Lecture-19: Free energy approach

1 Z, synchronization model

We define Zy £ {~1,1} and © = Z'. We assume that 6 : Q@ — ZL is an 4.i.d. random vector with Ef; = 0
for all i € [N]. Let W : Q@ — RV*¥ be a random matrix from Gaussian orthogonal ensemble independent of
0, so that the observation Y : Q — RVN*N ig
A
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Let f:RV*N & A £ O ® 0O be an estimator of § ® 6, and L : A x © — R a matrix square loss function
defined for all (A4,0) € A x O, as

L(A,0) 2 — [[A-020|>%.

N e
The expected risk for the estimator f for the loss function L under uniform distribution @ € M(©) for
parameter § and parametrized observation distribution Py € M(RV*N) is

RQ. /1) = /e aQ(0) /Y dPy(Y)L(f(Y),6).

2 Stochastic block model

Let 0 : Q — © £ Z& be an i.i.d. random vector with the common distribution uniform over Zs.

Definition 2.1. Consider a random graph G = (V, E) where the vertex set V = [N] and E C V x V is
randomly generated. Let § : Q — © £ ZY denote the configuration of the graph and define the sets of
vertices

V2 {veV:0,=1}, V_2{veV:0,=—1}. (1)
We define a random symmetric matrix A € {0, 1}VXV such that A,, = 0forallv € V and A,,, is independent
and random for all v < w. For a > b, we define EA, ,, £ (%:ﬂ.{@v:gw} + %]l{gv;ﬁgw})]l{w;év}. The edge set
E&{(v,w)€E: A, =1}

Remark 1. We can write the conditional expectation of the adjacency matrix as

+99 ) (l_evow) (a+b) T ( b) va
E[A | 6] = szw( g )11{,,¢w} ol ﬁu 0T,

Recall that the adjacency matrix depends on the configuration 6 and hence %HTH is considered the signal
part of the conditional expectation.

Definition 2.2. We define the zero-mean noise in the adjacency matrix as W = A — E[A | 0], and the
observation as the de-noised adjacency matrix, i.e. ¥ £ A — (IE[A | 6] — %HTG) = %GTH + W.

Remark 2. From the definition of W, we can find the variance of its entries v # w as

_ _ 21 _ _(a+b) (a—Db) 2

Var(Wow) = E[(Avw — E[Av | 0))°] = E[(Avw — 5 o 0ou)’]
_ 2 (a + b)2 (a — b)QEegefu _ (a + b)EAv,w . (a — b)]EAv,wevew (CLQ _ bQ)Eevew
=EAow + 4N?2 + 4N? N N + IN?2 ’



Recall that 6 is i.i.d. zero mean for v # w, and hence Ef,0, = 0 for v # w. Further, §2 = 1 for all
v € V. In addition, we observe that Ag’w = A, and from the tower property of conditional expectation
EA, ., = E[E[A, . | 0]]. Therefore, for v # w, we obtain

EA? , =EA,, = [(a+b) + (a — b)8,0,] = latd) E[Ay.0000] = E[E[Ay.0u0, | 0] =

1 (a —b)
v, W - ﬁE N , .

2N

Combining these results, we obtain

2, 12
(a+b) a*+b :i(l_g)+i(1_£)%(a+b).
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Var(Wyy) =

Rescaling by @ on both sides and defining W’ 2 —X_ vy’ 2 _Y_ and \ £ a=b) e obtain

/<a2b> ’ /<a;rb) ’ \/2(a+b)

Y = %(ﬂa + W

We note that Var(W,

) = %, similar to the variance of noise in the Sherrington-Kirkpatrick model.

3 Estimators for Z, synchronization

Recall that we have derived the maximum likelihood and the Bayes estimator for the Zs synchronization
problem. Maximum likelihood estimate (MLE) is NP-hard to compute for this case, and hence, we introduce
two other estimators, which are relaxed versions of MLE and are easier to compute. Recall that MLE is
given by

fuL(Y) = arg max {<9749YT> :0cO}.

Definition 3.1. We define the N-dimensional sphere of radius v/N — 1 defined as S¥=1(v/N) £ {9 ERN |0 = \/N} .
The spectral estimator is denoted by f, : RV*N — S¥=1(y/N), and defined as

fup(Y) 2 arg max {<9,9YT> 0 SNfl(\/N)} .

Remark 3. We observe that # € RY and 0| = v/N for all § € ©. It follows that © C S¥~1(/N) and the
spectral estimator is a relaxed maximum likelihood estimator over N-dimensional spheres of norm v/N.

Definition 3.2. We define the space of all positive semi-definite N x N matrices with unit diagonal entries
as
XE{X eRVN: X, =1forallie[N],X=0}.

The semi-definite program estimator is denoted by fspp : RN*N 5 X, and defined as
fspp(Y) £ argmax {(X,Y) . : X € X}.

Remark 4. For all § € ©, we observe that §70 € RV*N is positive semi-definite and 2 = 1 for all i € [N].
Therefore, ©®0© C X and the SDP estimator is a relaxed maximum likelihood estimator. We further observe
that if all elements of X have an additional constraint of unit rank, then X = © ® O.

We also recall that the Bayes estimator is given by fz : RNV — RVXN defined in terms of distribution
PO|Y)x 2 {00") for all g € 0, as
fe(Y) 2 E[676]Y].

3.1 Asymptotic risk for different estimators for Z, synchronization

Proposition 3.3 (BBP phase transition). The following result holds true for spectral estimator.

1 . 1 . 1
(1-55)20en = (1= Jim_ 535 1£0(V) @ fo(¥) =00 0]3 ) = lim 5 (£ip(Y).6)° almost surely,

N—o00



Proposition 3.4 (Bayes phase transition). The following result holds true for Bayes estimator.

1 1 2
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(M) 1pas1y = (1 - A}gnoo N2 lf(Y)—0® 9||F> = A;gnoo ¥z (0,0f5(Y)")" almost surely,

where N is a zero-mean unit-variance Gaussian and q.(\)? is the unique non-negative solution of
q = E[tanh(\q + A\\/gN)?].

Remark 5. The expected risk R(Q, f,L) = %E Hf(Y) - QTHH? for matrix square loss function L, uniform

distribution @ € M(©) and different estimators f can be computed as a function of signal-to-noise ratio A. It
turns out that limy_,., R = 0 for all estimators discussed above. Further, the expected risk R doesn’t reduce
for A < 1; thus, A = 1 is referred to as the information-theoretic threshold, at which a phase transition
occurs. For A < 1, the expected risk of the Bayes estimator and the zero estimator f(Y) = 0 are identical.
For this model, the Bayes estimator can be computed efficiently; hence, there is no statistical-computational

gap.
Proposition 3.5 (Asymptotic mean Bayesian risk). For the Bayesian estimator, we have
. 1 2
Jim B (V) — 0@ 0] =1 2a. + .,
where the two constants are defined as
A1 1 T A1 1 2
a, = lim oK (0.0f5(Y)"), ¢ = lim S E{|fpY)lr. (2)

Proof. Recall that 6 € © and hence || @ 0|7 = tr 670670 = (9,0)> = N2 and (f5(Y),070) . = tr f5(Y)070 =
(0,0f5(Y)T). Thus, we can write the Frobenius norm of the difference as

If5(Y) = 0@ 0|5 = | fo(Y)|m+ N2 —2(0,0f5(Y)").

The result follows from taking expectation on both sides, dividing by N2, and the definitions of a.,c,. O

3.2 Computing the asymptotic mean of an observable

Proposition 3.6. Consider an N-particle interacting system with state space X 2 ZN and aggregate
parametrized energy Ey : X — R such that for any configuration x € X the Boltzmann distribution is

pnpa(x) o e PEA@)  Let mpy & SEx|  then
. _Of(B,A)
m*—]\}lm ~ (mn) s\ Y

Proof. From Taylor series expansion of Ey around A = 0 for any configuration x € X, we get
Ex\(x) = Eo(x) + Amp(z) + O(2?).
Recall that the free energy is Fiy(8,\) = f% InZn(B,\) = f% In [, e PEx (#)dyy(z). Therefore, we obtain

OFN(BN) _ 1 1
N BZn(B.N

The result follows from dividing by N on both sides and interchanging limit and derivative. O

/x e~ EA® (B () dvo () = /x v (@) p.r (2)00(&) = (M) .

Corollary 3.7. Consider observation ¥ = %HTH + W for Zo & {—1,1} synchronization model, and an N
particle system with state space © = Z5 with parametrized aggregate energy function Ey : © — R defined
for all configurations x € O, as

(@) 2 L @W.a) — D\ (2.0,

The Boltzmann distribution for this system is denoted by pg € M(O) and free energy density by f(5, ).
Then, the constant a, defined in for the asymptotic Bayesian risk of the Zo synchronization problem is

L Of(BN)
A, = — 2 B 5:)\.



Proof. Recall that Bayesian estimator fp(Y) = Y g0’ 0P(c | Y) where the conditional distribution

P(o | Y) = pga(0)|s_y - Further, we observe that 3%*)50) —3 (0 0)°.

From the definition of conditional distribution P(o | Y') and Bayesian estimator f5(Y), we observe that

% (0.0/5(0)7) =03 oToPo| V)0 =} <0]7\702> Ple|Y)=~-+ <8E$>E )>m

cEO oE®

B=A

The result follows from taking limit N — oo on both sides of the above equation, and applying Proposition[3.6]
to the right hand side. O

Corollary 3.8. Consider observation Y = %GTO + W for Zy & {—1,1} synchronization model, and an N
particle system with state space X = © x © with parametrized aggregate energy function Ey 5 : X — R defined
for all configurations (z,z) € X as

1 A A

Eyn(z,2) & ——aWal — = (x, 0)? — Z2wzT

2
5 5N (x,2)°.

h
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The Boltzmann distribution for this system is denoted by ug xn € M(X) and free energy density by f(58, A, h).
Then, the constant c, defined in for the asymptotic Bayesian risk of the Zo synchronization problem is

B 3f(ﬁ,>\,h)‘
Cp = ———— .
oh B=\,h=0

Proof. From the definition of Bayesian estimator fz(Y) =3 .0’ cP(0 |Y), we can write

I p(V)IE =t fo(V)fa(¥)" =tr Y a"aP(«|Y)2"2P(z|Y) = Y (2.2)" Pz | Y)P(z | Y).

z,2€0 z,2€0

From the definition of conditional distribution P(x | Y), observation Y, and the definition of parametrized
energy function Ej ,(, 2), it follows that P(z [ Y)P(z | Y) = pgn(@, 2)[ -y ;-0 and %}fz@) =% (z,2)?

Therefore,

1 2 1 aE)\’h(SU,Z)
N2 1 fBY)|% = N <6h o

The result follows from taking limit N — oo on both sides of the above equation, and applying Proposition[3.6]
to the right hand side. O

B=X,h=0

Corollary 3.9. Consider observation Y = %HTQ + W for Zy & {—1,1} synchronization model, and an N
particle system with state space X = SN~1(V/N) with parametrized aggregate energy function Exp : X — R
defined for all configurations (z,z) € X as

A h

N (2,0)° + N(x,9>2.

1 1
Eyn(x) & ~3 (Y, x) + — (z,0)* = ~3 (aW,x) —

5 ¢
The Boltzmann distribution for this system is denoted by pg xn € M(X) and free energy density by f(5, A, h).
Then, we have

lim E (fsp(Y), > = lim

Proof. We observe that BE* h(w) = L (2,0)*, and hence

2 U1, 02 = 5, Ptlenll))

Recall that the spectral estimator for observation Y is

fop(YV) = argmax {(zY,x) : © € X} = argmax {ug ro0(x) : z € X}.



Since the probability concentrates uniformly at the lowest energy states at 8 = oo, we observe that

10E(fep(Y)) 1 lim <8E)\,h>
B h

N oh TN\ Ton

h=0

The result follows from taking limit N — oo on both sides of the above equation, and applying Proposition|3.6
to the right hand side. O
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