
Lecture-14: Perturbation theory

1 Perturbation theory

We focus on the perturbation of nonlinear autonomous systems, where only the initial condition is perturbed.
Consider a finite state space [d], and a compact subset D ⊆ [0, 1]d.

Definition 1.1. Consider a nonlinear autonomous system Φ : R+ × D → D defined in terms of f : D ⊆
[0, 1]d → Rd for each t ∈ R+ and initial condition Φ0 = a ∈ D as

Φt(a) ≜ a+

∫ t

0

Φs(a)ds. (1)

We note that the time derivative of Φ is d
dtΦt(a) = f(Φt(a)).

Definition 1.2. We fix two distributions a, b ∈ D and define the error in the first order approximation of
Φt(b) by Φt(a) at all times t ∈ R+ as

e(t) ≜ Φt(b)− Φt(a)− (b− a)∇Φt(a). (2)

Remark 1. Let a∗ be a rest point of Φt such that f(Φt(a
∗)) = 0, then we redefine Φt(a) ≜ Φt(a)− a∗ for all

a ∈ D. The rest point for this redefined Φ is a∗ = 0. Thus, without loss of any generality, we can assume
a∗ = 0.

Definition 1.3. We define c ≜ 1
ϵ (b− a) for some ϵ > 0, and consider the case when ∥c∥ = 1

ϵ ∥b− a∥ ⩽ c̃.

Assumption 1.4 (Lipschitz partial derivative). For any i ∈ [d], the function fi : [0, 1] → R is twice

continuously differentiable. Therefore, the Jacobian matrix (∇f(a))j,i =
∂fi(a)
∂aj

is Lipschitz, such that there

exists L > 0 such that
sup
c∈D

∥c(∇f(b)−∇f(a))∥ ⩽ L ∥c∥ ∥b− a∥ .

Remark 2. Consider ϵ-balls B(a, ϵ) ≜ {b ∈ D : ∥b− a∥ ⩽ ϵ}, and {B(a, ϵ) : a ∈ D} is an open cover for D,
From compactness of D ⊆ [0, 1]d, it can be covered by a finite sub-cover such that {B(a, ϵ) : a ∈ F} covers
D for some finite F . For any b ∈ D choose b∗ ∈ F such that b ∈ B(b∗, ϵ). Then, from triangle inequality, we
can write for all z ∈ Z, b ∈ D

∥∇fz(b)∥ ⩽ ∥∇fz(b)−∇fz(b
∗)∥+ ∥∇fz(b

∗)∥ ⩽ Lϵ+max {∥∇fz(a)∥ : a ∈ F} < ∞.

Assumption 1.5 (Stability). The dynamical system Φ has a unique equilibrium point a∗ = 0 and is
exponentially stable. In other words, there exist positive constants α and κ such that starting from any
initial condition a ∈ D and at any time t ∈ R+

∥Φt(a)∥ ⩽ κ ∥a∥ e−αt. (3)

Proposition 1.6 (Khalil). For any nonlinear autonomous system Φ defined in (1) under Assumption 1.5,
there exist a Lyapunov function V : D → R+ and constants cu, cℓ, cd, cp such that

cℓ ∥a∥2 ⩽ V (a) ⩽ cu ∥a∥2 , (4)

∥∇V (a)∥ ⩽ cp ∥a∥ , (5)

V̇ (a) ⩽ −cd ∥a∥2 . (6)
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Definition 1.7. For an autonomous nonlinear system Φ defined in (1), with initial condition a and perturbed
initial condition b = a+ ϵc, we define Φ̃ : R+ × R+ → D as Φ̃(t, ϵ) ≜ Φt(a+ ϵc) for all t, ϵ ∈ R+.

Remark 3. We observe that d
dϵ Φ̃(t, 0) = c∇Φt(a), and can write the finite Taylor series for Φ̃(t, ϵ) as

Φ̃(t, ϵ) = Φ̃(t, 0) + ϵ
d

dϵ
Φ̃(t, 0) + e(t), Φ̃(0, ϵ) = a+ ϵc.

We write the time derivative of autonomous nonlinear system with perturbed initial condition as

˙̃Φ(t, ϵ) = ˙̃Φ(t, 0) + ϵ
d

dt

d

dϵ
Φ̃(t, 0) + ė(t) = f(Φ̃(t, ϵ)).

Definition 1.8. We define Ψ : R+ → D2 as Ψ(t) ≜ (Ψ0(t),Ψ1(t)), where Ψ0(t) ≜ Φ̃(t, 0) and Ψ1(t) ≜
d
dϵ Φ̃(t, 0) for all t ∈ R+.

Remark 4. We observe that Ψ0(t) is the unperturbed autonomous nonlinear system with initial condition
a, such that Ψ̇0(t) = f(Ψ0(t)) for all t ∈ R+, and Ψ0(0) = a. Exchanging the two derivatives, we write the
evolution of first order approximation in Taylor series of perturbed system, as

Ψ̇1(t) =
d

dt

d

dϵ
Φ̃(t, 0) =

d

dϵ
f(Φ̃(t, 0)) =

[ d

dϵ
Φ̃(t, 0)

]
∇f(Φ̃(t, 0)) = Ψ1(t)∇f(Φ̃(t, 0)), Ψ1(0) = c.

Definition 1.9. We define two functions ρ : D2 × Rd × R+ → Rd and γ : D2 × R+ → Rd for any time
t ∈ R+, as

ρ(Ψ(t), e(t), ϵ) ≜ f(e(t) + Ψ0(t) + ϵΨ1(t))− f(Ψ0(t) + ϵΨ1(t))− e(t)∇f(Ψ0(t)), ρ(Ψ(t), 0, ϵ) = 0,

γ(Ψ(t), ϵ) ≜ f(Ψ0(t) + ϵΨ1(t))− f(Ψ0(t))− ϵΨ1(t)∇f(Ψ0(t)).

Lemma 1.10. In terms of ρ and γ defined in Definition 1.9, we can write the evolution of e as

ė(t) = e(t)∇f(Ψ0(t)) + ρ(Ψ(t), e(t), ϵ) + γ(Ψ(t), ϵ).

Proof. Using the definition of maps Ψ0 and Ψ1, we can write the error function as e(t) = Φ̃(t, ϵ) − Ψ0(t) −
ϵΨ1(t) for all t ∈ R+. From the evolution of maps Ψ0,Ψ1, we can write the evolution of error function as

ė(t) = f(Φ̃(t, ϵ))− f(Ψ0(t))− ϵΨ1(t)∇f(Ψ0(t)), e(0) = 0. (7)

From the definition of Ψ0,Ψ1, ρ, γ, we observe that

ρ(Ψ(t), e(t), ϵ) + γ(Ψ(t), ϵ) = f(Φ̃(t, ϵ))− f(Ψ0(t))− e(t)∇f(Ψ0(t))− ϵΨ1(t)∇f(Ψ0(t)).

The result follows from the expression for ė in (7).

Lemma 1.11. Consider an autonomous nonlinear system Φ defined in (1) under Assumption 1.4, Ψ in
Definition 1.8, and ρ, γ in Definition 1.9, we have

∥γ(Ψ(t), ϵ)∥ ⩽ ϵ2 ∥Ξ(t)∥ , ∥ρ(Ψ(t), e(t), ϵ)∥ ⩽ L ∥e(t)∥ (ϵ
∥∥Ψ1(t)

∥∥+ ∥e(t)∥),

where Ξℓ(t) ≜ Ψ1(t)∇2fℓ(ξℓ(t))(Ψ
1(t))T for some ξℓ(t) ∈ Ψ0(t) + ϵ[0,Ψ1(t)] for all ℓ ∈ [d].

Proof. Recall that f is twice differentiable with partial derivatives being Lipschitz under Assumption 1.4.

1. Fix ℓ ∈ [d]. From the mean value theorem applied to fℓ : [0, 1] → [0, 1] for the vector duration
Ψ0(t) + ϵ[0,Ψ1(t)], there exists α′

ℓ ∈ [0, 1] such that

γℓ(Ψ(t), ϵ) = ϵ
〈
Ψ1(t), (∇fℓ(Ψ

0(t) + α′
ℓϵΨ

1(t))−∇fℓ(Ψ
0(t)))

〉
.

From the mean value theorem applied to ∇fℓ : [0, 1]d → [0, 1]d for the vector duration Ψ0(t) +
α′
ℓϵ[0,Ψ

1(t)], there exists αℓ ∈ [0, 1] such that

γℓ(Ψ(t), ϵ) = α′
ℓϵ

2Ψ1(t)∇2fℓ(Ψ
0(t) + αℓα

′
ℓϵΨ

1(t))(Ψ1(t))T .

For each ℓ ∈ [d], we define ξℓ(t) ≜ Ψ0(t) + αℓα
′
ℓϵΨ

1(t) to observe that ξℓ(t) ∈ Ψ0(t) + ϵ[0,Ψ1(t)] and
|γℓ(Ψ(t), ϵ)| ⩽ ϵ2 |Ξℓ(t)|. The first result follows from taking the square root of the sum of the squares
on both sides over all ℓ ∈ [d].
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2. Fix i, ℓ ∈ [d]. We observe that ∂ρℓ

∂ei
(Ψ(t), e(t), ϵ) = ∇ifℓ(e(t) + Ψ0(t) + ϵΨ1(t)) − ∇ifℓ(Ψ

0(t)). From

the mean value theorem applied to fℓ : [0, 1] → [0, 1] for the vector duration Ψ0(t) + ϵΨ1(1) + [0, e(t)],
there exists a ∈ [0, 1]d such that

ρ(Ψ(t), e(t), ϵ) = e(t)
(
∇f(Ψ0(t) + ϵΨ1(t) + a ◦ e(t))−∇f(Ψ0(t))

)
.

The second result follows from the Lipschitz condition on partial derivatives of fℓ under Assumption 1.4
and Cauchy-Schwartz inequality.

Proposition 1.12. Consider an autonomous nonlinear system Φ defined in (1) under Assumption 1.4 and
Assumption 1.5. There exists a Lyapunov function V : Rd → R+ such that

V (e(t)) ⩽
c2p
4cℓ

ϵ4
(∫ t

0

ϕ(t, τ) ∥Ξ(τ)∥ dτ
)2

,

where ϕ : R2
+ → R+ is defined as ϕ(t, τ) ≜ exp

(
− cd

2cu
(t− τ) + L

cp
2cℓ

∫ t

τ
(2 ∥e(s)∥+

∥∥Ψ0(s)
∥∥+ ϵ

∥∥Ψ1(s)
∥∥)ds)

for all t, τ ∈ R+ and constants cℓ, cu, cp, cd are defined in Proposition 1.6.

Proof. Under Assumption 1.5, there exists a Lyapunov function V : Rd → R+ that satisfies conditions (4), (5), (6)
from Proposition 1.6. Further,

V̇ (e) = ⟨ė− f(e),∇V (e)⟩+ ⟨f(e),∇V (e)⟩ .

Recall that ė = e∇f(Ψ0(t)) + ρ(Ψ, e, ϵ) + γ(Ψ, ϵ) from Lemma 1.10. From the Cauchy-Schwartz inequality,
we obtain

⟨ė− f(e),∇V (e)⟩ ⩽ ∥∇V (e)∥
(∥∥e(∇f(Ψ0)−∇f(0))

∥∥+ ∥e∇f(0)− f(e)∥+ ∥ρ(Ψ, e, ϵ)∥+ ∥γ(Ψ, ϵ)∥
)
.

From the Lipschitz property of partial derivatives of f from Assumption 1.4, we obtain∥∥e(∇f(Ψ0)−∇f(0))
∥∥ ⩽ L ∥e∥

∥∥Ψ0
∥∥ .

From the mean value theorem applied to f , there exists β ∈ [0, 1]d such that f(e) = f(0)+e∇f(β ◦e), where
a∗ = 0 is a rest point of Φ and hence f(0) = 0. Together with Lipschitz property of partial derivatives of f
from Assumption 1.4, we obtain

∥e∇f(0)− f(e)∥ = ∥e(∇f(0)−∇f(β ◦ e))∥ ⩽ L ∥e∥2 .

From Lemma 1.11, we have ∥γ∥ ⩽ ϵ2 ∥Ξ∥ and ∥ρ∥ ⩽ L ∥e∥ (ϵ
∥∥Ψ1

∥∥ + ∥e∥). Aggregating these results, we
obtain

⟨ė− f(e),∇V (e)⟩ ⩽ L ∥∇V (e)∥ ∥e∥
(
2 ∥e∥+

∥∥Ψ0
∥∥+ ϵ

∥∥Ψ1
∥∥)+ ϵ2 ∥Ξ∥ ∥∇V (e)∥ . (8)

For autonomous non-linear system Φ defined in (1) with initial condition e, we have V̇ (Φt(e)) = ⟨f(Φt(e)),∇V (Φt(e))⟩.
Since Φ0(e) = e, we observe that

V̇ (Φt(e))
∣∣∣
t=0

= ⟨f(Φ0(e)),∇V (Φ0(e))⟩ = ⟨f(e),∇V (e)⟩ .

We have V̇ (a) ⩽ −cd ∥a∥2 from (6) and −∥a∥2 ⩽ −V (a)
cu

from (4). Substituting these results in the above

equation, we obtain ⟨f(e),∇V (e)⟩ = V̇ (Φt(e))
∣∣∣
t=0

⩽ − cd
cu
V (e). We have ∥∇V (a)∥ ⩽ cp ∥a∥ from (5) and

∥a∥2 ⩽ V (a)
cℓ

from (4). Substituting these upper bounds in (8), we obtain

V̇ (e) ⩽ − cd
cu

V (e) + L
cp
cℓ
V (e)

(
2 ∥e∥+

∥∥Ψ0
∥∥+ ϵ

∥∥Ψ1
∥∥)+

cp√
cℓ
ϵ2 ∥Ξ∥

√
V (e).
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Defining W : R+ → R+ as W (t) ≜
√
V (e(t)), we observe Ẇ = 1

2
V̇ (e)√
V (e)

. We further define h : R+ → R as

h(t) ≜ − cd
2cu

+ L
cp
2cℓ

(
2 ∥e(t)∥+

∥∥Ψ0(t)
∥∥+ ϵ

∥∥Ψ1(t)
∥∥) for all t ∈ R+. In terms of W and h, we write

Ẇ ⩽ − cd
2cu

W + L
cp
2cℓ

W
(
2 ∥e∥+

∥∥Ψ0
∥∥+ ϵ

∥∥Ψ1
∥∥)+

cp
2
√
cℓ
ϵ2 ∥Ξ∥ = hW +

cp
2
√
cℓ
ϵ2 ∥Ξ∥ .

We observe that ϕ(t, τ) = e−
∫ t
τ
h(s)ds for each t, τ ∈ R+, and hence we obtain from Gronwall’s inequality

W (t) ⩽ ϕ(t, 0)W (0) +
cp

2
√
cℓ
ϵ2

∫ t

0

ϕ(t, τ) ∥Ξ(τ)∥ dτ.

Result follows from the fact that e(0) = 0 and V (0) = 0.
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