
Lecture-17: Interacting particle systems

1 Ferromagnets and Ising models

Magnetic materials contain molecules with individual magnetic moments that tend to align with the external
magnetic field. Magnetic moments of different molecules interact with each other. In many materials, the
energy is lower when the moments align. A simple mathematical model for considering a number of particles
with interacting moments is the Ising model, which describes the magnetic moments by Ising spins localized
at the vertices of a certain region of a d-dimensional cubic lattice L. The cubic lattice L = (V, F ) is
determined by the set of vertices V ≜ [L]d and the edges between the nearest neighbors defined as

F ≜ ({i, j} ∈ [L]d × [L]d :

d∑
k=1

|ik − jk| = 1).

1.1 Energy function

Ising spins of particles at lattice points is denoted by σ ∈ X ≜ Z[L]d where the configuration of a particle at
each coordinate i ∈ [L]d is an Ising spin σi ∈ Z ≜ {−1, 1}. We denote the number of particles N ≜ Ld and
X is the space of configuration. The energy of an N particle configuration σ is given by

E(σ) = −
∑

{i,j}∈F

σiσj −B
∑

i∈[L]d

σi, (1)

where the sum over (i, j) runs over all the unordered pairs of sites i, j ∈ [L]d which are nearest neighbors and
B is the applied external magnetic field. Determining the free energy density f(β) in the thermodynamic
limit for this model is a non-trivial task. In 1924, Ernst Ising solved the d = 1 case and showed the absence of
phase transitions. In 1948, Lars Onsager solved the d = 2 case, exhibiting the first soluble finite-dimensional
model with a second-order phase transition. The problem is unsolved in higher dimensions, although many
important features of the solution are well understood.

1.2 Temperature limits

The two limiting cases that can be considered are at high and low temperatures.

High temperature limit, β → 0. The energy no longer matters and the Boltzmann distribution is uniform
over all configurations σ ∈ ZN . That is, µβ(σ) =

1
2N

for all σ ∈ ZN .

Low temperature limit, β → ∞. The Boltzmann distribution concentrates onto the ground state(s). In
the absence of external magnetic field, i.e B = 0, the two degenerate ground states are given by,

σ+ = (σi = 1 : i ∈ [L]d), σ− = (σi = −1 : i ∈ [L]d).

If the magnetic field is set to some non-zero value, one of the two configuration dominates. The ground
state is σ+ if B > 0 and the ground state is σ− if B < 0.

1.3 Important observables for ferromagnets

Definition 1.1. Expected spin with respect to the Boltzmann distribution for any particle i ∈ [L]d, is
defined as ⟨σi⟩ ≜

∑
σ∈X µβ(σ)σi.
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Definition 1.2. The extent of alignment in a region due to an external magnetic field B is given by average
magnetization, defined as MN (β,B) ≜ 1

N

∑
i∈[L]d ⟨σi⟩ .

Lemma 1.3. Average magnetization MN (β,B) is an odd function of B, and hence MN (β, 0) = 0.

Proof. Recall that µN (β,B) = 1
ZN (β,B)e

−βE(σ,B) where −βE(σ,B) = β
∑

i,j∈F σiσj + βB
∑

i∈[L]d σi. We

observe that −βE(σ,B) = −βE(−σ,−B). Thus, we can write

ZN (β,B) =
∑
σ

e−βE(σ,B) =
∑
σ

e−βE(−σ,−B) =
∑
−σ

e−βE(σ,−B) = ZN (β,−B).

Further, we can write the numerator as
∑

σ σie
−βE(σ,B) =

∑
σ σie

−βE(−σ,−B) = −
∑

−σ σie
−βE(σ,−B). Com-

bining the two results, we obtain

MN (β,B) =
1

ZN (β,B)

∑
σ

σie
−βE(σ,B) = − 1

ZN (β,−B)

∑
−σ

σie
−βE(σ,−B) =MN (β,−B).

Definition 1.4. The spontaneous magnetization is defined as the large particle and low positive magnetic
field limit of average magnetization, i.e. M+(β) ≜ limB↓0 limN→∞MN (β,B).

Remark 1. We observe the following properties hold for spontaneous magnetization.

1. At high temperatures when β → 0, the alignment of spins are random, and hence M+(0) = 0. We
observe that this is true for all d and is referred to as the paramagnetic phase.

2. At low temperatures when β → ∞ and any positive magnetic field B ↓ 0, the alignment of spins is σ+,
i.e. ⟨σi⟩ = 1 for all i ∈ [L]d and hence M+(∞) = 1.

3. Phase transition for the system occurs at the critical temperature Tc ≜ 1/βc which depends on the
number of dimensions d. We have M+(β) = 0 for all β < βc and M+(β) > 0 for all β > βc(d).

4. In one-dimensional systems (d = 1), a phase transition occurs at Tc = 0.

5. For the number of dimensions d ⩾ 2, the critical temperature is non-zero.

1.4 Rescaled magnetic field

To analyze the limiting behavior upon the application of a magnetic field, we define a rescaled magnetic field
x = βB, with inverse temperature β → 0 or β → ∞, keeping x fixed. With this, we will subsequently study
some of the qualitative properties of the resultant model. We can write the scaled energy function for the
ferromagnetic Ising model as

−βE(σ) = β
∑

{i,j}∈F

σiσj + x
∑

i∈[L]d

σi.

High temperature limit β → 0. We have limβ→0 −βE(σ) = x
∑

i σi, corresponding to non-interacting
systems, and hence

µβ(σ) =
∏
i

µβ(σi), where µβ(σi) =
exσi

ex + e−x
.

Therefore, we can write ⟨σi⟩ =
∑

σi=±1 σiµβ(σi) = tanh(x).

Low temperature limit β → ∞. The ground state is given by σi = sign(x) for all i ∈ [L]d. Therefore,
we can write the scaled energy function as −βE(x) = β |F |+ xN . Since |F | ≈ Nd, we get −βE(x) ≈
N(βd+ |x|). We can write the Boltzmann distribution as µβ(σ) =

eN|x|

e−Nx+eNx . It follows that

⟨σi⟩ =
eNx − e−Nx

eNx + e−Nx
= tanh(Nx). (2)
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1.5 The one-dimensional case

Consider a one-dimensional system where d = 1, and hence has L spins with energy E(σ) ≜ −
∑L−1

i=1 σiσi+1−
B
∑L

i=1 σi.

Definition 1.5. The partial partition function where the configurations of all spins (σ1, . . . , σp) have
been summed over and σp+1 is fixed, is defined as

zp(β,B, σp+1) ≜
∑

σ1,...,σp

exp

[
β

p∑
i=1

σiσi+1 + βB

p∑
i=1

σi

]
.

We define row vector zp(β,B) ≜
[
zp(β,B,−1) zp(β,B, 1)

]
and 2 × 2 transfer matrix T (σp, σp+1) ≜

eβσpσp+1+βBσp for all σp, σp+1 ∈ Z = {−1, 1}, such that

T =

[
eβ−βB e−β−βB

e−β+βB eβ+βB

]
.

Remark 2. The eigenvalues of the transfer matrix T are λ1,2 ≜ eβ cosh(βB)±
√
e2β sinh2(βB) + e−2β . For

an eigenvalue λi the associated left and right eigenvectors are denoted by ψi and ϕTi respectively, where
i ∈ {1, 2}. We observe that

ψ1,2e
−β(1−B) = −ψ1,1(e

β(1−B) − λ1), ϕ1,2e
−β(1+B) = −ϕ1,1(eβ(1−B) − λ1). (3)

Proposition 1.6. The partition function for one-dimensional ferromagnetic model with L spins is given by

ZL(β,B) = u1λ
L−1
1 ⟨ψ1, ψR⟩+ u2λ

L−1
2 ⟨ψ2, ψR⟩ . (4)

Proof. In terms of matrix T and row vector zp(β,B), we write the following recursive relation for all p ∈ [L−1]
and σp+1 ∈ Z as

zp(β,B, σp+1) =
∑
σp∈Z

zp−1(β,B, σp)T (σp, σp+1) = (zp−1(β,B)T )σp+1
.

We can rewrite this recursion as zp(β,B) = zp−1(β,B)T for p ∈ [L− 1]. Using the definition of zL−1(β,B)
and ZL(β,B), we can write the partition function as

ZL(β,B) =
∑
σ∈ZL

eβ
∑L−1

i=1 σiσi+1+βB
∑L

i=1 σi =
∑
σL∈Z

zL−1(β,B, σL)e
βBσL .

We define two row vectors ψL ≜
[
1 1

]
= z0(β,B) and ψR ≜

[
e−βB eβB

]
, we obtain

zL−1(β,B) = ψLT
L−1, ZL(β,B) =

〈
ψLT

L−1, ψR

〉
.

Let u1, u2 ∈ R such that ψL = u1ψ1 + u2ψ2. It follows that ψLT
L−1 = u1λ

L−1
1 ψ1 + u2λ

L−1
2 ψ2, and the

result follows.

Lemma 1.7. Free entropy density for a one-dimensional ferromagnetic system with finite β is given by
ϕ(β,B) = log λ1.

Proof. The result is immediate from the definition of free entropy density ϕ(β,B) = limN→∞
1
N logZN (β,B),

the eigenvalue decomposition of partition function in (4), and the fact that λ1 > λ2.

Lemma 1.8. Defining 2 × 2 diagonal matrix σ̂ ≜ diag(−1, 1), the expected spin under the Boltzmann
distribution for a one-dimensional ferromagnetic system with finite β is

⟨σi⟩ =
1

ZL(β,B)

〈
ψLT

i−1σ̂TL−i, ψR

〉
. (5)
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Proof. From the definition of expected spin under the Boltzmann distribution for a one-dimensional ferro-
magnetic system with finite β, we write

⟨σi⟩ =
1

ZL(β,B)

∑
σ∈ZL

σie
β
∑L−1

j=1 σjσj+1+βB
∑L

j=1 σj =
1

ZL(β,B)

∑
σi∈Z

zi−1(β,B, σi)σi(T
L−iψT

R)σi .

The result is immediate from the fact that zi−1(β,B, σi) = (ψLT
i−1)σi

and ⟨a, b⟩ = abT .

Lemma 1.9. Average magnetization for a one-dimensional ferromagnetic system with finite β is

MN (β,B) =
u1v1λ

N−1
1 ⟨ψ1σ̂, ϕ1⟩+ u2v2λ

N−1
2 ⟨ψ2σ̂, ϕ2⟩+ λN

1 −λN
2

N(λ1−λ2)
(u1v2 ⟨ψ1σ̂, ϕ2⟩+ u2v1 ⟨ψ2σ̂, ϕ1⟩)

u1λ
N−1
1 ⟨ψ1, ψR⟩+ u2λ

N−1
2 ⟨ψ2, ψR⟩

.

Proof. From the definition of average magnetizationMN (β,B) = 1
N

∑N
i=1 ⟨σi⟩ .We substitute the expression

for partition function ZN (β) for one-dimensional ferromagnetic system from (4) in the denominator of the
expression for ⟨σi⟩ in (5). For the numerator, we recall that ψL = u1ψ1 +u2ψ2 where ψi is a left eigenvector
of T with eigenvalues λi for i ∈ {1, 2}. It follows that〈

ψLT
i−1σ̂TL−i, ψR

〉
=

〈
(u1λ

i−1
1 ψ1 + u2λ

i−1
2 ψ2)σ̂T

L−i, ψR

〉
.

Let v1, v2 ∈ R be such that ψT
R = v1ϕ

T
1 + v2ϕ

T
2 where ϕTi is a right eigenvector of T with eigenvalues λi for

i ∈ {1, 2}. Then, TL−iψT
R = v1λ

L−i
1 ϕT1 + v2λ

L−i
2 ϕT2 , and hence

〈
ψLT

i−1σ̂TL−i, ψR

〉
equals

u1v1λ
L−1
1 ⟨ψ1σ̂, ϕ1⟩+ u2v2λ

L−1
2 ⟨ψ2σ̂, ϕ2⟩+ u1v2λ

i−1
1 λL−i

2 ⟨ψ1σ̂, ϕ2⟩+ u2v1λ
i−1
2 λL−i

1 ⟨ψ2σ̂, ϕ1⟩ .

Since 1
N

∑N
i=1 λ

i−1
1 λN−i

2 =
λN
1 −λN

2

N(λ1−λ2)
, we obtain the result by evaluating 1

N

∑N
i=1

〈
ψLT

i−1σ̂TN−i, ψR

〉
.

Lemma 1.10. Spontaneous magnetization M+(β) = 0 for a one-dimensional ferromagnetic system with
finite β.

Proof. Since λ1 > λ2 and ⟨ψi, ϕj⟩ = Iij , we can obtain the thermodynamic limit of average magnetization,
as

lim
N→∞

MN (β,B) =
⟨ψ1σ̂, ϕ1⟩
⟨ψ1, ϕ1⟩

=
−ψ1,1ϕ1,1 + ψ1,2ϕ1,2
ψ1,1ϕ1,1 + ψ1,2ϕ1,2

.

Substituting (3) and the identity eβ(1−B) − λ1 = −eβ sinh(βB) −
√
e2β sinh2(βB) + e−2β in the above

equation, we obtain

lim
N→∞

MN (β,B) =
−e−2β + (eβ(1−B) − λ1)

2

e−2β + (eβ(1−B) − λ1)2
=

sinh(βB)√
sinh2(βB) + e−4β

.

For β < ∞, the average magnetization is an analytic function of β and B. In particular, at any non-zero
temperature, the spontaneous magnetization is zero, i.e. M+(β) = 0 for all β <∞.

Remark 3. For one-dimensional configurations σ ∈ X ≜ {−1, 1}L with L spins, we recall that

E(σ,B) = −
L−1∑
i=1

σiσi+1 −B

L∑
i=1

σi,

and hence −∂E(σ,B)
∂B =

∑L
i=1 σi. Thus, we can write the average magnetization as

1

L

〈
L∑

i=1

σi

〉
β,B

= − 1

L

〈
∂E(σ,B)

∂B

〉
β,B

.

Hence, we could have computed the thermodynamic limit directly by observing that ΦL(β,B) = lnZL(β,B),
and noticing that

∂ΦL(β,B)

∂B
= −β

∑
x∈X

µL,β,B(x)
∂E(x,B)

∂B
= −β

〈
∂E(x,B)

∂B

〉
β,B

.
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Thus, dividing both sides by L, taking limit L → ∞, interchanging limits on the left hand side, and
rearranging the above equation, we obtain

1

β

∂ϕ(β,B)

∂B
= lim

L→∞

1

L

〈
L∑

i=1

σi

〉
β,B

.

For one-dimensional ferromagnet model, the free entropy density is ϕ(β,B) = limL→∞
1
LΦL(β,B) = lnλ1.

Hence, we obtain

1

β

∂ϕ(β,B)

∂B
=

1

βλ1

∂λ1
∂B

=
1

βλ1

βeβ sinh(βB) +
βe2β sinh(βB) cosh(βB)√
e2β sinh2(βB) + e−2β

 =
sinh(βB)√

sinh2(βB) + e−4β

.

Definition 1.11 (Susceptibility). The susceptibility associated with limiting average magnetizationM(β,B) ≜
limN→∞MN (β,B) is defined as

χM (β) ≜
∂M(β, 0)

∂B
. (6)

Remark 4. Intuitively, susceptibility is the tendency of a site in a region to have the same alignment as its
neighbors. For one-dimensional Ferromagnets, we have

χM (β) =
∂M(β,B)

∂B

∣∣∣
B=0

=
βe−4β cosh(βB)

(sinh2(βB) + e−4β)
3
2

∣∣∣
B=0

= βe2β .

Remark 5. A single spin in a field has a susceptibility χM (β) = β. If we consider N spins constrained to take
the same value, the corresponding susceptibility will be Nβ, as in (2). For one-dimensional Ferromagnets

with N spins, the system behaves like the spins were blocked into groups of χ(β)
β spins each. The spins in

each group are restricted to a value, while spins in different groups are independent.

Example 1.12. Consider one-dimensional Ferromagnetic model with N spins and zero magnetic field
B = 0 and δN < i < j < (1 − δ)N . Defining correlation length of the model ξ(β) ≜ − 1

log tanh β as the
distance below which two spins are well correlated, one finds the correlation function at large N , as

⟨σiσj⟩ = e−
|i−j|
ξ(β) +Θ(e−αN ).

The correlation length ξ(B) increases with decrease in temperature, that is, spins become more correlated
at lower temperatures. The relation between correlation length and susceptibility is given by,

χM (β) = β

∞∑
i=−∞

e
−|i|
ξ(β) +Θ(e−αN ). (7)

This makes it evident that a large susceptibility must correspond to a large correlation length.

2 Curie-Weiss Model

The exact solution of the one-dimensional model, lead Ising to think that there couldn’t be a phase transition
in any dimension. This was debunked by a qualitative theory of ferromagnetism which was put forward by
Pierre Curie. It assumed the existence of a phase transition at non-zero temperature Tc (Curie point) and
a non-vanishing spontaneous magnetization for T < Tc. The dilemma was eventually solved by Onsager
solution of the two-dimensional model.

Definition 2.1 (Curie-Weiss model). Consider N Ising spins σi ∈ Z ≜ {−1, 1} and a configuration
σ ∈ X ≜ ZN . The energy function in the presence of a magnetic field B, is defined as

E(σ) ≜ − 1

2N

∑
i ̸=j∈[N ]

σiσj −B

N∑
i=1

σi.
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Remark 6. Unlike the Ising model, the spins are not a part of a d-dimensional lattice, instead, they all
interact in pairs. The absence of any finite-dimensional geometrical structure makes the Curie-Weiss model
one among the mean-field models.

Remark 7. It needs to be mentioned that the summation over i, j ∈ [N ] involves O(N2) terms of order
O(1). Therefore, the energy function is scaled by 1

N to obtain a non-trivial free-energy density in the
thermodynamic limit.

Remark 8. Curie-Weiss model is an example of the more general mean-field model.

Definition 2.2. For a configuration σ ∈ ZN , the empirical or instantaneous magnetization is given
by m(σ) ≜ 1

N

∑N
i=1 σi.

Remark 9. We can write the energy function E(σ,B) in the presence of a magnetic field B in terms of
empirical magnetization m(σ), as

E(σ,B) = − 1

2N

N∑
i=1

σi(Nm(σ)− σi)−BNm(σ) = −N
2
m(σ)2 +

1

2
−BNm(σ). (8)

Remark 10. An immediate observation is that ⟨m(σ)⟩ = 1
N

∑N
i=1 ⟨σi⟩ = MN (β,B). That is, the instanta-

neous magnetization is a function of the empirical magnetization m(σ).

Proposition 2.3 (Free energy density for Curie-Weiss model). The free energy density for Curie-
Weiss model is

ϕ(β,B) = sup
m∈[−1,1]

ϕmf(m;β,B),

where the map ϕmf : [−1, 1]× R+ × R → R is defined for all (m,β,B) ∈ [−1, 1]× R+ × R as

ϕmf(m;β,B) ≜
β

2
m2 + βBm+H

(m+ 1

2

)
. (9)

Further, the free energy density is maximized at m∗ that solves the following implicit equation

m∗ = tanh(βm∗ + βB). (10)

Proof. From the expression (8) for energy in terms of empirical magnetization m, we can write the partition
function as

ZN (β,B) = e−
Nβ
2

∑
σ∈X

eβNm(σ)(
m(σ)

2 +B) (a)
= e−

Nβ
2

∑
m

(
N

N(m+1)
2

)
eβNm(m

2 +B) .
=N e−

Nβ
2

∑
m

eNH(
(m+1)

2 )eβNm(m
2 +B),

where equation (a) follows from the observation that the number of positive spins in a configurations σ ∈ X

is N(m(σ) + 1)/2. Moreover, we use H to represent the binary entropy function expressed in nats. In terms
of ϕmf defined in (9), we can approximate the partition function for large N , as

ZN (β,B)
.
=N

∫ 1

−1

eNϕmf (m;β,B)dm. (11)

The largest contribution to the integral in the above equation comes from the largest exponent, and hence
the result follows for the free energy density. To maximize ϕmf , we take its derivative with respect to m and

equate it to zero. Since dH(p)
dp = ln( 1p − 1), we obtain

0 =
∂ϕmf(m;β,B)

∂m

∣∣∣
m=m∗

= βm∗ + βB +
1

2
ln

(
2

m∗ + 1
− 1

)
.

The solution of this equation is the solution to the implicit equation (10).

Proposition 2.4 (Phase transition). For B = 0, the free energy density has a unique maximum for β < 1,
and has two maxima for β > 1. That is, there is a phase transition at Curie temperature Tc ≜ 1

βc
= 1.
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Proof. We observe that ϕmf(m;β, 0) = ϕmf(−m;β, 0) is an even function ofm. Further, we observe from (10)
that

∂ϕmf(m;β, 0)

∂m
= βm+

1

2
ln
( 2

m+ 1
− 1

)
,

∂2ϕmf(m;β, 0)

∂2m
= β − 1

1−m2
.

We observe that ∂ϕmf (m;β,0)
∂m = 0 at m = 0.

β < 1. Since 1
1−m2 > 1, it follows that ϕmf(m;β, 0) is concave decreasing in [0, 1]. Thus, ϕmf(m;β, 0) is

maximized uniquely at m∗ = 0.

β > 1. For small m > 0, we have β > 1
1−m2 and β < 1

1−m2 for large m→ 1. That is, ϕmf(m;β, 0) is convex

for m ∈ [−
√
1− 1

β ,
√
1− 1

β ), and concave in [−1,−
√
1− 1

β )∪(
√
1− 1

β , 1]. It follows that ϕmf(m;β, 0)

is maximized at m+ = −m− ∈ (
√
1− 1

β , 1].

Figure 1: The plot on the left shows the variation of ϕmf(m;β, 0) with m, for different values of β. For
β < 1, there is a unique maximum, and for β > 1, there are two maxima—indicating a phase transition at
β = βc = 1. On the right, the plot shows the variation of the values of m that maximize ϕmf(m;β, 0), with
β. The phase transition at β = 1 is indicated by a bifurcation.

3 The Ising spin-glass (or Edwards-Anderson) model

Definition 3.1 (Edwards-Anderson). Consider a configuration σ ∈ XN = {−1,+1}L of the N -particle

system with L = {1, . . . , L}d representing a d-dimensional lattice. In the Ising spin-glass model under
magnetic field B, the energy is defined as

E(σ) ≜ −
∑
(ij)

Ji,jσiσj −B
∑
i∈L

σi.

Remark 11. Here, the first summation runs over each edge of the lattice, and the multiplying factor, Ji,j ∈ R,
for i, j ∈ L. Note the difference in the energy function from the Ising model, in that now, each 2-particle
interaction is multiplied by a (possibly) different factor.

We state here that it is not straightforward to arrive at a low energy configuration in this model (by
satisfying each local constraint), as elucidated in the example below.
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Example 3.2. Consider the Ising spin-glass model, for an L = 2, d = 2 system, with B = 0. The lattice
is hence a 2-dimensional square, with vertices V = {(1, 1), (1, 2), (2, 1), (2, 2)}. Let J(1,1)∼(1,2) = 1,
J(1,1)∼(2,1) = 1, J(2,1)∼(2,2) = 1 and J(2,2)∼(1,2) = −1, where the notation (a, b) ∼ (c, d) is used to
represent the edge between (a, b) and (c, d), for (a, b), (c, d) ∈ L. We observe that the two configurations,

σ1 =
(
σ(1,1) = 1, σ(1,2) = 1, σ(2,1) = 1, σ(2,2) = 1

)
and σ2 =

(
σ(1,1) = 1, σ(1,2) = −1, σ(2,1) = 1, σ(2,2) = 1

)
are degenerate, with E(σ1) = E(σ2) = 2. This is, however, a frustrated system, since it is impossible
to satisfy each local constraint induced by the individual Ji,js, i, j ∈ L.

4 Optimization and statistical physics

Combinatorial optimization problems present inherent difficulties owing to the “discreteness” (or lack of
smoothness) of the space. In general, in such problems, given a configuration space X, we wish to find a
configuration x ∈ X with the smallest cost. It is possible to introduce a Boltzmann probability distribution
µβ ∈ M(X) on the space of configurations X, such that for any configuration x ∈ X

µβ(x) ≜
1

Z(β)
e−βE(x), Z(β) ≜

∑
x∈X

e−βE(x).

In the limit as β → ∞, the probability distribution concentrates on the ground states—which is the case
when all optimization constraints are satisfied.

Example 4.1 (Min-cuts on graphs). We consider again, the Ising spin-glass model, with B = 0, and
E(σ) =

∑
(ij) Ji,jσiσj . Each configuration σ partitions the set [N ] into two subsets, defined as

V+ ≜ {i ∈ [N ] : σi = +1} , V− ≜ {i : σi = −1} .

Defining C ≜
∑

(ij) Ji,j , and γ(V+) ≜ {(i, j) : i ∈ V+, j ∈ V−}, we obtain E(σ) = −C+2
∑

(ij)∈γ(V+) Ji,j .
Solving for the lowest energy configuration, is hence, exactly equivalent to finding the min-cut in the
graph G = (V+ ∪ V−, E), with E being the set of edges induced by the particle interactions.

Example 4.2 (Error-correcting codes). In this example, we illustrate the potential hardness of the
decoding problem, for binary codes. Let the binary alphabet be Z ≜ 0, 1, and set of N -length binary
vectors X ≜ ZN . ForM information bits, we denote the set of messages as M ≜

{
0, . . . , 2M − 1

}
. Recall

the setting of a communication system, which consists of an encoder e : M 7→ X that maps the output
of an i.i.d. uniformly distributed source m to a codeword x = e(m) ∈ X. Let y ∈ X be the output of the
channel described by the conditional distribution Q(y|x) for all y, x ∈ X. The decoder, d : y ∈ X 7→ X

outputs an estimate, x̂ ≜ d(y) of the codeword x. The average probability of error

P avg
B =

1

2M

∑
m

∑
y:d(y) ̸=e(m)

Q(y|e(m)) = 1− 1

2M

∑
y

∑
m

Q(y|e(m))1{d(y)=e(m)}.

It is, therefore, obvious after interchanging summations that the optimal decoder that minimizes P avg
B

must map the received word y to that codeword, x̂, that maximizes Q(y|x̂). However, one can note that
this procedure of finding the “most likely” codeword, involves searching over all possible 2M codewords,
leading to exponential time complexity. In fact, the general problem of decoding codes that admit a
concise specification (polynomial in the block-length) is NP-hard.
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