
Lecture-19: Free energy approach

1 Z2 synchronization model

We define Z2 ≜ {−1, 1} and Θ ≜ ZN
2 . We assume that θ : Ω → ZN

2 is an i.i.d. random vector with Eθi = 0
for all i ∈ [N ]. Let W : Ω → RN×N be a random matrix from Gaussian orthogonal ensemble independent of
θ, so that the observation Y : Ω → RN×N is

Y =
λ

N
θ ⊗ θ +W.

Let f : RN×N → A ≜ Θ ⊗ Θ be an estimator of θ ⊗ θ, and L : A × Θ → R a matrix square loss function
defined for all (A, θ) ∈ A×Θ, as

L(A, θ) ≜
1

N2
∥A− θ ⊗ θ∥2F .

The expected risk for the estimator f for the loss function L under uniform distribution Q ∈ M(Θ) for
parameter θ and parametrized observation distribution Pθ ∈ M(RN×N ), is

R(Q, f, L) =

∫
Θ

dQ(θ)

∫
Y

dPθ(Y )L(f(Y ), θ).

2 Stochastic block model

Let θ : Ω → Θ ≜ ZN
2 be an i.i.d. random vector with the common distribution uniform over Z2.

Definition 2.1. Consider a random graph G = (V,E) where the vertex set V = [N ] and E ⊆ V × V is
randomly generated. Let θ : Ω → Θ ≜ ZV

2 denote the configuration of the graph and define the sets of
vertices

V+ ≜ {v ∈ V : θv = 1} , V− ≜ {v ∈ V : θv = −1} . (1)

We define a random symmetric matrix A ∈ {0, 1}V×V
such that Avv = 0 for all v ∈ V and Avw is independent

and random for all v < w. For a > b, we define EAv,w ≜
(

a
N 1{θv=θw} +

b
N 1{θv ̸=θw}

)
1{w ̸=v}. The edge set

E ≜ {(v, w) ∈ E : Av,w = 1}.

Remark 1. We can write the conditional expectation of the adjacency matrix as

E[A | θ] = 1

N

∑
v,w

eTv ew

(
a
(1 + θvθw)

2
+ b

(1− θvθw)

2

)
1{v ̸=w} =

(a+ b)

2N
1T 1− a

2N
I +

(a− b)

2N
θT θ.

Recall that the adjacency matrix depends on the configuration θ and hence (a−b)
2N θT θ is considered the signal

part of the conditional expectation.

Definition 2.2. We define the zero-mean noise in the adjacency matrix as W ≜ A − E[A | θ], and the

observation as the de-noised adjacency matrix, i.e. Y ≜ A−
(
E[A | θ]− (a−b)

2N θT θ
)
= (a−b)

2N θT θ +W.

Remark 2. From the definition of W , we can find the variance of its entries v ̸= w as

Var(Wvw) = E[(Av,w − E[Av,w | θ])2] = E[(Av,w − (a+ b)

2N
− (a− b)

2N
θvθw)

2]

= EA2
v,w +

(a+ b)2

4N2
+

(a− b)2Eθ2vθ2w
4N2

− (a+ b)EAv,w

N
− (a− b)EAv,wθvθw

N
+

(a2 − b2)Eθvθw
2N2

.
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Recall that θ is i.i.d. zero mean for v ̸= w, and hence Eθvθw = 0 for v ̸= w. Further, θ2v = 1 for all
v ∈ V . In addition, we observe that A2

v,w = Av,w and from the tower property of conditional expectation
EAv,w = E[E[Av,w | θ]]. Therefore, for v ̸= w, we obtain

EA2
v,w = EAv,w =

1

2N
E[(a+ b) + (a− b)θvθw] =

(a+ b)

2N
, E[Av,wθvθw] = E[E[Av,wθvθw | θ]] = (a− b)

2N
.

Combining these results, we obtain

Var(Wvw) =
(a+ b)

2N
− a2 + b2

2N2
=

a

2N
(1− a

N
) +

b

2N
(1− b

N
) ≈ (a+ b)

2N
.

Rescaling by
√

(a+b)
2 on both sides and defining W ′ ≜ W√

(a+b)
2

, Y ′ ≜ Y√
(a+b)

2

, and λ ≜ (a−b)√
2(a+b)

, we obtain

Y ′ =
λ

N
θT θ +W ′.

We note that Var(W ′
vw) =

1
N , similar to the variance of noise in the Sherrington-Kirkpatrick model.

3 Estimators for Z2 synchronization

Recall that we have derived the maximum likelihood and the Bayes estimator for the Z2 synchronization
problem. Maximum likelihood estimate (MLE) is NP-hard to compute for this case, and hence, we introduce
two other estimators, which are relaxed versions of MLE and are easier to compute. Recall that MLE is
given by

fML(Y ) = argmax
{〈

θ, θY T
〉
: θ ∈ Θ

}
.

Definition 3.1. We define theN -dimensional sphere of radius
√
N − 1 defined as SN−1(

√
N) ≜

{
θ ∈ RN : ∥θ∥ =

√
N
}
.

The spectral estimator is denoted by fsp : RN×N → SN−1(
√
N), and defined as

fsp(Y ) ≜ argmax
{〈

θ, θY T
〉
: θ ∈ SN−1(

√
N)

}
.

Remark 3. We observe that θ ∈ RN and ∥θ∥ =
√
N for all θ ∈ Θ. It follows that Θ ⊆ SN−1(

√
N) and the

spectral estimator is a relaxed maximum likelihood estimator over N -dimensional spheres of norm
√
N .

Definition 3.2. We define the space of all positive semi-definite N ×N matrices with unit diagonal entries
as

X ≜
{
X ∈ RN×N : Xii = 1 for all i ∈ [N ], X ⪰ 0

}
.

The semi-definite program estimator is denoted by fSDP : RN×N → X, and defined as

fSDP(Y ) ≜ argmax {⟨X,Y ⟩F : X ∈ X} .

Remark 4. For all θ ∈ Θ, we observe that θT θ ∈ RN×N is positive semi-definite and θ2i = 1 for all i ∈ [N ].
Therefore, Θ⊗Θ ⊆ X and the SDP estimator is a relaxed maximum likelihood estimator. We further observe
that if all elements of X have an additional constraint of unit rank, then X = Θ⊗Θ.

We also recall that the Bayes estimator is given by fB : RN×N → RN×N defined in terms of distribution

P (θ | Y ) ∝ e
λ
2 ⟨θ,θY T ⟩ for all θ ∈ Θ, as

fB(Y ) ≜ E[θT θ | Y ].

3.1 Asymptotic risk for different estimators for Z2 synchronization

Proposition 3.3 (BBP phase transition). The following result holds true for spectral estimator.(
1− 1

λ2

)
1{λ>1} =

(
1− lim

N→∞

1

2N2
∥fsp(Y )⊗ fsp(Y )− θ ⊗ θ∥2F

)
= lim

N→∞

1

N2
⟨fsp(Y ), θ⟩2 almost surely.
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Proposition 3.4 (Bayes phase transition). The following result holds true for Bayes estimator.

q∗(λ)
2
1{λ>1} =

(
1− lim

N→∞

1

N2
∥fB(Y )− θ ⊗ θ∥2F

)
= lim

N→∞

1

N2

〈
θ, θfB(Y )T

〉2
almost surely,

where N is a zero-mean unit-variance Gaussian and q∗(λ)
2 is the unique non-negative solution of

q = E[tanh(λ2q + λ
√
qN)2].

Remark 5. The expected risk R(Q, f, L) = 1
NE

∥∥f(Y )− θT θ
∥∥2
F

for matrix square loss function L, uniform
distribution Q ∈ M(Θ) and different estimators f can be computed as a function of signal-to-noise ratio λ. It
turns out that limλ→∞ R = 0 for all estimators discussed above. Further, the expected risk R doesn’t reduce
for λ < 1; thus, λ = 1 is referred to as the information-theoretic threshold, at which a phase transition
occurs. For λ < 1, the expected risk of the Bayes estimator and the zero estimator f(Y ) = 0 are identical.
For this model, the Bayes estimator can be computed efficiently; hence, there is no statistical-computational
gap.

Proposition 3.5 (Asymptotic mean Bayesian risk). For the Bayesian estimator, we have

lim
N→∞

1

N2
E ∥fB(Y )− θ ⊗ θ∥2F = 1− 2a∗ + c∗,

where the two constants are defined as

a∗ ≜ lim
N→∞

1

N2
E
〈
θ, θfB(Y )T

〉
, c∗ ≜ lim

N→∞

1

N2
E ∥fB(Y )∥2F . (2)

Proof. Recall that θ ∈ Θ and hence ∥θ ⊗ θ∥2F = tr θT θθT θ = ⟨θ, θ⟩2 = N2 and
〈
fB(Y ), θT θ

〉
F
= tr fB(Y )θT θ =〈

θ, θfB(Y )T
〉
. Thus, we can write the Frobenius norm of the difference as

∥fB(Y )− θ ⊗ θ∥2F = ∥fB(Y )∥2F +N2 − 2
〈
θ, θfB(Y )T

〉
.

The result follows from taking expectation on both sides, dividing by N2, and the definitions of a∗, c∗.

3.2 Computing the asymptotic mean of an observable

Proposition 3.6. Consider an N -particle interacting system with state space X ≜ ZN and aggregate
parametrized energy Eλ : X → R such that for any configuration x ∈ X the Boltzmann distribution is
µN,β,λ(x) ∝ e−βEλ(x) . Let mN ≜ ∂Eλ

∂λ

∣∣
λ=0

, then

m∗ ≜ lim
N→∞

1

N
⟨mN ⟩β,λ =

∂f(β, λ)

∂λ
.

Proof. From Taylor series expansion of Eλ around λ = 0 for any configuration x ∈ X, we get

Eλ(x) = E0(x) + λmN (x) + Θ(x2).

Recall that the free energy is FN (β, λ) = − 1
β lnZN (β, λ) = − 1

β ln
∫
X
e−βEλ(x)dν0(x). Therefore, we obtain

∂FN (β, λ)

∂λ
= − 1

β

1

ZN (β, λ)

∫
X

e−βEλ(x)(−βmN (x))dν0(x) =

∫
X

mN (x)µN,β,λ(x)ν0(x) = ⟨mN ⟩β,λ .

The result follows from dividing by N on both sides and interchanging limit and derivative.

Corollary 3.7. Consider observation Y = λ
N θT θ +W for Z2 ≜ {−1, 1} synchronization model, and an N

particle system with state space Θ ≜ ZN
2 with parametrized aggregate energy function Eλ : Θ → R defined

for all configurations x ∈ Θ, as

Eλ(x) ≜ −1

2
⟨xW, x⟩ − λ

2N
⟨x, θ⟩2 .

The Boltzmann distribution for this system is denoted by µβ,λ ∈ M(Θ) and free energy density by f(β, λ).
Then, the constant a∗ defined in (2) for the asymptotic Bayesian risk of the Z2 synchronization problem is

a∗ = − 2
∂f(β, λ)

∂λ

∣∣∣∣
β=λ

.
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Proof. Recall that Bayesian estimator fB(Y ) =
∑

σ∈Θ σTσP (σ | Y ) where the conditional distribution

P (σ | Y ) = µβ,λ(σ)|β=λ . Further, we observe that ∂Eλ(σ)
∂λ = − 1

2N ⟨σ, θ⟩2.
From the definition of conditional distribution P (σ | Y ) and Bayesian estimator fB(Y ), we observe that

1

N2

〈
θ, θfB(Y )T

〉
= θ

∑
σ∈Θ

σTσP (σ | Y )θT =
∑
σ∈Θ

⟨σ, θ⟩2

N2
P (σ | Y ) = − 2

N

〈
∂Eλ(σ)

∂λ

〉
β,λ

∣∣∣∣∣
β=λ

.

The result follows from taking limitN → ∞ on both sides of the above equation, and applying Proposition 3.6
to the right hand side.

Corollary 3.8. Consider observation Y = λ
N θT θ +W for Z2 ≜ {−1, 1} synchronization model, and an N

particle system with state space X ≜ Θ×Θ with parametrized aggregate energy function Eλ,h : X → R defined
for all configurations (x, z) ∈ X as

Eλ,h(x, z) ≜ −1

2
xWxT − λ

2N
⟨x, θ⟩2 − 1

2
zWzT − λ

2N
⟨z, θ⟩2 + h

N
⟨x, z⟩2 .

The Boltzmann distribution for this system is denoted by µβ,λ,h ∈ M(X) and free energy density by f(β, λ, h).
Then, the constant c∗ defined in (2) for the asymptotic Bayesian risk of the Z2 synchronization problem is

c∗ =
∂f(β, λ, h)

∂h

∣∣∣∣
β=λ,h=0

.

Proof. From the definition of Bayesian estimator fB(Y ) =
∑

σ∈Θ σTσP (σ | Y ), we can write

∥fB(Y )∥2F = tr fB(Y )fB(Y )T = tr
∑

x,z∈Θ

xTxP (x | Y )zT zP (z | Y ) =
∑

x,z∈Θ

⟨x, z⟩2 P (x | Y )P (z | Y ).

From the definition of conditional distribution P (x | Y ), observation Y , and the definition of parametrized

energy function Eλ,h(x, z), it follows that P (x | Y )P (z | Y ) = µβ,λ,h(x, z)|β=λ,h=0 and
∂Eλ,h(x,z)

∂h = 1
N ⟨x, z⟩2.

Therefore,

1

N2
∥fB(Y )∥2F =

1

N

〈
∂Eλ,h(x, z)

∂h

〉
β,λ,h

∣∣∣∣∣
β=λ,h=0

.

The result follows from taking limitN → ∞ on both sides of the above equation, and applying Proposition 3.6
to the right hand side.

Corollary 3.9. Consider observation Y = λ
N θT θ +W for Z2 ≜ {−1, 1} synchronization model, and an N

particle system with state space X ≜ SN−1(
√
N) with parametrized aggregate energy function Eλ,h : X → R

defined for all configurations (x, z) ∈ X as

Eλ,h(x) ≜ −1

2
⟨xY, x⟩+ h

N
⟨x, θ⟩2 = −1

2
⟨xW, x⟩ − λ

2N
⟨x, θ⟩2 + h

N
⟨x, θ⟩2 .

The Boltzmann distribution for this system is denoted by µβ,λ,h ∈ M(X) and free energy density by f(β, λ, h).
Then, we have

lim
N→∞

1

N2
E ⟨fsp(Y ), θ⟩2 = lim

β→∞

∂f(β, λ, h)

∂h

∣∣∣∣
h=0

.

Proof. We observe that
∂Eλ,h(x)

∂h = 1
N ⟨x, θ⟩2, and hence

1

N2
⟨fsp(Y ), θ⟩2 =

1

N

∂Eλ,h(fsp(Y ))

∂h
.

Recall that the spectral estimator for observation Y is

fsp(Y ) = argmax {⟨xY, x⟩ : x ∈ X} = argmax {µβ,λ,0(x) : x ∈ X} .

4



Since the probability concentrates uniformly at the lowest energy states at β = ∞, we observe that

1

N

∂Eλ,h(fsp(Y ))

∂h
=

1

N
lim
β→∞

〈
∂Eλ,h

∂h

〉
β,λ,h

∣∣∣∣∣
h=0

.

The result follows from taking limitN → ∞ on both sides of the above equation, and applying Proposition 3.6
to the right hand side.
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