of h as

$$
\dot{h}=(b-a) \nabla_{a} f\left(\Phi_{t}(a)\right)=(b-a) \nabla_{a} \Phi_{t}(a) \nabla_{\Phi_{t}(a)} f\left(\Phi_{t}(a)\right) .
$$

Therefore, we can write the time derivative of error e as

$$
\dot{e}=f\left(\Phi_{t}(b)\right)-f\left(\Phi_{t}(a)\right)-h \nabla_{\Phi_{t}(a)} f\left(\Phi_{t}(a)\right) .
$$

From the definition of error, we observe that $e(0)=0$. We observe that

$$
\frac{d}{d t}\|h\|^{2}=2\langle h, \dot{h}\rangle=2\left\langle h, h \nabla f\left(\Phi_{t}(a)\right)\right\rangle .
$$

1. Since h is defined on a bounded set and first-order partial derivatives are Lipschitz, the first-order partial derivatives are bounded, as there exists a constant $\kappa>0$ such that $\left|\frac{d}{d t}\|h\|^{2}\right| \leqslant \kappa\|h\|^{2}$. This together with the fact that $h(0)=b-a$ implies that $\|h(t)\| \leqslant\|b-a\| e^{\frac{\kappa}{2} t}$. From local exponential stability condition, we obtain that $V(N h(t)) \leqslant e^{-\phi\left(t-t_{k}\right)} V\left(N h\left(t_{k}\right)\right)$ for $t \geqslant t_{k}$. Thus, we can write

$$
c_{\ell}\|N h(t)\|^{2} \leqslant V(N h(t)) \leqslant c_{u} e^{-\phi\left(t-t_{k}\right)}\left\|N h\left(t_{k}\right)\right\|^{2} .
$$

Thus, we can write

$$
\begin{equation*}
\|N h(t)\| \leqslant \sqrt{\frac{c_{u}}{c_{\ell}}} e^{-\frac{\phi}{2}\left(t-t_{k}\right)}\left\|N h\left(t_{k}\right)\right\| \leqslant \sqrt{\frac{c_{u}}{c_{\ell}}} e^{\frac{(\phi+k)}{2}} t_{k}\|N(b-a)\| e^{-\frac{\phi}{2} t} . \tag{4}
\end{equation*}
$$

2. Fix $z \in \mathcal{Z}$ where $d \triangleq|z|$. From the mean-value theorem for continuous function $f: \mathcal{M}(z) \rightarrow \mathcal{M}(z)$,

$$
f_{z}\left(\Phi_{t}(b)\right)-f_{z}\left(\Phi_{t}(a)\right)=\left(\Phi_{t}(b)-\Phi_{t}(a)\right) \nabla f_{z}\left(\Phi_{t}(a)+\left(\Phi_{t}(b)-\Phi_{t}(a)\right) \xi_{z}\right)^{T}
$$

for some $\xi \in[0,1]^{z}$. Recall that $e(t)+\frac{1}{N} N h(t)=\Phi_{t}(b)-\Phi_{t}(a)$. Thus, we have

$$
\dot{e}_{z}=e \nabla f_{z}\left(\Phi_{t}(a)+(e+h) \xi_{z}\right)^{T}+\frac{1}{N} N h\left(\nabla f_{z}\left(\Phi_{t}(a)+(e+h) \xi_{z}\right)^{T}-\nabla f_{z}\left(\Phi_{t}(a)\right)^{T}\right) .
$$

Since the first-order partial-derivatives of f are Lipschitz, there exists $L_{z}, M_{z}>0$ such that $\left\|\nabla f_{z}(b)-\nabla f_{z}(a)\right\| \leqslant$ $L_{z}\|b-a\|$ and $\sup _{z \in \mathcal{Z}, b \in \mathbb{R}^{z}}\left\|\nabla f_{z}(b)\right\|<M_{z}$. Defining a constant $B \triangleq \sup _{z \in \mathcal{Z}, N \in \mathbb{N}}\left(M_{z}+\frac{L_{z}}{N}\|N h\|\right) \vee$ $L_{z}\|N h\|$ independent of N, we get

$$
\left|\dot{e}_{z}\right| \leqslant\|e\| M_{z}+\frac{L_{z}}{N}\|N h\|\left(\|e\|+\frac{1}{N}\|N h\|\right) \leqslant\|e\|\left(M_{z}+\frac{L_{z}}{N}\|N h\|\right)+\frac{L_{z}}{N^{2}}\|N h\| \leqslant B\|e\|+\frac{B}{N^{2}} .
$$

It follows that $\|\dot{e}\| \leqslant B \sqrt{d}\|e\|+\frac{B \sqrt{d}}{N^{2}}$, and since $e(0)=0$, we obtain $\|e(t)\| \leqslant \frac{1}{N^{2}}\left(e^{B \sqrt{d} t}-1\right)$. We can write the time derivative of Lyapunov function as

$$
\dot{V}(e)=\langle\dot{e}, \nabla V(e)\rangle=\left\langle f\left(\Phi_{t}(b)\right)-f\left(\Phi_{t}(a)\right)-h \nabla f\left(\Phi_{t}(a)\right), \nabla V(e)\right\rangle .
$$

Consider $t \geqslant t_{k}$ such that $\left\|\Phi_{t}(a)\right\| \leqslant k$. From (3), we know that $\dot{V}(N h)=\left\langle\nabla V(N h), N h \nabla f\left(\Phi_{t}(a)\right)\right\rangle \leqslant$ $-\phi V(N h)$. Replacing $N h$ by e in this equation, we get $\left\langle\nabla V(e), e \nabla f\left(\Phi_{t}(a)\right)\right\rangle \leqslant-\phi V(e)$. Therefore, we obtain

$$
\dot{V}(e) \leqslant-\phi V(e)+\sum_{z \in \mathcal{Z}}\left(f_{z}\left(\Phi_{t}(b)\right)-f_{z}\left(\Phi_{t}(a)\right)-(e+h) \nabla f_{z}\left(\Phi_{t}(a)\right)^{T}\right) \frac{\partial V(e)}{\partial e_{z}} .
$$

Substituting $e+h=\Phi_{t}(b)-\Phi_{t}(a)$ and $\xi_{z} \in[0,1]$ from mean-value theorem in the above equation and using the L_{z}-Lipschitz property for ∇f_{z}, we obtain
$\dot{V}(e) \leqslant-\phi V(e)+\sum_{z \in \mathcal{Z}}(e+h)\left[\nabla f_{z}\left(\Phi_{t}(a)+(e+h) \xi_{z}\right)^{T}-\nabla f_{z}\left(\Phi_{t}(a)\right)^{T}\right] \frac{\partial V(e)}{\partial e_{z}} \leqslant-\phi V(e)+\|e+h\|^{2}\langle L, \nabla V(e)\rangle$.
Replacing $N h$ by e in 22, we obtain $\|\nabla V(e)\| \leqslant c_{p}\|e\|$. Taking L as a constant for all $z \in \mathcal{Z}$ and applying Hölder's inequality to $\langle L, \nabla V(e)\rangle$ and from Minkowski inequality that implies $\|e+h\|^{2} \leqslant$ $2\left(\|e\|^{2}+\|h\|^{2}\right)$, we get

$$
\dot{V}(e) \leqslant-\phi V(e)+2 L \sqrt{d} c_{p}\left(\|e\|^{3}+\frac{1}{N^{2}}\|N h\|^{2}\|e\|\right) .
$$

Substituting $N h$ by e in (11) we obtain that $c_{\ell}\|e\|^{2} \leqslant V(e) \leqslant c_{u}\|e\|^{2}$, and thus

$$
\dot{V}(e) \leqslant-\left(\phi-\frac{2 L c_{p} \sqrt{d}}{c_{\ell}}\|e\|\right) V(e)+\frac{2 L \sqrt{d} c_{p}}{\sqrt{c_{\ell}}} \frac{1}{N^{2}}\|N h\|^{2} \sqrt{V(e)} .
$$

Defining a constant $\hat{c} \triangleq L \sqrt{d} \tilde{c}^{2} \frac{c_{u} c_{p}}{\left(c_{\ell}\right)^{3 / 2}} e^{(\phi+\kappa) t_{k}}$ it follows from (4) that

$$
\dot{V}(e) \leqslant-\left(\phi-\frac{2 L c_{p} \sqrt{d}}{c_{\ell}}\|e\|\right) V(e)+\frac{2 \hat{c}}{N^{2}} \sqrt{V(e)} e^{-\phi t}
$$

Defining $W \triangleq \sqrt{V}$ and considering time t_{ℓ} such that $\|e\| \leqslant \frac{\phi c_{\ell}}{4 L c_{p} \sqrt{d}}$ for all $t \leqslant t_{\ell}$, we obtain

$$
\dot{W}(e) \leqslant-\frac{\phi}{4} W(e)+\frac{\hat{c}}{N^{2}} e^{-\phi t}, \text { for all } t \geqslant t_{\ell} \wedge t_{k}
$$

We observe that $\frac{d}{d t}\left(W(e(t)) e^{\frac{\phi}{4} t}\right)=\left(\dot{W}(e)+\frac{\phi}{4} W(e)\right) e^{\frac{\phi}{4} t} \leqslant \frac{\hat{c}}{N^{2}} e^{\frac{\phi}{4} t-\phi t}$ for all $t \geqslant t_{k}$. Integrating both sides over $t \geqslant t_{k}$, we obtain

$$
W(e(t)) \leqslant W\left(e\left(t_{k}\right)\right) e^{-\frac{\phi}{4}\left(t-t_{k}\right)}+\frac{\hat{c}}{N^{2}} \int_{t_{k}}^{t} e^{-\frac{\phi}{4}(t-\tau)-\phi \tau} d \tau \leqslant\left[W\left(e\left(t_{k}\right)\right) e^{\frac{\phi}{4} t_{k}}+\frac{4 \hat{c}}{3 \phi N^{2}}\right] e^{-\frac{\phi}{4} t} \leqslant \frac{C}{N^{2}} e^{-\frac{\phi}{4} t}
$$

Since $W=\sqrt{V}$, substituting $N h$ by e in (1), we obtain

$$
\|e\|_{1} \leqslant \sqrt{d}\|e\|_{2} \leqslant \frac{\sqrt{d}}{\sqrt{c_{\ell}}} W(e) \leqslant \frac{C \sqrt{d}}{\sqrt{c_{\ell}} N^{2}} e^{-\frac{\phi}{4} t}
$$

Corollary 1.5. Under the conditions in Lemma 1.4, we have

$$
\int_{t \in \mathbb{R}_{+}}\left\|\left\langle\nabla \Phi_{t}(a), N(b-a)\right\rangle\right\|^{2} d t \leqslant \frac{c^{2}}{2 \sigma}, \quad \quad \int_{t \in \mathbb{R}_{+}}\|e(t, a, b)\|_{1} \leqslant \frac{c}{\sigma N^{2}}
$$

Theorem 1.6. The empirical distribution processes of a family of CTMCs $\left(\left(X^{N}: \Omega \rightarrow \mathcal{Z}^{N}\right): N \in \mathbb{N}\right)$ converge to the equilibrium point a^{*} of the mean-field model in the mean-square sense with rate $O\left(h_{1}(N) \vee\right.$ $h_{2}(N)$), i.e.,

$$
\mathbb{E}_{\pi^{A^{N}(\infty)}}\left\|A^{N}(\infty)-a^{*}\right\|^{2}=O\left(h_{1}(N) \vee h_{2}(N)\right)
$$

when the following conditions hold.

Condition 1. Asymptotically accurate mean-field model.

$$
\mathbb{E}_{\pi^{A^{N}(\infty)}}\left\|f\left(A^{N}(\infty)\right)-\sum_{b: b \neq A^{N}(\infty)} Q_{A^{N}(\infty), b}^{A^{N}}\left(b-A^{N}(\infty)\right)\right\|=O\left(h_{1}(N)\right)
$$

Condition 2. Bounded mean state transitions. $\mathbb{E}_{\pi^{A^{N}(\infty)}} \sum_{b: b \neq A^{N}(\infty)} Q_{A^{N}(\infty), b}^{A^{N}}\left\|b-A^{N}(\infty)\right\|^{2}=O\left(h_{2}(N)\right)$.
Condition 3. Bounded state difference. $\max _{a, b: Q_{a, b}^{A^{N}}>0}\|b-a\|=o(1)$.
Condition 4. Lipschitz partial derivatives. The first order partial derivatives $\frac{\partial f_{w}}{\partial a_{z}}$ exist and are Lipschitz for all $w, z \in \mathcal{Z}$.

Condition 5. Stability. The mean-field model is globally asymptotically stable and is locally exponentially stable.

Proof. Recall that $h(t)=(b-a) \nabla \Phi_{t}(a)$ and $g(a)=-\int_{t \in \mathbb{R}_{+}}\left\|\Phi_{t}(a)-a^{*}\right\|^{2} d t$ is the solution to the Poisson equation, where the integral is finite and hence we can exchange integral and derivative to obtain $\langle\nabla g(a), b-a\rangle=-\int_{t \in \mathbb{R}_{+}} 2\left\langle\left(\Phi_{t}(a)-a^{*}\right), h(t)\right\rangle d t$. Taking $N(b-a)=e_{w}-e_{z}$ for $z, w \in \mathcal{Z}$, and recalling that $\|N h(t)\| \leqslant c e^{-\sigma t}$ for some $c, \sigma>0$, we observe that

$$
|\nabla g(a)| \leqslant \int_{t \in \mathbb{R}_{+}} 2\left\|\Phi_{t}(a)-a^{*}\right\|\|N h(t)\| d t<\infty
$$

Thus, we can conclude that $\|\nabla g(a)\| \leqslant K$ for all $a \in \mathcal{M}(z)$. We further recall that we can write

$$
\begin{aligned}
\mathbb{E}_{\pi^{A^{N}(\infty)}}\left\|A^{N}(\infty)-a^{*}\right\|^{2} & =\mathbb{E}_{\pi^{A^{N}(\infty)}}\left[\left\langle\nabla g\left(A^{N}(\infty)\right),\left(f\left(A^{N}(\infty)\right)-\sum_{b: b \neq A^{N}(\infty)} Q_{A^{N}(\infty), b}^{A^{N}}\left(b-A^{N}(\infty)\right)\right)\right\rangle\right. \\
& \left.-\sum_{b: b \neq A^{N}(\infty)} Q_{A^{N}(\infty), b}^{A^{N}}\left(g(b)-g\left(A^{N}(\infty)\right)-\left\langle\nabla g\left(A^{N}(\infty)\right),\left(b-A^{N}(\infty)\right)\right\rangle\right)\right]
\end{aligned}
$$

From the Hölder's inequality applied to the inner product, triangle inequality, and the fact that $\sup _{a}\|\nabla g(a)\|<$ K, we obtain

$$
\begin{aligned}
\mathbb{E}_{\pi^{A^{N}(\infty)}}\left\|A^{N}(\infty)-a^{*}\right\|^{2} & \leqslant K \mathbb{E}_{\pi^{A^{N}(\infty)}}\left\|f\left(A^{N}(\infty)\right)-\sum_{b: b \neq A^{N}(\infty)} Q_{A^{N}(\infty), b}^{A^{N}}\left(b-A^{N}(\infty)\right)\right\| \\
& +\mathbb{E}_{\pi^{A^{N}(\infty)}}\left[\sum_{b: b \neq A^{N}(\infty)} Q_{A^{N}(\infty), b}^{A^{N}}\left|g(b)-g\left(A^{N}(\infty)\right)-\left\langle\nabla g\left(A^{N}(\infty)\right),\left(b-A^{N}(\infty)\right)\right\rangle\right|\right]
\end{aligned}
$$

From proof of Lemma 1.4 we observe that

$$
\int_{t \in \mathbb{R}_{+}}\|e(t)\|_{1}=O\left(\|b-a\|^{2}\right), \quad \quad \int_{t \in \mathbb{R}_{+}}\|N h(t)\|_{1}=O(\|b-a\|)
$$

Further, we can show that there exists a constant b independent of N such that

$$
|g(b)-g(a)-\langle\nabla g(a),(b-a)\rangle| \leqslant b \int_{t \in \mathbb{R}_{+}}\|e(t)\|_{1} d t+\frac{1}{N^{2}} \int_{t \in \mathbb{R}_{+}}\|h(t)\|^{2} d t=O\left(\|b-a\|^{2}\right)
$$

Remark 1. Relaxing the perfect mean-field model assumption implies that the CTMC A^{N} is no longer required to be density dependent. Furthermore, relaxing the bounded state transition condition makes the result applicable to CTMCs for which the number of jumps during a transition is a function of N instead of a constant. The rate of convergence in these cases depends on the distance between the generator of the CTMC with N particles and the mean-field model, and depends on the mean-square jump size of the CTMC A^{N} at steady-state.

