Lecture-14: Perturbation theory

1 Perturbation theory

We focus on the perturbation of nonlinear autonomous systems, where only the initial condition is perturbed. Consider a finite state space $[d]$, and a compact subset $\mathcal{D} \subseteq[0,1]^{d}$.
Definition 1.1. Consider a nonlinear autonomous system $\Phi: \mathbb{R}_{+} \times \mathcal{D} \rightarrow \mathcal{D}$ defined in terms of $f: \mathcal{D} \subseteq$ $[0,1]^{d} \rightarrow \mathbb{R}^{d}$ for each $t \in \mathbb{R}_{+}$and initial condition $\Phi_{0}=a \in \mathcal{D}$ as

$$
\begin{equation*}
\Phi_{t}(a) \triangleq a+\int_{0}^{t} \Phi_{s}(a) d s \tag{1}
\end{equation*}
$$

We note that the time derivative of Φ is $\frac{d}{d t} \Phi_{t}(a)=f\left(\Phi_{t}(a)\right)$.
Definition 1.2. We fix two distributions $a, b \in \mathcal{D}$ and define the error in the first order approximation of $\Phi_{t}(b)$ by $\Phi_{t}(a)$ at all times $t \in \mathbb{R}_{+}$as

$$
\begin{equation*}
e(t) \triangleq \Phi_{t}(b)-\Phi_{t}(a)-(b-a) \nabla \Phi_{t}(a) \tag{2}
\end{equation*}
$$

Remark 1. Let a^{*} be a rest point of Φ_{t} such that $f\left(\Phi_{t}\left(a^{*}\right)\right)=0$, then we redefine $\Phi_{t}(a) \triangleq \Phi_{t}(a)-a^{*}$ for all $a \in \mathcal{D}$. The rest point for this redefined Φ is $a^{*}=0$. Thus, without loss of any generality, we can assume $a^{*}=0$.
Definition 1.3. We define $c \triangleq \frac{1}{\epsilon}(b-a)$ for some $\epsilon>0$, and consider the case when $\|c\|=\frac{1}{\epsilon}\|b-a\| \leqslant \tilde{c}$.
Assumption 1.4 (Lipschitz partial derivative). For any $i \in[d]$, the function $f_{i}:[0,1] \rightarrow \mathbb{R}$ is twice continuously differentiable. Therefore, the Jacobian matrix $(\nabla f(a))_{j, i}=\frac{\partial f_{i}(a)}{\partial a_{j}}$ is Lipschitz, such that there exists $L>0$ such that

$$
\sup _{c \in \mathcal{D}}\|c(\nabla f(b)-\nabla f(a))\| \leqslant L\|c\|\|b-a\|
$$

Remark 2. Consider ϵ-balls $B(a, \epsilon) \triangleq\{b \in \mathcal{D}:\|b-a\| \leqslant \epsilon\}$, and $\{B(a, \epsilon): a \in \mathcal{D}\}$ is an open cover for \mathcal{D}, From compactness of $\mathcal{D} \subseteq[0,1]^{d}$, it can be covered by a finite sub-cover such that $\{B(a, \epsilon): a \in F\}$ covers \mathcal{D} for some finite F. For any $b \in \mathcal{D}$ choose $b^{*} \in F$ such that $b \in B\left(b^{*}, \epsilon\right)$. Then, from triangle inequality, we can write for all $z \in \mathcal{Z}, b \in \mathcal{D}$

$$
\left\|\nabla f_{z}(b)\right\| \leqslant\left\|\nabla f_{z}(b)-\nabla f_{z}\left(b^{*}\right)\right\|+\left\|\nabla f_{z}\left(b^{*}\right)\right\| \leqslant L \epsilon+\max \left\{\left\|\nabla f_{z}(a)\right\|: a \in F\right\}<\infty
$$

Assumption 1.5 (Stability). The dynamical system Φ has a unique equilibrium point $a^{*}=0$ and is exponentially stable. In other words, there exist positive constants α and κ such that starting from any initial condition $a \in \mathcal{D}$ and at any time $t \in \mathbb{R}_{+}$

$$
\begin{equation*}
\left\|\Phi_{t}(a)\right\| \leqslant \kappa\|a\| e^{-\alpha t} \tag{3}
\end{equation*}
$$

Proposition 1.6 (Khalil). For any nonlinear autonomous system Φ defined in (1) under Assumption 1.5 , there exist a Lyapunov function $V: \mathcal{D} \rightarrow \mathbb{R}_{+}$and constants $c_{u}, c_{\ell}, c_{d}, c_{p}$ such that

$$
\begin{align*}
& c_{\ell}\|a\|^{2} \leqslant V(a) \leqslant c_{u}\|a\|^{2}, \tag{4}\\
& \|\nabla V(a)\| \leqslant c_{p}\|a\| \tag{5}\\
& \dot{V}(a) \leqslant-c_{d}\|a\|^{2} . \tag{6}
\end{align*}
$$

Definition 1.7. For an autonomous nonlinear system Φ defined in (1), with initial condition a and perturbed initial condition $b=a+\epsilon c$, we define $\tilde{\Phi}: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathcal{D}$ as $\tilde{\Phi}(t, \epsilon) \stackrel{\Phi}{=} \Phi_{t}(a+\epsilon c)$ for all $t, \epsilon \in \mathbb{R}_{+}$.
Remark 3. We observe that $\frac{d}{d \epsilon} \tilde{\Phi}(t, 0)=c \nabla \Phi_{t}(a)$, and can write the finite Taylor series for $\tilde{\Phi}(t, \epsilon)$ as

$$
\tilde{\Phi}(t, \epsilon)=\tilde{\Phi}(t, 0)+\epsilon \frac{d}{d \epsilon} \tilde{\Phi}(t, 0)+e(t), \quad \tilde{\Phi}(0, \epsilon)=a+\epsilon c
$$

We write the time derivative of autonomous nonlinear system with perturbed initial condition as

$$
\dot{\tilde{\Phi}}(t, \epsilon)=\dot{\tilde{\Phi}}(t, 0)+\epsilon \frac{d}{d t} \frac{d}{d \epsilon} \tilde{\Phi}(t, 0)+\dot{e}(t)=f(\tilde{\Phi}(t, \epsilon))
$$

Definition 1.8. We define $\Psi: \mathbb{R}_{+} \rightarrow \mathcal{D}^{2}$ as $\Psi(t) \triangleq\left(\Psi^{0}(t), \Psi^{1}(t)\right)$, where $\Psi^{0}(t) \triangleq \tilde{\Phi}(t, 0)$ and $\Psi^{1}(t) \triangleq$ $\frac{d}{d \epsilon} \tilde{\Phi}(t, 0)$ for all $t \in \mathbb{R}_{+}$.

Remark 4. We observe that $\Psi^{0}(t)$ is the unperturbed autonomous nonlinear system with initial condition a, such that $\dot{\Psi}^{0}(t)=f\left(\Psi^{0}(t)\right)$ for all $t \in \mathbb{R}_{+}$, and $\Psi^{0}(0)=a$. Exchanging the two derivatives, we write the evolution of first order approximation in Taylor series of perturbed system, as

$$
\dot{\Psi}^{1}(t)=\frac{d}{d t} \frac{d}{d \epsilon} \tilde{\Phi}(t, 0)=\frac{d}{d \epsilon} f(\tilde{\Phi}(t, 0))=\left[\frac{d}{d \epsilon} \tilde{\Phi}(t, 0)\right] \nabla f(\tilde{\Phi}(t, 0))=\Psi^{1}(t) \nabla f(\tilde{\Phi}(t, 0)), \quad \Psi^{1}(0)=c
$$

Definition 1.9. We define two functions $\rho: \mathcal{D}^{2} \times \mathbb{R}^{d} \times \mathbb{R}_{+} \rightarrow \mathbb{R}^{d}$ and $\gamma: \mathcal{D}^{2} \times \mathbb{R}_{+} \rightarrow \mathbb{R}^{d}$ for any time $t \in \mathbb{R}_{+}$, as

$$
\begin{aligned}
& \rho(\Psi(t), e(t), \epsilon) \triangleq f\left(e(t)+\Psi^{0}(t)+\epsilon \Psi^{1}(t)\right)-f\left(\Psi^{0}(t)+\epsilon \Psi^{1}(t)\right)-e(t) \nabla f\left(\Psi^{0}(t)\right), \quad \rho(\Psi(t), 0, \epsilon)=0, \\
& \gamma(\Psi(t), \epsilon) \triangleq f\left(\Psi^{0}(t)+\epsilon \Psi^{1}(t)\right)-f\left(\Psi^{0}(t)\right)-\epsilon \Psi^{1}(t) \nabla f\left(\Psi^{0}(t)\right)
\end{aligned}
$$

Lemma 1.10. In terms of ρ and γ defined in Definition 1.9, we can write the evolution of as

$$
\dot{e}(t)=e(t) \nabla f\left(\Psi^{0}(t)\right)+\rho(\Psi(t), e(t), \epsilon)+\gamma(\Psi(t), \epsilon)
$$

Proof. Using the definition of maps Ψ^{0} and Ψ^{1}, we can write the error function as $e(t)=\tilde{\Phi}(t, \epsilon)-\Psi^{0}(t)-$ $\epsilon \Psi^{1}(t)$ for all $t \in \mathbb{R}_{+}$. From the evolution of maps Ψ^{0}, Ψ^{1}, we can write the evolution of error function as

$$
\begin{equation*}
\dot{e}(t)=f(\tilde{\Phi}(t, \epsilon))-f\left(\Psi^{0}(t)\right)-\epsilon \Psi^{1}(t) \nabla f\left(\Psi^{0}(t)\right), \quad e(0)=0 \tag{7}
\end{equation*}
$$

From the definition of $\Psi^{0}, \Psi^{1}, \rho, \gamma$, we observe that

$$
\rho(\Psi(t), e(t), \epsilon)+\gamma(\Psi(t), \epsilon)=f(\tilde{\Phi}(t, \epsilon))-f\left(\Psi^{0}(t)\right)-e(t) \nabla f\left(\Psi^{0}(t)\right)-\epsilon \Psi^{1}(t) \nabla f\left(\Psi^{0}(t)\right)
$$

The result follows from the expression for \dot{e} in (7).
Lemma 1.11. Consider an autonomous nonlinear system Φ defined in (1) under Assumption 1.4, Ψ in Definition 1.8, and ρ, γ in Definition 1.9, we have

$$
\|\gamma(\Psi(t), \epsilon)\| \leqslant \epsilon^{2}\|\Xi(t)\|, \quad\|\rho(\Psi(t), e(t), \epsilon)\| \leqslant L\|e(t)\|\left(\epsilon\left\|\Psi^{1}(t)\right\|+\|e(t)\|\right)
$$

where $\Xi_{\ell}(t) \triangleq \Psi^{1}(t) \nabla^{2} f_{\ell}\left(\xi_{\ell}(t)\right)\left(\Psi^{1}(t)\right)^{T}$ for some $\xi_{\ell}(t) \in \Psi^{0}(t)+\epsilon\left[0, \Psi^{1}(t)\right]$ for all $\ell \in[d]$.
Proof. Recall that f is twice differentiable with partial derivatives being Lipschitz under Assumption 1.4 ,

1. Fix $\ell \in[d]$. From the mean value theorem applied to $f_{\ell}:[0,1] \rightarrow[0,1]$ for the vector duration $\Psi^{0}(t)+\epsilon\left[0, \Psi^{1}(t)\right]$, there exists $\alpha_{\ell}^{\prime} \in[0,1]$ such that

$$
\gamma_{\ell}(\Psi(t), \epsilon)=\epsilon\left\langle\Psi^{1}(t),\left(\nabla f_{\ell}\left(\Psi^{0}(t)+\alpha_{\ell}^{\prime} \epsilon \Psi^{1}(t)\right)-\nabla f_{\ell}\left(\Psi^{0}(t)\right)\right)\right\rangle .
$$

From the mean value theorem applied to $\nabla f_{\ell}:[0,1]^{d} \rightarrow[0,1]^{d}$ for the vector duration $\Psi^{0}(t)+$ $\alpha_{\ell}^{\prime} \epsilon\left[0, \Psi^{1}(t)\right]$, there exists $\alpha_{\ell} \in[0,1]$ such that

$$
\gamma_{\ell}(\Psi(t), \epsilon)=\alpha_{\ell}^{\prime} \epsilon^{2} \Psi^{1}(t) \nabla^{2} f_{\ell}\left(\Psi^{0}(t)+\alpha_{\ell} \alpha_{\ell}^{\prime} \epsilon \Psi^{1}(t)\right)\left(\Psi^{1}(t)\right)^{T}
$$

For each $\ell \in[d]$, we define $\xi_{\ell}(t) \triangleq \Psi^{0}(t)+\alpha_{\ell} \alpha_{\ell}^{\prime} \epsilon \Psi^{1}(t)$ to observe that $\xi_{\ell}(t) \in \Psi^{0}(t)+\epsilon\left[0, \Psi^{1}(t)\right]$ and $\left|\gamma_{\ell}(\Psi(t), \epsilon)\right| \leqslant \epsilon^{2}\left|\Xi_{\ell}(t)\right|$. The first result follows from taking the square root of the sum of the squares on both sides over all $\ell \in[d]$.
2. Fix $i, \ell \in[d]$. We observe that $\frac{\partial \rho_{\ell}}{\partial e_{i}}(\Psi(t), e(t), \epsilon)=\nabla_{i} f_{\ell}\left(e(t)+\Psi^{0}(t)+\epsilon \Psi^{1}(t)\right)-\nabla_{i} f_{\ell}\left(\Psi^{0}(t)\right)$. From the mean value theorem applied to $f_{\ell}:[0,1] \rightarrow[0,1]$ for the vector duration $\Psi^{0}(t)+\epsilon \Psi^{1}(1)+[0, e(t)]$, there exists $a \in[0,1]^{d}$ such that

$$
\rho(\Psi(t), e(t), \epsilon)=e(t)\left(\nabla f\left(\Psi^{0}(t)+\epsilon \Psi^{1}(t)+a \circ e(t)\right)-\nabla f\left(\Psi^{0}(t)\right)\right)
$$

The second result follows from the Lipschitz condition on partial derivatives of f_{ℓ} under Assumption 1.4 and Cauchy-Schwartz inequality.

Proposition 1.12. Consider an autonomous nonlinear system Φ defined in (1) under Assumption 1.4 and Assumption 1.5. There exists a Lyapunov function $V: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$such that

$$
V(e(t)) \leqslant \frac{c_{p}^{2}}{4 c_{\ell}} \epsilon^{4}\left(\int_{0}^{t} \phi(t, \tau)\|\Xi(\tau)\| d \tau\right)^{2}
$$

where $\phi: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}$is defined as $\phi(t, \tau) \triangleq \exp \left(-\frac{c_{d}}{2 c_{u}}(t-\tau)+L \frac{c_{p}}{2 c_{\ell}} \int_{\tau}^{t}\left(2\|e(s)\|+\left\|\Psi^{0}(s)\right\|+\epsilon\left\|\Psi^{1}(s)\right\|\right) d s\right)$ for all $t, \tau \in \mathbb{R}_{+}$and constants $c_{\ell}, c_{u}, c_{p}, c_{d}$ are defined in Proposition 1.6.

Proof. Under Assumption 1.5, there exists a Lyapunov function $V: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$that satisfies conditions (4), (5), (6) from Proposition 1.6. Further,

$$
\dot{V}(e)=\langle\dot{e}-f(e), \nabla V(e)\rangle+\langle f(e), \nabla V(e)\rangle .
$$

Recall that $\dot{e}=e \nabla f\left(\Psi^{0}(t)\right)+\rho(\Psi, e, \epsilon)+\gamma(\Psi, \epsilon)$ from Lemma 1.10. From the Cauchy-Schwartz inequality, we obtain

$$
\langle\dot{e}-f(e), \nabla V(e)\rangle \leqslant\|\nabla V(e)\|\left(\left\|e\left(\nabla f\left(\Psi^{0}\right)-\nabla f(0)\right)\right\|+\|e \nabla f(0)-f(e)\|+\|\rho(\Psi, e, \epsilon)\|+\|\gamma(\Psi, \epsilon)\|\right)
$$

From the Lipschitz property of partial derivatives of f from Assumption 1.4, we obtain

$$
\left\|e\left(\nabla f\left(\Psi^{0}\right)-\nabla f(0)\right)\right\| \leqslant L\|e\|\left\|\Psi^{0}\right\|
$$

From the mean value theorem applied to f, there exists $\beta \in[0,1]^{d}$ such that $f(e)=f(0)+e \nabla f(\beta \circ e)$, where $a^{*}=0$ is a rest point of Φ and hence $f(0)=0$. Together with Lipschitz property of partial derivatives of f from Assumption 1.4 , we obtain

$$
\|e \nabla f(0)-f(e)\|=\|e(\nabla f(0)-\nabla f(\beta \circ e))\| \leqslant L\|e\|^{2}
$$

From Lemma 1.11, we have $\|\gamma\| \leqslant \epsilon^{2}\|\Xi\|$ and $\|\rho\| \leqslant L\|e\|\left(\epsilon\left\|\Psi^{1}\right\|+\|e\|\right)$. Aggregating these results, we obtain

$$
\begin{equation*}
\langle\dot{e}-f(e), \nabla V(e)\rangle \leqslant L\|\nabla V(e)\|\|e\|\left(2\|e\|+\left\|\Psi^{0}\right\|+\epsilon\left\|\Psi^{1}\right\|\right)+\epsilon^{2}\|\Xi\|\|\nabla V(e)\| \tag{8}
\end{equation*}
$$

For autonomous non-linear system Φ defined in 1 with initial condition e, we have $\dot{V}\left(\Phi_{t}(e)\right)=\left\langle f\left(\Phi_{t}(e)\right), \nabla V\left(\Phi_{t}(e)\right)\right\rangle$. Since $\Phi_{0}(e)=e$, we observe that

$$
\left.\dot{V}\left(\Phi_{t}(e)\right)\right|_{t=0}=\left\langle f\left(\Phi_{0}(e)\right), \nabla V\left(\Phi_{0}(e)\right)\right\rangle=\langle f(e), \nabla V(e)\rangle
$$

We have $\dot{V}(a) \leqslant-c_{d}\|a\|^{2}$ from (6) and $-\|a\|^{2} \leqslant-\frac{V(a)}{c_{u}}$ from (4). Substituting these results in the above equation, we obtain $\langle f(e), \nabla V(e)\rangle=\left.\dot{V}\left(\Phi_{t}(e)\right)\right|_{t=0} \leqslant-\frac{c_{d}}{c_{u}} V(e)$. We have $\|\nabla V(a)\| \leqslant c_{p}\|a\|$ from (5) and $\|a\|^{2} \leqslant \frac{V(a)}{c_{\ell}}$ from (4). Substituting these upper bounds in (8), we obtain

$$
\dot{V}(e) \leqslant-\frac{c_{d}}{c_{u}} V(e)+L \frac{c_{p}}{c_{\ell}} V(e)\left(2\|e\|+\left\|\Psi^{0}\right\|+\epsilon\left\|\Psi^{1}\right\|\right)+\frac{c_{p}}{\sqrt{c_{\ell}}} \epsilon^{2}\|\Xi\| \sqrt{V(e)} .
$$

Defining $W: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$as $W(t) \triangleq \sqrt{V(e(t))}$, we observe $\dot{W}=\frac{1}{2} \frac{\dot{V}(e)}{\sqrt{V(e)}}$. We further define $h: \mathbb{R}_{+} \rightarrow \mathbb{R}$ as $h(t) \triangleq-\frac{c_{d}}{2 c_{u}}+L \frac{c_{p}}{2 c_{\ell}}\left(2\|e(t)\|+\left\|\Psi^{0}(t)\right\|+\epsilon\left\|\Psi^{1}(t)\right\|\right)$ for all $t \in \mathbb{R}_{+}$. In terms of W and h, we write

$$
\dot{W} \leqslant-\frac{c_{d}}{2 c_{u}} W+L \frac{c_{p}}{2 c_{\ell}} W\left(2\|e\|+\left\|\Psi^{0}\right\|+\epsilon\left\|\Psi^{1}\right\|\right)+\frac{c_{p}}{2 \sqrt{c_{\ell}}} \epsilon^{2}\|\Xi\|=h W+\frac{c_{p}}{2 \sqrt{c_{\ell}}} \epsilon^{2}\|\Xi\|
$$

We observe that $\phi(t, \tau)=e^{-\int_{\tau}^{t} h(s) d s}$ for each $t, \tau \in \mathbb{R}_{+}$, and hence we obtain from Gronwall's inequality

$$
W(t) \leqslant \phi(t, 0) W(0)+\frac{c_{p}}{2 \sqrt{c_{\ell}}} \epsilon^{2} \int_{0}^{t} \phi(t, \tau)\|\Xi(\tau)\| d \tau
$$

Result follows from the fact that $e(0)=0$ and $V(0)=0$.

