Lecture-14: Perturbation theory

1 Perturbation theory

We focus on the perturbation of nonlinear autonomous systems, where only the initial condition is perturbed.
Consider a finite state space [d], and a compact subset D C [0, 1],

Definition 1.1. Consider a nonlinear autonomous system ® : Ry x D — D defined in terms of f : D C
[0,1] — R? for each t € R, and initial condition ®; = a € D as

®i(a) = a —|—/0 D (a)ds. (1)

We note that the time derivative of ® is £®,(a) = f(®:(a)).

Definition 1.2. We fix two distributions a,b € D and define the error in the first order approximation of
®,(b) by P:(a) at all times t € R, as

e(t) 2 @y (b) — By(a) — (b — a)VP,(a). 2)

Remark 1. Let a* be a rest point of ®; such that f(®;(a*)) = 0, then we redefine ®;(a) = ®;(a) — a* for all
a € D. The rest point for this redefined @ is a* = 0. Thus, without loss of any generality, we can assume
a* =0.

Definition 1.3. We define ¢ £ (b — a) for some € > 0, and consider the case when |c[| =1 [|b—a| < e

Assumption 1.4 (Lipschitz partial derivative). For any i € [d], the function f; : [0,1] — R is twice
continuously differentiable. Therefore, the Jacobian matrix (V f(a)),:; = %a(:) is Lipschitz, such that there
exists L > 0 such that
sup [e(Vf(b) =V fa)ll < Lile||[|b—all

Remark 2. Consider e-balls B(a,e) = {b€ D :||b—al <€}, and {B(a,¢): a € D} is an open cover for D,
From compactness of D C [0,1]%, it can be covered by a finite sub-cover such that {B(a,¢) : a € F} covers
D for some finite F'. For any b € D choose b* € F such that b € B(b*,¢). Then, from triangle inequality, we
can write for all z € Z,b€ D

IVEO < [[VF(0) = VL) + V07 < Le+ max{|[Vf.(a)]| : a € F} < oc.

Assumption 1.5 (Stability). The dynamical system ® has a unique equilibrium point a* = 0 and is
exponentially stable. In other words, there exist positive constants a and s such that starting from any
initial condition a € D and at any time ¢t € R

[@4(a)l] < kllaf e, 3)

Proposition 1.6 (Khalil). For any nonlinear autonomous system ® defined in under Assumption
there exist a Lyapunov function V : D — Ry and constants cy, c¢, cq, cp such that

cellal® < V(a) < ey llal?, (4)
IVV(@)ll < e llall (5)
V(a) < —cq flal*. (6)



Definition 1.7. For an autonomous nonlinear system ¢ defined in 7 with initial condition a and perturbed
initial condition b = a + ec, we define ® : Ry x Ry — D as ®(¢,¢) = Oy(a+ec) for all t,e € Ry,

Remark 3. We observe that %&J(t, 0) = ¢V®,(a), and can write the finite Taylor series for ®(t, €) as

B(t,e) = B(t,0) + 6%&)(1‘,, 0) + e(t), ®(0,€) = a+ ec.

We write the time derivative of autonomous nonlinear system with perturbed initial condition as

B(t,e) = b(t,0) + e%%@(w) +é(t) = F(B(t, ).

Definition 1.8. We define ¥ : Ry — D? as ¥(t) £ (VO(t), ¥'(t)), where ¥O(t) £ ®(t,0) and Wi(t) £
Lp(t,0) for all t € R

Remark 4. We observe that WO(¢) is the unperturbed autonomous nonlinear system with initial condition
a, such that WO(¢t) = f(¥O(¢)) for all t € Ry, and ¥°(0) = a. Exchanging the two derivatives, we write the
evolution of first order approximation in Taylor series of perturbed system, as

) = 4 0,0y = L (a(1,0) = [Lb(1,0)|VI(B(1,0) = VOVA@L0),  ¥(0) =

Definition 1.9. We define two functions p : D? x R? x R, — R% and v : D? x R, — R? for any time
te Ry, as

p(U(t),e(t)€) £ fle(t) +UO(t) + eV (1)) — F(¥O(t) + eV (1) — e()V(¥O(X),  p(¥(1).0,¢) =0,
Y(U(t),€) £ FOUO(F) + €Wl (t) — F(LO(1) — eV () V F(LO(2)).
Lemma 1.10. In terms of p and vy defined in Definition[I.9, we can write the evolution of e as
é(t) = e(t)VF(T°(8) + p(L(2), e(t), €) + (L (2), €).

Proof. Using the definition of maps ¥° and ¥!, we can write the error function as e(t) = ®(t,e) — WO(t) —
eWl(t) for all t € R,. From the evolution of maps WO, Ul we can write the evolution of error function as

&(t) = f(®(t,€)) — F(WO(1) — W ()V F(EO(1)), e(0) = 0. (7)
From the definition of W%, W', p v, we observe that
p((t),e(t), ) + 7 (W(t),€) = f(D(t€)) = F(WO(1)) — e()VF(LO(1) — W' () VF(¥O(1)).
The result follows from the expression for é in . O

Lemma 1.11. Consider an autonomous nonlinear system ® defined in under Assumption U in
Definition[1.8, and p,~ in Definition[1.9, we have

Iy (2@), o)l < IE@)I Ip(¥(t), et), )l < Llle)l (e[ 2 (®)]| + lle®)]]),
where Zo(t) = WL (#)V2 fo (& () (WL (t)T for some &(t) € WO(t) + €[0, UL (t)] for all £ € [d].
Proof. Recall that f is twice differentiable with partial derivatives being Lipschitz under Assumption

1. Fix £ € [d]. From the mean value theorem applied to f; : [0,1] — [0,1] for the vector duration
WO(t) + €[0, Ul(t)], there exists o € [0,1] such that

Ye(U(t),€) = € (U (1), (VFo(LO(t) + gl (1) — Vfe(T°(1)))) -
From the mean value theorem applied to Vf, : [0,1]? — [0,1]¢ for the vector duration WO(¢) +
ayel0, ¥(t)], there exists ay € [0, 1] such that
Ye(U(t), €) = afpe? U () V2 fo(WO(t) + apayel’ (1)) (T (1))"

For each ¢ € [d], we define & (t) £ WO(t) + ayajeV(t) to observe that &(t) € WO(t) + €0, U1 (¢)] and
[7e(U(t),€)] < €2 |Ze(t)]. The first result follows from taking the square root of the sum of the squares
on both sides over all £ € [d].



2. Fix i,¢ € [d]. We observe that g—g(\ll(t)7e(t)7e) = V,file(t) + ¥O(t) + ePL(t)) — V,; fo(VO(¢)). From
the mean value theorem applied to fo : [0,1] — [0, 1] for the vector duration WO(¢) 4+ e¥!(1) + [0, e(t)],
there exists a € [0,1]¢ such that

p(W(),e(t), ) = e(t) (VF(WO(1) + W' (t) + ac e(t) = VA(I(1))).

The second result follows from the Lipschitz condition on partial derivatives of f; under Assumption[I.4]
and Cauchy-Schwartz inequality.

O

Proposition 1.12. Consider an autonomous nonlinear system ® defined in under Assumption and
Assumption . There exists a Lyapunov function V : R — R, such that

where ¢ : R%Z — R is defined as ¢(t,7) = exp ( — g (t—7)+ Lz [

2¢cy

[ lle(s)] + [W00s)]| + €W (5)][)ds )

T

forallt,7 € Ry and constants c¢, cy, cp, cq are defined in Proposition .

Proof. Under Assumption there exists a Lyapunov function V : R — R that satisfies conditions (), (5)), (6)
from Proposition [T.6] Further,

Vie) = (¢~ f(e), VV(e)) + (f(e), VV (e)) .

Recall that ¢ = eV f(¥O(t)) + p(, e, €) + v(¥,€) from Lemma From the Cauchy-Schwartz inequality,
we obtain

(e = [fle), VV(e)) < [[VV(e)|l (HG(Vf(\I’O) = V)| + eV f(0) = fe)ll +[Ip(T, e, )| + [[v(@, € )
From the Lipschitz property of partial derivatives of f from Assumption we obtain
[e(V (@) =V F0)|| < Lle] [[¢°]-

From the mean value theorem applied to f, there exists 3 € [0, 1] such that f(e) = f(0) +eV f(Boe), where
a* =0 is a rest point of ® and hence f(0) = 0. Together with Lipschitz property of partial derivatives of f
from Assumption [1.4] we obtain

eV £(0) = f(e) = le(VF(0) = VF(Boe)ll < Lel*.

From Lemma we have ||y < €||Z]| and [|p|| < Lle|| (¢|[¥*]| + llel]). Aggregating these results, we
obtain

(€= f(e), VV(e)) < LIVV(e)|llel (2 lell + ([ W] + € [[e ) +eIE[IVV(e]- (8)

For autonomous non-linear system ® defined in () with initial condition e, we have V(®;(e)) = (f(®;(e)), VV (®;(e))).
Since ®g(e) = e, we observe that

V(®i(e))] _ = (F(®o(e)), VV(Ro(e))) = (f(e), VV(e)) .

‘t:O

We have V(a) < —cq|lal|* from (©) and — llal® < — Y@ fom (). Substituting these results in the above

Cuy

equation, we obtain (f(e), VV(e)) = V(@t(e))’ . < —£V(e). We have [|[VV(a)|| < ¢, |lall from and
e u
llall®* < %{a) from (). Substituting these upper bounds in (8], we obtain

Cu

. C @ @ —_
Vie) < —2V(e) + LEV(e) (2 lell + [[ @] + € [[w*]] ) + TECIEIVY@©.



Defining W : Ry — Ry as W(t) £ \/V(e(t)), we observe W = 1 V()
h(t) & —5- + L=

(2 lle)l + H\I/O(t)H +e H\Iﬂ(t)H ) for all t € Ry. In terms of W and h, we write
W -

9

. We further define h : Ry — R as
2¢y,

%

W+ Lo2W (2lel + [0 + e 9] ) +
(&)

2 1= 2=z
2| = hW = .
We observe that ¢(t,7) = e~ J7 ()45 for each ¢, 7 € R, and hence we obtain from Gronwall’s inequality

¢
c
W(t) < t,OWO—&-ipeQ/ t,7)||Z2(7)] dr.
(t) < ¢(t,0)W(0) NG O¢( )IE@
Result follows from the fact that e(0) = 0 and V(0) =0
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