
Latency-Redundancy Tradeoff in Distributed
Read-Write Systems

Saraswathy Ramanathan, Gaurav Gautam, Vikram Srinivasan, and Parimal Parag
Dept. of Electrical Communication Engineering, Indian Institute of Science, Bangalore, India, 560012

Email: {saraswathyr, gauravgautam, vikramsriniv, parimal}@iisc.ac.in

Abstract—Data is replicated and stored redundantly over
multiple servers for availability in distributed databases. We
focus on databases with frequent reads and writes, where both
read and write latencies are important. This is in contrast to
databases designed primarily for either read or write applica-
tions. Redundancy has contrasting effects on read and write
latency. Read latency can be reduced by potential parallel access
from multiple servers, whereas write latency increases as a larger
number of replicas have to be updated. We quantify this tradeoff
between read and write latency as a function of redundancy, and
provide a closed-form approximation when the request arrival is
Poisson and the service is memoryless under prioritized reads.
We empirically show that this approximation is tight across all
ranges of system parameters. Thus, we provide guidelines for
redundancy selection in distributed databases.

I. INTRODUCTION

Storage systems are designed with specific applications in
mind. In this article, we focus on the systems where read and
write are both frequent, and we would refer to these as read-
write systems. Some examples of cloud systems with frequent
reads and writes are banking, personal storage, e-commerce,
etc. Cloud storage systems like Dropbox, GitHub, OneDrive,
Google Drive etc. have frequent updates (writes) to the same
file and benefits from study of systems with frequent reads
and writes. In a personal storage cloud like Dropbox, the daily
average of uploaded files is 1.2 billion. Dropbox receives 1.67
billion API calls in a day, of which 345.6 million (∼ 21%)
are edits to files 1. State Bank of India receives around 131.16
million transactions per month2 from 296.82 million page
visits3. Out of the total number of queries sent to the bank
cloud servers, 44% are write requests. We will focus on the
latency performance of these systems, which is an important
user requirement that has monetary impact.

Distributed read-write systems are employed in many mod-
ern storage and computing architectures, for graceful scaling
up. There are several important considerations in the design
and implementation of such distributed systems, such as
consistency, latency, availability, storage cost, among others.
Availability in the event of failures, is ensured by redundant
storage of data over multiple servers, in these systems.

This work is supported in part by the Centre for Networked Intelligence (a
Cisco CSR initiative) of the Indian Institute of Science, Bangalore.

1https://expandedramblings.com/index.php/Dropbox-statistics/
2https://www.business-standard.com/company/st-bk-of-india-1375/

annual-report/director-report
3https://www.similarweb.com/website/retail.onlinesbi.com/\#overview

Most commercial distributed database systems provision
for eventual consistency [1], [2], where read requests can
access an older version of data. We consider the read and
write latencies for eventually consistent systems. In addition,
we adopt the primary-secondary architecture with redundant
replication for distributed read-write systems as shown in
Fig. 1. This architecture is employed by popular databases
such as MySQL, DynamoDB, MongoDB, PostgreSQL, etc. As
shown in Fig. 1, write requests arrive at the designated primary
server, and the remaining secondary servers copy the written
data from the primary. In contrast, multiple read requests to a
file can be served simultaneously. Data read requests can be
directed to any server in the cluster holding a copy of the data.
Often read and write requests are stored in separate queues,
and depending on the application, one of them is prioritized
over the other. We consider distributed read-write systems for
read priority.

Master

Slave1 Slave2 Slave3

Dispatcher

Clients

Clients

Clients

Write

ReplicationRead

Read

R/W

Fig. 1: Distributed read-write system with primary-secondary
architecture.

In this work, we are interested in I/O bound distributed
database systems with geographically co-located data, where
all the requests suffer from a similar negligible network delay.
Accordingly, our focus is on the queueing delay suffered by
the read and write requests. This is the scenario for many
SaaS companies hosted on cloud service providers, with the
database situated in one or two availability zones. Our analysis
framework is also suitable for the cases when network latency
does not scale with redundancy, and can be accounted for by
an additional network latency. Redundant storage of data is
advantageous for read latency, as it allows for parallel access.
It can be shown4 that in many practical situations, the read
latency decreases with increase in redundancy. Contrastingly,

4https://docs.gitlab.com/ee/administration/database_load_balancing.html

2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS)

978-1-6654-2104-1/22/$31.00 ©2022 IEEE 172

20
22

 1
4t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
O

M
m

un
ic

at
io

n
Sy

st
em

s &
 N

ET
w

or
kS

 (C
O

M
SN

ET
S)

 |
 9

78
-1

-6
65

4-
21

04
-1

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CO
M

SN
ET

S5
36

15
.2

02
2.

96
68

41
4

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 18,2022 at 17:42:20 UTC from IEEE Xplore. Restrictions apply.

the write latency increases with redundancy [3], [4], as a
write should be completed at all redundant copies of the data.
This alludes to a tradeoff between read and write latency
with increased redundancy, as illustrated in Fig. 2, where we
observe that there exists an optimal redundancy that minimizes
the average request latency (averaged over all read and write
requests) for a single file. A quantitative characterization of
read and write latency is the main objective of this article.
We note that, the read and write latencies can be weighted
depending on the application. For simplicity, we consider the
case when they are equally weighted.

1 2 3 4 5 6 7

18

18.5

19

19.5

Number of servers

M
ea

n
re

qu
es

t
la

te
nc

y
(i

n
s)

Fig. 2: Empirical mean latency of requests in a distributed
read-write system, with increasing number of servers.

A. Related Work
Redundancy schemes and request scheduling for read la-

tency reduction in distributed storage systems has been studied
in [5]–[13]. Latency for a single class of requests with coded
redundancy in distributed storage and compute systems has
been studied in [5], [10], [11], [14]–[17]. Incoming requests
are forked to all redundant servers, and a request is considered
completed when a subset of servers finish completion. These
systems are called fork-join queues and have been studied for
memoryless arrivals and service in [7], [14], [18]–[20]. For
an eventually consistent read-write system with replication
redundancy and instantaneous reads, staleness of reads is
characterized in [4]. All the above mentioned works focus
on a single class of requests (either read or write), assuming
either an instantaneous service for the other request class or
immutability of data. In practical storage systems, however,
the data is written and read with non-negligible workload
from both. We focus on distributed systems where the servers
are deployed within the same availability zone and thus have
similar network latency for all requests. Thus, the network
latency does not scale with redundancy and can be ignored,
unlike [21] that study latency in geo-distributed systems.

B. Main contribution
We analytically compute the read and write latency for a

single file in a distributed read-write system, and obtain the
optimal redundancy to minimize the aggregate latency.

1) Unlike previous works on latency reduction, we char-
acterize the read and write processes separately, while
accounting for their joint presence. This allows the opti-
mization problem to be tailored for different applications
based on read and write latency constraints.

2) Further, we provide approximations with closed-form
expressions for latency redundancy trade-off, that can
be used for large-scale system design. We remark that
the Markov chain considered is more complex than
previously studied fork-join queues. These queues have
not been analytically studied in the literature to the best
of our knowledge. We empirically show that proposed
approximations remain tight over the entire range of
system parameters in the system stability region.

3) As a consequence of our analysis, we show that the
optimal number of servers depends on the traffic pattern
in the system. Hence, from the system design perspective,
it is not always beneficial to set redundancy factor to the
typical value of two.

4) We conducted numerical experiments for read-write sys-
tems with non-memoryless service distributions. In addi-
tion, we performed empirical experiments on real world
read-write systems. We observed the existence of optimal
redundancy in both of these situations, which confirms
that the insights obtained from our theoretical studies
continue to hold in general.

II. SYSTEM MODEL

We consider a distributed read-write system with a primary-
secondary architecture. In such systems, write occurs at the
primary first and then replicated at the secondary servers,
whereas reads can occur from any server. For simplicity, we
focus on a single file stored at the primary and n secondary
servers. However, the framework can be extended to study
systems with multiple files as well.

A. Arrivals of read/write requests

We assume that the read and the write requests for the file
arrive as Poisson processes with rates λr and λw respectively.
This is a widely accepted model for arrivals in distributed
storage [11], [14], [22] and caching systems [23]–[25]. This
assumption is motivated by analytical tractability, and the fact
that this is a good approximation for the arrivals [26]when a
large number of independent clients are reading from and writ-
ing to the system. In the following subsections, we discuss the
modeling assumption on read and write processes separately.

B. Dispatch of read/write requests

We can distinguish read and write request arrivals as two
separate classes of arrivals. Note that all (n+1) servers receive
both read and write requests.

1) Read requests: We assume that incoming read requests
are dispatched to one of the (n + 1) servers uniformly at
random, independent of all other decisions. This is thinning
of the Poisson process [27],and hence the read request arrival
at each server is a Poisson process with rate λr

(n+1) . We note
that in a typical distributed read-write system with primary-
secondary architecture, incoming read requests are directed to
one of the n + 1 servers in a round-robin fashion [28].We
remark that even though optimal routing scheme would be
to join the shortest queue or a variant, these schemes have

2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS)

173Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 18,2022 at 17:42:20 UTC from IEEE Xplore. Restrictions apply.

communication overhead. Therefore, many practical systems
employ round robin scheduling for simplicity. This results in
an effective arrival rate of λr/(n+ 1) at each server, identical
to the Poisson arrival rate achieved by the random splitting
of Poisson process. Since the two arrival process only differ
in higher order moments, we assume the random splitting for
analytical tractability.

2) Write requests: In a primary-secondary architecture, the
write request joins the write queue at the primary. After the
write is completed at the primary, the request is forked to all
n secondary servers. A write is considered completed, if write
request is completed at all n secondary servers.

C. Scheduling

We assume there is a priority order between read and write
classes, and requests within a class are served in a first come
first serve (FCFS) manner at each server.

1) Priority between classes: In many distributed read-write
systems, one class has priority over the other5 [28].In practical
systems, priorities are non-preemptive [29].That is, if a request
of higher priority class arrives when the server is serving a
request of low priority class, then the higher priority request
has to wait until the request in service is completed. For
simplicity, we consider preemptive resume priority [30], [31],
where a high priority arrival replaces a low priority request
from service, and the low priority request resumes its service
once there are no more high priority requests. This reduces the
state space, and makes analysis tractable. We will consider a
system with read priority.

2) FCFS within a class: In practical systems, write requests
are served in an FCFS manner [32],while the read requests
are served by processor sharing6 [28].According to the insen-
sitivity property [33],all work conserving policies that do not
depend on service time of requests have the same mean waiting
time. Since we are only interested in the expected behavior of
the system for our analysis, we assume that both read and
write requests are served in FCFS manner within their class.

D. Execution of read/write requests

The uncertainty in the execution time of the request at
each server occurs due to independent background processes
at individual servers, and hence the execution time can be
modeled by independent random variables, both across the
servers and the requests. We also assume that homogeneous
servers such that each execution time has identical distribution,
depending on the request class.

1) Read requests: Real traces from Amazon S3 show that
the empirical distribution of time to retrieve a fixed size
chunk of data can be well approximated by an exponential
distribution [8]. This assumption makes the analysis tractable,
and is a popular assumption for content download time in
literature [5], [7], [14], [18], [34]. Accordingly, we assume
that the read times are i.i.d. across read requests and servers,
distributed exponentially with rate µr.

5https://mariadb.com/kb/en/high_priority-and-low_priority/
6https://www.sqlshack.com/locking-sql-server/

2) Write requests: It has been shown that the random write
latency in distributed storage systems, can be well modeled
by shifted exponential distribution [4], [9], [10], [35], [36].
The shifted exponential distribution can be approximated to
an exponential distribution when the constant shift is much
smaller than the mean of the distribution. Since exponential
distributions offer analytical tractability, we consider the case
when the constant shift is negligible in empirical write distri-
butions. Hence, we assume that the write times are i.i.d. across
write requests and servers, distributed exponentially with rate
µw.

E. Performance Metric

For an (n + 1) server system, with arrival and service
rate pairs (λr, µr) for read requests and (λw, µw) for write
requests, we will measure the system performance by the lim-
iting average of number of requests in the system. We denote
aggregate read and write load on the system by ρr , λr/µr
and ρw , λw/µw respectively. Since write requests join all
(n + 1) servers, and read requests join one of the (n + 1)
servers, the system is stable if ρw + ρr/(n + 1) < 1. Let
Mn(t) denote the number of requests in the (n + 1)-server
system at time t, then the limiting average number of requests
is M̄n = limt→∞

1
t

∫ t
s=0

Mn(s)ds.
From Little’s law [37],we know that the limiting mean

number of requests is directly proportional to the limiting
mean sojourn time of requests in the system. Performance
metric of choice here is the number of requests in the system,
which is sum of the number of requests of individual classes.
Implicitly, we have assumed that the read and write requests
are of equal importance in our work. However, since we
separately compute the number of read and write requests in
the system, our framework can be used for any performance
metric that is a function of the two numbers.

We will show that the number of secondary servers n
is an important system parameter that controls the system
performance. Specifically, we will show that under certain
traffic and service parameters, there exists an optimal choice
of number of secondary servers n, that minimizes the limiting
average of number of requests in the system. Formally, we
solve the following problem.

Problem 1. For the distributed read-write system described
above, find the optimal number of servers n∗ such that n∗ =
arg minn M̄n. In particular, we will find the optimal number of
servers for read-first priority. We will assume that the system
is stable for all n ∈ Z+, i.e. ρr + ρw < 1. Further, we assume
finite write load on the system, i.e. ρw > 0.

III. BACKGROUND

For our system model, read requests are easier to under-
stand. Since read arrivals get routed to one of (n+ 1) servers
uniformly at random, the read requests queues would have
remained independent if there were no write requests in the
system. The write requests arrive at the primary, and are sent to
all n secondary servers at the instant of write completion at the
primary. A request is considered completed, if it is completed

2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS)

174Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 18,2022 at 17:42:20 UTC from IEEE Xplore. Restrictions apply.

at all n servers. That is, a write request is forked to all n
secondary servers, and joins after service from all n of them.
This is precisely the setting of (n, n) fork-join queues [38].

In this section, we will just focus on the evolution of an
(n, n) fork-join system for a single class of requests. We
study the impact of preceding primary server in Section IV.
Specifically, we consider an n server system, where request
arrival is a Poisson process with rate λ, and the service time
of each request at all servers is assumed to be i.i.d. exponential
with rate µ. An arriving request is forked to all n servers, and
it leaves a server after service. Customers are served in an
FCFS manner at each server.

Let Xj(t) be the number of requests in the queue j, then
we make two observations. The evolution of each queue
follows an M/M/1 queue and the total number of requests
in the system at time t is given by max {Xj(t) : j ∈ [n]}.
The limiting distribution of number of requests in each of
the n queues can be computed easily. If the queues were
independent, then this also gives us the distribution of total
number of requests in the system. However, since all queues
get new requests at the identical arrival instant, they are not
independent. Nevertheless, we do have bounds on the limiting
mean number of requests. A simple lower bound is derived
from the application of Jensen’s inequality to convex function
max, and an upper bound is derived from the fact that max
is upper bounded by the sum. That is, we have

max
j∈[n]

lim
t→∞

EXj(t) 6 lim
t→∞

Emax
j∈[n]

Xj(t) 6
∑
j∈[n]

lim
t→∞

EXj(t).

We observe that these bounds can be very loose in high
load settings. Therefore, we consider the alternative way
of viewing fork-join system as tandem queues with pooled
service as proposed in [18]. We adapt this approach to study
the read priority systems under consideration. We propose a
new approximation for read priority system, under which the
computed approximate mean number of write requests in the
system is shown to be close to the empirical mean in the
original system.

A. Tandem queue approach and approximation

An alternative way of state representation of fork-join
queues at any time t, is the sequence of set of servers that
have served each request in the system [18]. Each incoming
request is served in FCFS fashion at each server and is
forked instantaneously to all n servers. Therefore, the set of
servers serving the newer requests are the ones that have
already served the older requests. From the homogeneity in
the system, it follows that the identities of servers do not
matter, and the system state is sufficiently represented by
the number of servers that have served each request in the
system. From the FCFS service discipline, it follows that older
requests are served by the number of servers no less than
the newer requests. Therefore, one can partition all requests
in the system by the number of servers that have served it.
Accordingly, let Yi(t) denote the number of requests in the
system that have been served by i servers at time t, and denote

Y (t) , (Y0(t), . . . , Yn−1(t)). It turns out that (Y (t), t > 0)
is a sufficient state representation for a fork-join queue. We
call Yi(t) to be the number of requests in level i. We observe
that each incoming arrival is served by 0 servers, and hence
this increases Y0(t) → Y0(t) + 1 at the arrival instant t.
Further, when a request is served by all n servers, it departs the
system and decreases Yn−1(t)→ Yn−1(t)−1 at the departure
instant t. When a request is served by i < n servers, then it
becomes a request with i server completions from (i−1) server
completions. Correspondingly, we have Yi−1(t)→ Yi−1(t)−1
and Yi(t)→ Yi(t)+1 at this service completion instant t. That
is, Y (t) has a tandem queue interpretation with queues 0 to
(n − 1) from left to right, with external arrivals to queue 0
and external departures from queue (n−1). A departure from
queue (i− 1) leads to an arrival to queue i.

For each partition of requests that have been served by i
servers, can only be served by remaining (n − i) servers. At
these (n − 1) server queues, there maybe requests that have
been served by (i+1) or more servers. The requests with (i+
1) or more completions are older than the requests with i
completions, and hence are served first due to FCFS service
discipline. We let Ni(t) denote the number of servers at time
t, whose head request has been served by exactly i servers.
That is, the requests in level i of the tandem queue, are served
by Ni(t) servers in parallel at time t. We have illustrated the
tandem queue interpretation of the system in Figure 3, where
a request served by i servers moves to level i + 1 once it
receives service from one of the Ni(t) servers.

µ

N1(t) = 1

Y1(t)µ

N0(t) = 11{Y1(t)>0} + 21{Y1(t)=0}

Y0(t)
λ

Fig. 3: Write requests in the system represented as a tandem
queue with pooled servers.

Proposition 1. For the (n, n) fork-join queuing system under
consideration, the vector Y (t) represents the occupancy of
an n-tandem queue at time t. If Y (t) = y, then the number
of servers serving the head request at ith tandem queue is
denoted by Ni(t) = Ni(y) such that

Ni(y) =

{
1, i = n− 1,

1 +Ni+1(y)1{yi+1=0}, i < n− 1.

Proof. We just provide a proof sketch here, which is adapted
from [18].Each request joins all n queues, gets served in an
FCFS manner at each of them, and leaves the system when
it has been served by all n servers. When a request gets
serviced at a server, we say that the corresponding server has
been observed by the request. Due to FCFS service policy,
the subset of observed servers for each request in the system
forms a chain [18],i.e. the set of observed servers for an older
request in the system contains the set of observed servers of
newer request. Thus, we can aggregate all the requests with

2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS)

175Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 18,2022 at 17:42:20 UTC from IEEE Xplore. Restrictions apply.

identical set of observed servers. Then the number of requests
with identical set of i observed servers is denoted by Yi(t)
at time t. We note that because of FCFS service policy, only
the oldest of the Yi requests is in service. Since requests leave
after observing n servers, we have i ∈ {0, . . . , n− 1} and the
number of observed servers i is referred to as level i. One can
see that Y is the number of requests in a tandem queue with
n levels. Incoming requests have not observed any server and
hence join level 0. When a request with i observed servers,
gets served by another useful server, it leaves level i, and joins
level i+ 1. A request departs the system from level n− 1.

For an (n, n) fork-join system, the set of useful servers for
a request is the set of all servers without the observed servers.
The number of useful servers for the requests in level i is n−i.
However, some of these servers are useful to the requests ahead
of them as well, due to chain property of observed servers.
The number of available servers for requests with i observed
servers is denoted by Ni(t) at time t. For i = n−1, the number
of useful and available servers remain same and equal to 1,
since requests with n observed servers leave. A request with i
observed servers has one available server not useful to requests
with (i + 1) observed servers, and it can use the available
servers from the (i+ 1)th level, if there are no requests with
(i+ 1) observed servers. Since, this relation only depends on
time t through the occupancy vector Y , we get the result. �

Proposition 2. For the (n, n) fork-join queuing system de-
scribed above, the occupancy vector (Y (t) : t ∈ R+) forms a
continuous-time Markov chain, with possible transitions

ai(y) ,


y + e0, i = 0,

y + ei − ei−1, i ∈ [n− 1], yi−1 > 0,

y − en−1, i = n, yn−1 > 0,

and the corresponding transition rates are

Q(y, ai(y)) = λ1{i=0} +Ni−1(y)µ1{yi−1>0}1{i∈[n]}.

Proof. In the proof of Proposition 1, we observed that the
occupancy vector Y (t) has a tandem queue interpretation. We
will show that the random time to next transition depends
only on the current state, and has an exponential distribution.
Further, conditioned on the current state, the jump probability
of next transition is independent of the random transition time,
and previous jump transitions. This shows that process Y is a
continuous-time Markov chain [39].

Recall that there are three types of possible transitions from
the current state y, namely an external Poisson arrival to
level 0, a service for request with (i − 1) observed servers
that leads to departure of this request from level (i − 1) and
arrival to level i for i < n, and a service for request with
(n − 1) observed servers that leads to an external departure
from the system. Recall that the number of servers available to
level (i− 1) is Ni−1(y), each server has an i.i.d. exponential
service time with rate µ, and the inter-arrival times for external
arrivals are i.i.d. exponential with rate λ. Therefore, the
residual times are independent and exponentially distributed.

The time for next transition is minimum of all these random
times. Conditioned on the current state, next inter-transition
time is an exponential random variable independent of the past,
with rate given by the sum λ + µ

∑n
i=1Ni−1(y)1{yi−1>0}.

Further, the probability that one of these transitions take place
is given by the ratio of the transition rate and the sum-rate.
This probability is independent of the inter-transition time and
past transitions, given the current state y. �

This Markov process is interpreted as a tandem queue, as
shown in Figure 3, where each level i has its own dedicated
service rate µ, which gets pooled in the levels below when
level i is empty. To compute the mean number of write re-
quests, we need to find the invariant distribution of the Markov
process Y . However, this problem remains intractable since it
is equivalent to finding an eigenvector of an n-dimensional
operator with eigenvalue unity. Further, the Markov process
Y is not reversible, and hence there are no known techniques
to find the invariant distribution of this process. However, a
tight reversible approximation of this process was proposed
in [18], which we quote here for reference.

Approximation 1. The pooled tandem queue Y with dedi-
cated rates (µ, . . . , µ) is approximated by a continuous-time
Markov process Ȳ , (Ȳ (t) ∈ Zn+, t ∈ R+), which is
an unpooled tandem queue with Poisson arrival rate λ and
exponential service rates (γ̄0, . . . , γ̄n−1), where the service
rate for level i in unpooled tandem queue is

γ̄i , (n− i)µ− (n− i− 1)λ. (1)

IV. READ PRIORITY SYSTEM

For systems where consumers are not sensitive to the time-
liness of data, but sensitive to the read latency, read requests
are prioritized. Examples of such systems are video streaming,
cataloging, data mining, content management systems, etc. In
this section, we analyze the distributed read-write systems with
priority for read requests. Recall that incoming read requests
are routed to one of the (n+ 1) servers, uniformly at random.
At any server in a read priority system, any write request in
service is preempted by an incoming read request. Let Rj(t)
be the number of read requests at server j at time t. The
evolution of Rj(t) is equivalent to an M/M/1 queue with
Poisson arrivals of rate λr/(n+ 1) and exponential service of
rate µr. The read load on any server j is ρr/n+ 1.
Remark 1. To show the explicit dependence of mean number
of read requests on the number of redundant secondary servers,
we denote this mean by q(n) in the read priority system. Due
to linearity of expectation and the evolution of Rj(t) at all
servers as identical M/M/1 queues, we can write the mean
number of read requests in the read priority system as

q(n) ,
n∑
j=0

ERj = (n+ 1)ER0 =
(n+ 1)ρr
n+ 1− ρr

.

We observe that the mean number of read requests in the read
priority system is decreasing in number of redundant servers
n, and saturates to the read load ρr.

2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS)

176Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 18,2022 at 17:42:20 UTC from IEEE Xplore. Restrictions apply.

We next focus on the number of unique write requests in
the system, denoted by W (t) at time t. Recall that write
requests initially join the primary server, and upon service
completion join all the n secondary servers instantaneously.
A write request leaves the system, when it has been served
by all the servers. Since a write request is preempted when
an incoming read request arrives at that server, we cannot use
Approximation 1 for the write process as it is coupled with
number of read requests in the system.

Let W0(t) denote the number of write requests in the
primary server at time t, then W (t) − W0(t) denotes the
number of write requests forked at n secondary servers.
Service for forked write requests at server j depends on the
number of read requests Rj(t) at this server as well. For each
write request k ∈ [W (t) − W0(t)] ordered by their arrival
time, we define Sk(t) ⊂ [n] to be the set of secondary servers
that has already served this write request at time t. Note that
the write request exits the system after being served by all n
secondary servers. Since the system follows FCFS policy, the
later arrivals only get served by the servers that have already
served the previous arrivals. In particular, we observe that the
(k + 1)th request cannot be served by a server before it has
served the kth request. Therefore,

∅ ⊆ Sk+1(t) ⊆ Sk(t) ⊂ [n], k, k+1 ∈ [W (t)−W0(t)]. (2)

We write the sequence of set of observed servers for all forked
write requests in the system as S(t) , (Sk(t) : k ∈ [W (t) −
W0(t)]), and we denote the number of read requests at (n +
1) servers by R(t) , (Rj(t) : 0 6 j 6 n). Then, we can
denote the state of the system at time t ∈ R+ by Z(t) ,
(W0(t), S(t), R(t)) ∈ Z , Z+ × [n]∗ × Z{0,...,n}+ .

Theorem 3. For a distributed read-write system with priority
for read requests, the random process (Z(t), t ∈ R+) forms a
continuous-time Markov chain. For a state z = (w0, s, r) ∈ Z,
defining sjk , (s1, . . . , sk ∪ {j} , . . .) and s′ , (s2, . . . , s|s|),
the associated generator matrix Q is given by

Q(z, z′) =
λr
n+ 1

n∑
j=0

1{z′=(w0,s,r+ej)}

+ µr

n∑
j=0

1{z′=(w0,s,r−ej)}1{rj>1} + λw1{z′=(w0+1,s,r)}

+ µw1{z′=(w0−1,(s,∅),r)}1{r0=0}1{w0>1}

+ µw

(∑
j:rj=0

∑
k>1

1{z′=(w,sjk,r)}1{j∈sk−1\sk} + 1{j /∈s1}

(
1{z′=(w,sj1,r)}1{|s1|<n−1} + 1{z′=(w,s′,r)}1{|s1|=n−1}

))
.

Proof. We observe that system state can change if there is
(a) an external arrival of read request, (b) a read request gets
serviced, (c) an external arrival of write request, and (d) a write
request gets serviced. Since all distributions are continuous and
arrival and service times are independent, only one of these
events take place in an infinitesimal time. We will first focus

on state transitions due to read requests, since their evolution
is easier to understand when they are prioritized.

(a) External arrival of a read request: External read
arrival at each server is an independent Poisson process of rate
λr

n+1 . Therefore, an external arrival of a read request to server
j ∈ [n] changes the state (w0, s, r)→ (w0, s, r+ ej), and the
inter-transition time for such transitions are independent for
all j ∈ [n] and distributed exponentially with rate λr

(n+1) .
(b) Service of a read request: Service time for read

requests at each server is independent and memoryless with
rate µr, and hence the inter-transition time for transitions
(w0, s, r) → (w0, s, r − ej) are independent and memoryless
with rate µr for all j ∈ [n] such that rj > 1.

We next focus on the evolution of write requests in the
system. Specifically, we look at the arrival and service of write
requests.

(c) External arrival of a write request: External arrival
of write requests is Poisson with rate λw, and the incoming
write requests initially join the primary server. This leads to an
increase in number of write requests w0 at the primary. Thus,
the inter-transition time for transitions (w0, s, r) → (w0 +
1, s, r) are independent and memoryless with rate λw.

(d) Service of a write request: We first focus on service
of an existing write request at primary server 0, which can
only happen when there are no read requests at the primary
server. This request departs from the primary server upon
service completion, and is forked to all n secondary servers.
This request has not been served by any secondary servers
at this instant. Since the service time for write requests are
i.i.d. and memoryless with rate µw, the inter-transition time
for transitions (w0, s, r)→ (w0− 1, (s, ∅), r) are independent
and memoryless with rate µw, and they occur when r0 = 0
and w0 > 1.

We next focus on servers j ∈ [n] without any read requests,
that can serve write requests. Recall that service time for
write requests at each server is i.i.d. and memoryless with
rate µw, and the sequence of set of secondary servers that have
finished serving existing |s| write requests are (s1, . . . , s|s|).
From the monotonicity of these sets in Eq. (2) due to FCFS
scheduling, server j can serve request k > 2, only if it has
already served first (k− 1) requests, and hence j ∈ sk−1 \ sk.
This service leads to kth request getting served by server
j, and it follows that the inter-transition time for transitions
(w0, s, r)→ (w0, s

j
k, r) are independent and memoryless with

rate µw, for all j ∈ [n] such that rj = 0, j ∈ sk−1 \ sk,
and k > 2. A server j can serve first existing request in the
system, if it has not served it already and this service can
lead to an external departure if s1 ∪ {j} = [n]. It follows that
the inter-transition time for transitions z → (w0, s

j
1, r) and

z → (w0, (s2, . . . , s|s|), r) are independent and memoryless
with rates µw1{|s1|<n−1} and µw1{|s1|=n−1} respectively, for
servers j ∈ [n] such that rj = 0 and j /∈ s1.

Since each of these transitions are independent and memory-
less, it follows that the process (Z(t), t ∈ R+) is a continuous-
time Markov chain [39],and we have obtained the generator
matrix for this Markov process. �

2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS)

177Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 18,2022 at 17:42:20 UTC from IEEE Xplore. Restrictions apply.

A. Approximate Markov Chain

For the distributed read-write system with prioritized reads
with service preemption, the number of read requests in the
system (R(t) : t ∈ R+) forms a continuous-time Markov
chain. Recall that the evolution of (Rj(t) : t ∈ R+) is
governed by an M/M/1 queue for all j ∈ {0, 1, . . . , n}, and
the read load on each server is ρr

n+1 . Hence, the probability of
a server j not having any read request is given by 1 − ρr

n+1 .
Writing the number of write requests that have been served
by i secondary servers as Yi(t), we observe that

Yi(t) = |{k ∈ [W (t)−W0(t)] : |Sk(t)| = i}|.

As seen in Eq. (2), the sequence of observed servers (Sk(t) :
k ∈ [W (t) −W0(t)]) for all write requests in the system are
ordered by set inclusion. Hence, the write requests with i ser-
vice completions are served by the same set of servers. From
Proposition 1, it follows that Y (t) , (Y0(t), . . . , Yn−1(t))
is a pooled tandem queue, and evolves as a continuous-time
Markov chain if there were no read requests in the system.
This pooled tandem queue is approximated by an uncoupled
tandem queue in Approximation 1, where the service rate of
ith tandem queue is γ̄i. In read priority system, the evolution
of Y (t) also depends on the number of read requests in the
system at each individual server, and the set of servers which
are serving ith tandem queue.

Remark 2. In read priority systems, a secondary server can
only serve a write request if there are no read requests at
this server. Since the probability of having zero read requests
at a server is same for all servers, we can approximate the
expected rate at which the ith stage of write tandem queue is
being served as P {Rj = 0} γ̄i = (1 − ρr

n+1)γ̄i, where γ̄i is
defined in Eq. (1). Similarly, the average service rate at the
primary queue is (1− ρr

n+1)µw.

That is, we will approximate the process (Y (t) : t ∈ R+)
with process (Ȳ (t) : t ∈ R+), where the Ȳ (t) is an uncoupled
tandem queue with no read requests, and the service rates of
each stage is multiplied by the probability of no read request
at any server.

Approximation 2. For the distributed read-write system with
prioritized preemptive reads, the number of write requests
in the system can be modeled by a sequence of uncoupled
tandem queues (W0(t), Ȳ0(t), . . . , Ȳn−1(t) : t ∈ R+) that are
served at memoryless service rates (µ0, β0, . . . , βn−1). The
first queue W0 is served at rate µ0 , µw(1− ρr

n+1) and the ith
stage of tandem queue Yi is served at rate βi , γ̄i(1− ρr

n+1),
where γ̄i is defined in Eq. (1) for λ = λw, µ = µw.

Theorem 4. The mean number of write requests in the
approximate system is

EW̄ =
λw

µ0 − λw
+

n∑
i=1

λw
βn−i − λw

.

Proof. Each of the n unpooled tandem queues is an M/M/1
queue with arrival rate λ and service rate βi. Therefore, the

mean number of request in ith queue is λ
βi−λ . Since the

number of write requests in the system is the sum of requests
in the primary queue and the n tandem queues, the result
follows. �

Remark 3. As in previous section, to show the explicit de-
pendence of mean number of write requests on the number
of redundant secondary servers, we denote p(n) , EW̄ , in
the approximate read-write system with read priority. The
expression for the mean number of write requests in the
approximate read priority system can be written in terms of
the write load parameter ν , ρw/(1− ρw), the read load
parameter ∆n , 1 − ρrν

(n+1−ρr) , and the digamma function7

ψ : C→ R as

p(n) =
(n+ 1)ν

n+ 1− ρr(1 + ν)
+

(n+ 1)ν(ψ(∆n + n)− ψ(∆n))

(n+ 1− ρr)
.

Remark 4. We observe that as the number of redundant servers
n increases, the mean number of read requests reaches a finite
limit ρr, and the mean number of write requests grows to
infinity.
Remark 5. Since the mean number of requests p + q, has
terms with digamma function, we numerically find the min-
imum x∗ in its domain R+. Further, the optimal number
of redundant servers n∗ can be found by comparing mean
number of requests p+ q at integer values dx∗e and bx∗c, i.e.
n∗ , arg min {(p+ q)(bx∗c), (p+ q)(dx∗e)}.

Design Principle : We observe that p(n) is lower bounded
by ν ln e(n + 1) for all n ∈ Z+, and hence the asymptotic
growth of the mean number of write requests is at least log-
arithmic in n. Further, the number of read requests decreases
in the order of 1

n with n. Hence, this opposing behaviour of
p(n) and q(n) should be taken into account while designing
the system.

V. NUMERICAL STUDIES

We numerically simulate a distributed read-write system
with primary secondary architecture in this section. The system
is simulated with non-preemptive scheduling and round-robin
routing of read requests, as opposed to the simplifying assump-
tion of preemptive scheduling and random routing, which we
used for analysis. We compare the optimal number of servers
obtained analytically using our proposed approximation, to
the one observed empirically in the system simulation. In our
simulation studies, we select the read service rate µr = 10
an order higher than the write service rate µw = 1. This is
motivated by the observation that reads are typically faster than
writes in practical systems [41]. We have plotted the optimal
number of servers for the read priority system in Fig. 4. We
fix arrival rate of the read or write requests, and vary the other
within 95% of the stability region. The dashed curve shows
the optimal number obtained analytically for the approximate
system, while the solid curve denotes the optimal number
obtained empirically under the system simulation.

7Digamma function ψ(.) is the derivative of the logarithm of gamma
function, and is continuous and differentiable in R+. It has the property
ψ(z + 1) = ψ(z) + 1

z
[40].

2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS)

178Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 18,2022 at 17:42:20 UTC from IEEE Xplore. Restrictions apply.

0 1 2 3 4
0

1

2

3

4

5

Read request arrival rate

O
pt

im
al

nu
m

be
ro

fs
er

ve
rs Approximation

Simulation

(a) λw = 0.6

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

Write request arrival rate

O
pt

im
al

nu
m

be
ro

fs
er

ve
rs Approximation

Simulation

(b) λr = 3.6

Fig. 4: The optimal number of servers as a function of request
arrival rate in a read priority system.

In most practical distributed databases, the number of re-
dundant servers n is typically taken as two8. However, as we
have observed for read priority system in Fig. 4a and Fig. 4b,
the optimal number of secondary servers n can be different
than two depending on the request arrival rate and service rate.
Hence, the typically chosen value of two redundant servers is
not always optimal from latency perspective.

A. Experimental Results

We perform experiments on a 7-server distributed storage
system with primary-secondary architecture and a single client
server. Most database systems employ a disk cache for serving
client requests, while using a backend process to update the
data into hard-disk periodically. This is due to the fact that
read and write to cache is roughly 10 times faster than read
and write to storage disk. Accordingly, we read the file from
the cache of the storage system and wrote back to the cache
as well. While serving the read or write request to the specific
file of interest, each of these servers had other background
processes running (e.g. reads and writes to other files).

The client server generates read and write request under
Poisson arrival processes with rate λr and λw respectively.
We empirically measure the service time distribution for read
and write request to the cache, by averaging it over all the
seven servers. For read update for 150MB and write update
of 200MB, we obtained the mean service time to read and
write in cache to be 0.021s and 0.183s respectively. We took
the sum of number of requests in the system with service in
progress or waiting for service, and obtained the mean number
of requests by averaging them over time. We plot the mean
number of requests in the read priority experiment and system
simulation with identical distributions Figure 5a, with read
arrival rate of λr = 20 and write arrival rate of λw = 0.7. Due
to heterogeneity among servers, the read and write times at
different servers do not have the same distribution. We observe
in Figure 5 that the latency curves obtained from experiment
and the simulated system do not coincide, due to heterogeneity
among servers and the additional system delays including
network delays which were unaccounted in the simulations.
However, even though the simulation and experiment do not
match due to non-idealities in the system, we observe that

8https://docs.mongodb.com/manual/core/replica-set-architectures/

there exists an optimal redundancy that minimizes the number
of requests in the system.

1 2 3 4 5 6 7

0.55

0.6

0.65

Number of servers

M
ea

n
nu

m
be

ro
fr

eq
ue

st
s Experiment

Simulation

(a) Experiment on 7-server
storage system with λr = 20
and λw = 0.7

2 3 4 5 6 7

0.54

0.55

0.56

0.57

0.58

Number of servers

M
ea

n
nu

m
be

ro
fr

eq
ue

st
s Empirical Distribution

Shited Exponential
Pareto
Weibull

(b) System with λr = 15
and λw = 0.3 under different
distribution

Fig. 5: The mean number of requests as a function of number
of servers in the read priority system.

We plot the mean number of requests in a read-write system
for the empirical distributions obtained from experiments, and
for the closest fitting distributions from some parametrized
families of non-memoryless distributions. Each of the read and
write time distributions have a mean of 0.021s and 0.183s
respectively. We simulate the system under three different
distributions: Shifted exponential, Pareto, Weibull, for read
arrival rate λr = 15 and write arrival rate λw = 0.3 under
read priority. We further compare the results obtained with the
Empirical distribution from the experiment. Plotting the mean
number of requests with respect to the number of servers in
Figure 5b, we observe that there exists an optimal number
of servers that minimises the mean number of requests under
non-memoryless service as well.

VI. CONCLUSION AND FUTURE DIRECTIONS

We studied the latency-redundancy tradeoff in a distributed
read-write system with Poisson arrivals and exponential ser-
vice distribution. We provided novel closed-form approxima-
tions for mean number of write requests under read priority.
Under the proposed approximation, we characterized the opti-
mal redundancy that minimizes the average request latency
under read priority. We empirically showed that the opti-
mal choice of redundancy under the proposed approximation
closely follows the simulated result. We performed real world
experiments and extensive numerical studies to demonstrate
that the insights obtained from our theoretical study continue
to hold true even in the real world settings and under non-
memoryless service distributions.

Our analysis framework can be extended to the study of
multiple-file systems where each file is written to a subset
of the servers. In such systems, read and write queues would
themselves be multi-class queues where the request for dif-
ferent files can be considered as a separate class. Further, we
are interested in finding the optimal redundancy for alterna-
tive system architectures and different consistency guarantees.
Another interesting future direction would be to characterize
the latency-redundancy tradeoff with general distribution for
arrival and service processes.

2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS)

179Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 18,2022 at 17:42:20 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” ACM Spec. Interest Grp.
Oper. Syst. Rev. (SIGOPS), vol. 41, no. 6, pp. 205—-220, Oct. 2007.

[2] P. Bailis and A. Ghodsi, “Eventual consistency today: Limitations,
extensions, and beyond,” ACM Queue, vol. 11, no. 3, pp. 20—-32, Mar.
2013.

[3] D. Abadi, “Consistency tradeoffs in modern distributed database system
design: Cap is only part of the story,” Computer, vol. 45, no. 2, pp.
37–42, Feb. 2012.

[4] J. Zhong, R. D. Yates, and E. Soljanin, “Minimizing content staleness
in dynamo-style replicated storage systems,” in IEEE Inter. Conf. Comp.
Commun. (INFOCOM), Apr. 2018, pp. 361–366.

[5] L. Huang, S. Pawar, H. Zhang, and K. Ramchandran, “Codes can reduce
queueing delay in data centers,” in IEEE Inter. Symp. Inf. Theory (ISIT),
Jul. 2012, pp. 2766–2770.

[6] N. B. Shah, K. Lee, and K. Ramchandran, “The mds queue: Analysing
the latency performance of erasure codes,” 2012.

[7] G. Joshi, Y. Liu, and E. Soljanin, “Coding for fast content download,”
in Ann. Allerton Conf. Commun., Control, Comp. (Allerton), Oct. 2012,
pp. 326–333.

[8] S. Chen, Y. Sun, U. C. Kozat, L. Huang, P. Sinha, G. Liang, X. Liu,
and N. B. Shroff, “When queueing meets coding: Optimal-latency
data retrieving scheme in storage clouds,” in IEEE Inter. Conf. Comp.
Commun. (INFOCOM), Apr. 2014, pp. 1042–1050.

[9] G. Liang and U. C. Kozat, “Fast cloud: Pushing the envelope on delay
performance of cloud storage with coding,” IEEE/ACM Trans. Netw.,
vol. 22, no. 6, pp. 2012–2025, Dec. 2014.

[10] N. B. Shah, K. Lee, and K. Ramchandran, “When do redundant requests
reduce latency?” IEEE Trans. Commun., vol. 64, no. 2, pp. 715–722,
Feb. 2016.

[11] Y. Xiang, T. Lan, V. Aggarwal, and Y.-F. R. Chen, “Joint latency and cost
optimization for erasure-coded data center storage,” IEEE/ACM Trans.
Netw., vol. 24, no. 4, pp. 2443–2457, Aug. 2016.

[12] P. Parag, A. Bura, and J.-F. Chamberland, “Latency analysis for dis-
tributed storage,” in IEEE Inter. Conf. Comp. Commun. (INFOCOM),
May 2017, pp. 1–9.

[13] A. O. Al-Abbasi and V. Aggarwal, “Mean latency optimization in
erasure-coded distributed storage systems,” in IEEE Inter. Conf. Comp.
Commun. (INFOCOM), Apr. 2018, pp. 432–437.

[14] G. Joshi, Y. Liu, and E. Soljanin, “On the delay-storage trade-off in
content download from coded distributed storage systems,” IEEE J. Sel.
Areas Commun., vol. 32, no. 5, pp. 989–997, May 2014.

[15] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, and E. Hyytia,
“Reducing latency via redundant requests: Exact analysis,” ACM Perf.
Eval. Rev. (SIGMETRICS), vol. 43, no. 1, pp. 347–360, Jun. 2015.

[16] A. O. Al-Abbasi and V. Aggarwal, “Video streaming in distributed
erasure-coded storage systems: Stall duration analysis,” IEEE/ACM
Trans. Netw., vol. 26, no. 4, pp. 1921–1932, Aug. 2018.

[17] A. O. Al-Abbasi, V. Aggarwal, and T. Lan, “Ttloc: Taming tail latency
for erasure-coded cloud storage systems,” IEEE Trans. Netw. Service
Manag., vol. 16, no. 4, pp. 1609–1623, Dec. 2019.

[18] A. Badita, P. Parag, and J.-F. Chamberland, “Latency analysis for
distributed coded storage systems,” IEEE Trans. Inf. Theory, vol. 65,
no. 8, pp. 4683–4698, Aug. 2019.

[19] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, E. Hyytiä, and
A. Scheller-Wolf, “Queueing with redundant requests: exact analysis,”
Queueing Syst. Theory Appl. (QUESTA), vol. 83, no. 3, pp. 227–259,
Aug. 2016.

[20] W. Wang, M. Harchol-Balter, H. Jiang, A. Scheller-Wolf, and R. Srikant,
“Delay asymptotics and bounds for multitask parallel jobs,” Queueing
Syst. Theory Appl. (QUESTA), vol. 91, no. 3, pp. 207–239, Jan. 2019.

[21] M. Uluyol, A. Huang, A. Goel, M. Chowdhury, and H. V. Madhyastha,
“Near-optimal latency versus cost tradeoffs in geo-distributed storage,”
in USENIX Symp. Net. Sys. Desgn. Impl. (NSDI), Feb. 2020, pp. 157–
180.

[22] B. Li, A. Ramamoorthy, and R. Srikant, “Mean-field analysis of coding
versus replication in large data storage systems,” ACM Trans. Model.
Perform. Eval. Comput. Syst. (PECS), vol. 3, no. 1, Feb. 2018.

[23] J. Li, T. K. Phan, W. K. Chai, D. Tuncer, G. Pavlou, D. Griffin, and
M. Rio, “Dr-cache: Distributed resilient caching with latency guaran-

tees,” in IEEE Inter. Conf. Comp. Commun. (INFOCOM), Apr. 2018,
pp. 441–449.

[24] G. Quan, J. Tan, and A. Eryilmaz, “Counterintuitive characteristics of
optimal distributed lru caching over unreliable channels,” in IEEE Inter.
Conf. Comp. Commun. (INFOCOM), Apr. 2019, pp. 694–702.

[25] S. Zhang, L. Wang, H. Luo, X. Ma, and S. Zhou, “Aoi-delay tradeoff
in mobile edge caching with freshness-aware content refreshing,” 2020.

[26] V. B. Iversen, Teletraffic engineering and network planning. DTU
Fotonik, 2015.

[27] S. N. Chiu, D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic Geometry
and Its Applications, 3rd ed. Wiley, Aug. 2013.

[28] D. Axmark, M. Widenius, and theMySQL Documentation Team, MySQL
8.0 Reference Manual Including MySQL NDB Cluster 8.0, Oracle.

[29] U. Shanker and S. Pandey, Handling Priority Inversion in Time-
Constrained Distributed Databases. IGI Global, Jan. 2020.

[30] C. A. Phillips, C. Stein, and J. Wein, “Minimizing average completion
time in the presence of release dates,” Math. Prog. Math. Opt. Soc.
(MPMOS), vol. 82, pp. 199–223, Jun. 1998.

[31] R. Atar, A. Mandelbaum, and M. I. Reiman, “Scheduling a multi class
queue with many exponential servers: Asymptotic optimality in heavy
traffic,” Annals Appl. Prob., vol. 14, no. 3, pp. 1084–1134, Aug. 2004.

[32] K. Fraser, “Practical lock-freedom,” Ph.D. dissertation, University of
Cambridge, UK, 2004.

[33] G. Giambene, Queuing Theory and Telecommunications: Networks and
Applications, 2nd ed. Springer US, Apr. 2014.

[34] L. Huang, S. Pawar, H. Zhang, and K. Ramchandran, “Codes can reduce
queueing delay in data centers,” 2012.

[35] G. Liang and U. C. Kozat, “Tofec: Achieving optimal throughput-delay
trade-off of cloud storage using erasure codes,” in IEEE Inter. Conf.
Comp. Commun. (INFOCOM), Apr. 2014, pp. 826–834.

[36] A. Behrouzi-Far and E. Soljanin, “Scheduling in the presence of data
intensive compute jobs,” in IEEE Inter. Conf. Big Data (ICBD), Dec.
2019, pp. 5989–5991.

[37] J. D. C. Little, “A proof for the queuing formula: L = λw,” Inter. J.
Oper. Res. (IJOR), vol. 9, no. 3, pp. 383–387, Jun. 1961.

[38] F. Baccelli and A. M. Makowski, “Simple computable bounds for the
fork-join queue,” Proc. Conf. Inform. Sci. (PCIS), no. RR-0394, Apr.
1985.

[39] S. M. Ross, Stochastic processes, 2nd ed. Wiley India Pvt. Limited,
2008.

[40] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions:
With Formulas, Graphs, and Mathematical Tables. Dover Publications,
1965.

[41] A. T. Kabakus and R. Kara, “A performance evaluation of in-memory
databases,” J. King Saud Univ. Comput. Inf. Sci. (CIS), vol. 29, no. 4,
pp. 520—-525, Oct. 2017.

2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS)

180Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 18,2022 at 17:42:20 UTC from IEEE Xplore. Restrictions apply.

		2022-01-10T09:20:42-0500
	Certified PDF 2 Signature

