
Lecture-13: Perturbation theory

1 Perturbation theory for proof of convergence

Proposition 1.1. From the local exponential stability condition, there exist positive constants k, cℓ, cu, cp, ϕ
and a Lyapunov function V : Rd → R+ such that

cℓ ∥Nh(t)∥2 ⩽ V (Nh(t)) ⩽ cu ∥Nh(t)∥2 , (1)

∥∇V (Nh(t))∥ ⩽ Ncp ∥h(t)∥ , (2)

V̇ (Nh) ⩽ −ϕV (Nh), for ∥Φt(a)∥ ⩽ k. (3)

Proposition 1.2. It follows from the global asymptotic stability condition that for any k > 0, there exists
tk ∈ R+ such that ∥Φt(a)∥ ⩽ k for all t ⩾ tk.

Proof. From the global asymptotic stability, we have for any initial point a ∈ M(Z) and ϵ > 0, there exists
tϵ > 0 such that ∥Φt(a)− a∗∥ < ϵ for all t > tϵ. Since ∥Φt(a)∥ ⩽ ∥Φt(a)− a∗∥+ ∥a∗∥, the result follows.

Corollary 1.3. Under local exponential stability and global asymptotic stability conditions on the mean-field
model, there exists a Lyapunov function V : Rd → R+ such that V (Nh(t)) ⩽ V (Nh(tk))e

−ϕ(t−tk) for all
t ⩾ tk.

Proof. Recall that at time t = tk, we have V (Nh(t)) ⩽ V (Nh(tk)). Further for times t ⩾ tk, we have
∥Φt(a)− a∗∥ ⩽ k and hence (V̇ (Nh(t)) + ϕV (Nh(t)))e−ϕ(t−tk) ⩽ 0.

Lemma 1.4. Let d ≜ |Z|, and consider the Mckean-Vlasov equation ȧ = f(a) for distribution process
a : R+ → M(Z), that satisfies the following two conditions.

Condition 1. Lipschitz partial derivatives. First order partial derivatives ∂fz(a)
∂aw

(a) exist and are Lipschitz
for all w, z ∈ Z.

Condition 2. Stability. The mean-field model is globally asymptotically stable and locally exponentially
stable.

Consider a, b ∈ M(Z) such that ∥b− a∥ ⩽ c̃
N for some c̃ > 0, then there exist positive constants c and σ

independent of N such that

∥N(b− a)∇Φt(a)∥ ⩽ ce−σt, ∥Φt(b)− Φt(a)− (b− a)∇Φt(a)∥1 ⩽
c

N2
e−σt.

Proof. Recall that e(t, a, b) = Φt(b)− Φt(a)− (b− a)∇Φt(a) and h(t, a, b) = (b− a)∇Φt(a). We will fix a, b
and simplify the notation to e(t) and h(t). Recall that

∇af(Φt(a)) =

d∑
i,j=1

eTj
∂fi(Φt(a))

∂aj
ei =

d∑
i,j=1

eTj

d∑
k=1

∂fi(Φt(a))

∂Φt(a)k

∂Φt(a)k
∂aj

ei = ∇aΦt(a)∇Φt(a)f(Φt(a)).

We can write the time derivative of h as

ḣ = (b− a)∇af(Φt(a)) = (b− a)∇aΦt(a)∇Φt(a)f(Φt(a)).

Therefore, we can write the time derivative of error e as

ė = f(Φt(b))− f(Φt(a))− h∇Φt(a)f(Φt(a)).

From the definition of error, we observe that e(0) = 0. We observe that

d

dt
∥h∥2 = 2

〈
h, ḣ

〉
= 2 ⟨h, h∇f(Φt(a))⟩ .
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1. Since h is defined on a bounded set and first-order partial derivatives are Lipschitz, the first-order

partial derivatives are bounded, as there exists a constant κ > 0 such that
∣∣∣ d
dt ∥h∥

2
∣∣∣ ⩽ κ ∥h∥2 . This

together with the fact that h(0) = b − a implies that ∥h(t)∥ ⩽ ∥b− a∥ eκ
2 t. From local exponential

stability condition, we obtain that V (Nh(t)) ⩽ e−ϕ(t−tk)V (Nh(tk)) for t ⩾ tk. Thus, we can write

cℓ ∥Nh(t)∥2 ⩽ V (Nh(t)) ⩽ cue
−ϕ(t−tk) ∥Nh(tk)∥2 .

Thus, we can write

∥Nh(t)∥ ⩽

√
cu
cℓ

e−
ϕ
2 (t−tk) ∥Nh(tk)∥ ⩽

√
cu
cℓ

e
(ϕ+κ)

2 tk ∥N(b− a)∥ e−
ϕ
2 t. (4)

2. Fix z ∈ Z where d ≜ |Z|. From the mean-value theorem for continuous function f : M(Z) → M(Z),

fz(Φt(b))− fz(Φt(a)) = (Φt(b)− Φt(a))∇fz(Φt(a) + (Φt(b)− Φt(a))ξz)
T

for some ξ ∈ [0, 1]Z. Recall that e(t) + 1
NNh(t) = Φt(b)− Φt(a). Thus, we have

ėz = e∇fz(Φt(a) + (e+ h)ξz)
T +

1

N
Nh(∇fz(Φt(a) + (e+ h)ξz)

T −∇fz(Φt(a))
T ).

Since the first-order partial-derivatives of f are Lipschitz, there exists Lz,Mz > 0 such that ∥∇fz(b)−∇fz(a)∥ ⩽
Lz ∥b− a∥ and supz∈Z,b∈RZ ∥∇fz(b)∥ < Mz. Defining a constant B ≜ supz∈Z,N∈N(Mz +

Lz

N ∥Nh∥) ∨
Lz ∥Nh∥ independent of N , we get

|ėz| ⩽ ∥e∥Mz +
Lz

N
∥Nh∥ (∥e∥+ 1

N
∥Nh∥) ⩽ ∥e∥ (Mz +

Lz

N
∥Nh∥) + Lz

N2
∥Nh∥ ⩽ B ∥e∥+ B

N2
.

It follows that ∥ė∥ ⩽ B
√
d ∥e∥+ B

√
d

N2 , and since e(0) = 0, we obtain ∥e(t)∥ ⩽ 1
N2 (e

B
√
dt − 1). We can

write the time derivative of Lyapunov function as

V̇ (e) = ⟨ė,∇V (e)⟩ = ⟨f(Φt(b))− f(Φt(a))− h∇f(Φt(a)),∇V (e)⟩ .

Consider t ⩾ tk such that ∥Φt(a)∥ ⩽ k. From (3), we know that V̇ (Nh) = ⟨∇V (Nh), Nh∇f(Φt(a))⟩ ⩽
−ϕV (Nh). Replacing Nh by e in this equation, we get ⟨∇V (e), e∇f(Φt(a))⟩ ⩽ −ϕV (e). Therefore,
we obtain

V̇ (e) ⩽ −ϕV (e) +
∑
z∈Z

(fz(Φt(b))− fz(Φt(a))− (e+ h)∇fz(Φt(a))
T )

∂V (e)

∂ez
.

Substituting e+ h = Φt(b)−Φt(a) and ξz ∈ [0, 1] from mean-value theorem in the above equation and
using the Lz-Lipschitz property for ∇fz, we obtain

V̇ (e) ⩽ −ϕV (e)+
∑
z∈Z

(e+h)
[
∇fz(Φt(a)+(e+h)ξz)

T−∇fz(Φt(a))
T
]∂V (e)

∂ez
⩽ −ϕV (e)+∥e+ h∥2 ⟨L,∇V (e)⟩ .

Replacing Nh by e in (2), we obtain ∥∇V (e)∥ ⩽ cp ∥e∥. Taking L as a constant for all z ∈ Z and

applying Hölder’s inequality to ⟨L,∇V (e)⟩ and from Minkowski inequality that implies ∥e+ h∥2 ⩽
2(∥e∥2 + ∥h∥2), we get

V̇ (e) ⩽ −ϕV (e) + 2L
√
dcp(∥e∥3 +

1

N2
∥Nh∥2 ∥e∥).

Substituting Nh by e in (1), we obtain that cℓ ∥e∥2 ⩽ V (e) ⩽ cu ∥e∥2, and thus

V̇ (e) ⩽ −
(
ϕ− 2Lcp

√
d

cℓ
∥e∥

)
V (e) +

2L
√
dcp√
cℓ

1

N2
∥Nh∥2

√
V (e).
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Defining a constant ĉ ≜ L
√
dc̃2

cucp
(cℓ)3/2

e(ϕ+κ)tk it follows from (4) that

V̇ (e) ⩽ −
(
ϕ− 2Lcp

√
d

cℓ
∥e∥

)
V (e) +

2ĉ

N2

√
V (e)e−ϕt.

Defining W ≜
√
V and considering time tℓ such that ∥e∥ ⩽ ϕcℓ

4Lcp
√
d
for all t ⩽ tℓ, we obtain

Ẇ (e) ⩽ −ϕ

4
W (e) +

ĉ

N2
e−ϕt, for all t ⩾ tℓ ∧ tk.

We observe that d
dt (W (e(t))e

ϕ
4 t) = (Ẇ (e) + ϕ

4W (e))e
ϕ
4 t ⩽ ĉ

N2 e
ϕ
4 t−ϕt for all t ⩾ tk. Integrating both

sides over t ⩾ tk, we obtain

W (e(t)) ⩽ W (e(tk))e
−ϕ

4 (t−tk) +
ĉ

N2

∫ t

tk

e−
ϕ
4 (t−τ)−ϕτdτ ⩽

[
W (e(tk))e

ϕ
4 tk +

4ĉ

3ϕN2

]
e−

ϕ
4 t ⩽

C

N2
e−

ϕ
4 t.

Since W =
√
V , substituting Nh by e in (1), we obtain

∥e∥1 ⩽
√
d ∥e∥2 ⩽

√
d

√
cℓ
W (e) ⩽

C
√
d

√
cℓN2

e−
ϕ
4 t.

Corollary 1.5. Under the conditions in Lemma 1.4, we have∫
t∈R+

∥⟨∇Φt(a), N(b− a)⟩∥2 dt ⩽ c2

2σ
,

∫
t∈R+

∥e(t, a, b)∥1 ⩽
c

σN2
.

Theorem 1.6. The empirical distribution processes of a family of CTMCs ((XN : Ω → ZN ) : N ∈ N)
converge to the equilibrium point a∗ of the mean-field model in the mean-square sense with rate O(h1(N) ∨
h2(N)), i.e.,

EπAN (∞)

∥∥AN (∞)− a∗
∥∥2 = O

(
h1(N) ∨ h2(N)

)
,

when the following conditions hold.

Condition 1. Asymptotically accurate mean-field model.

EπAN (∞)

∥∥∥∥∥∥f(AN (∞))−
∑

b:b̸=AN (∞)

QAN

AN (∞),b(b−AN (∞))

∥∥∥∥∥∥ = O(h1(N)).

Condition 2. Bounded mean state transitions. EπAN (∞)

∑
b:b ̸=AN (∞) Q

AN

AN (∞),b

∥∥b−AN (∞)
∥∥2 = O(h2(N)).

Condition 3. Bounded state difference. max
a,b:QAN

a,b >0
∥b− a∥ = o(1).

Condition 4. Lipschitz partial derivatives. The first order partial derivatives ∂fw
∂az

exist and are Lipschitz
for all w, z ∈ Z.

Condition 5. Stability. The mean-field model is globally asymptotically stable and is locally exponentially
stable.

Proof. Recall that h(t) = (b − a)∇Φt(a) and g(a) = −
∫
t∈R+

∥Φt(a)− a∗∥2 dt is the solution to the Pois-

son equation, where the integral is finite and hence we can exchange integral and derivative to obtain
⟨∇g(a), b− a⟩ = −

∫
t∈R+

2 ⟨(Φt(a)− a∗), h(t)⟩ dt. Taking N(b− a) = ew − ez for z, w ∈ Z, and recalling that

∥Nh(t)∥ ⩽ ce−σt for some c, σ > 0, we observe that

|∇g(a)| ⩽
∫
t∈R+

2 ∥Φt(a)− a∗∥ ∥Nh(t)∥ dt < ∞.
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Thus, we can conclude that ∥∇g(a)∥ ⩽ K for all a ∈ M(Z). We further recall that we can write

EπAN (∞)

∥∥AN (∞)− a∗
∥∥2 = EπAN (∞)

[〈
∇g(AN (∞)),

(
f(AN (∞))−

∑
b:b̸=AN (∞)

QAN

AN (∞),b(b−AN (∞))
)〉

−
∑

b:b̸=AN (∞)

QAN

AN (∞),b

(
g(b)− g(AN (∞))−

〈
∇g(AN (∞)), (b−AN (∞))

〉 )]
.

From the Hölder’s inequality applied to the inner product, triangle inequality, and the fact that supa ∥∇g(a)∥ <
K, we obtain

EπAN (∞)

∥∥AN (∞)− a∗
∥∥2 ⩽ KEπAN (∞)

∥∥∥∥∥∥f(AN (∞))−
∑

b:b̸=AN (∞)

QAN

AN (∞),b(b−AN (∞))

∥∥∥∥∥∥
+ EπAN (∞)

[ ∑
b:b̸=AN (∞)

QAN

AN (∞),b

∣∣g(b)− g(AN (∞))−
〈
∇g(AN (∞)), (b−AN (∞))

〉∣∣ ].
From proof of Lemma 1.4, we observe that∫

t∈R+

∥e(t)∥1 = O(∥b− a∥2),
∫
t∈R+

∥Nh(t)∥1 = O(∥b− a∥).

Further, we can show that there exists a constant b independent of N such that

|g(b)− g(a)− ⟨∇g(a), (b− a)⟩| ⩽ b

∫
t∈R+

∥e(t)∥1 dt+
1

N2

∫
t∈R+

∥h(t)∥2 dt = O(∥b− a∥2).

Remark 1. Relaxing the perfect mean-field model assumption implies that the CTMC AN is no longer
required to be density dependent. Furthermore, relaxing the bounded state transition condition makes the
result applicable to CTMCs for which the number of jumps during a transition is a function of N instead
of a constant. The rate of convergence in these cases depends on the distance between the generator of the
CTMC with N particles and the mean-field model, and depends on the mean-square jump size of the CTMC
AN at steady-state.
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