Bayesian Optimization

Application and key idea: Hyperparameter tuning in DeepNN – huge set of parameters to tune – number of layers, weight regularization, layer size, nonlinearity type, batch size, learning rate schedule, stopping conditions etc – grid search is expensive – optimize a cheap proxy function instead !

Batch Bayesian Optimization

Feedback Structure

- Rewards are delayed or available in batches
- $\mathcal{S}(t) \leq t 1$ is the most recent round upto which rewards are available
- x_t is chosen using rewards obtained till round $\mathcal{S}(t)$
- Assume $t \mathcal{S}(t) \le M, M \ge 1$ known

Regularity Assumptions

- f lies in **RKHS** of functions: $D \to \mathbb{R}$
- Reproducing property: $f(x) = \langle f, k(x, \cdot) \rangle_k$
- Induces smoothness: $|f(x) - f(y)| \le ||f||_k ||k(x, \cdot) - k(y, \cdot)||_k$
- $\|f\|_k \leq B$ (known)
- Zero mean additive sub-Gaussian noise

Application

- Parallelizing an expensive computer simulation over multiple cores
- Simple batch setting: $\mathcal{S}(t)$
- Simple delay setting: $\mathcal{S}(t)$
- Strictly sequential setting: M = 1 or $\mathcal{S}(t) = t$ -

Posterior GP with Batch Feedback

- Available rewards at round $t: y_1, \ldots, y_{\mathcal{S}(t)}$
- Hallucinate missing rewards $y_{S(t)+1}, \ldots, y_{t-1}$ using the most recently updated posterior mean $\mu_{\mathcal{S}(t)}$
- Set $y_s = \mu_{\mathcal{S}(t)}(x_s), s = S(t) + 1, S(t) + 2, \dots, t 1$
- Posterior mean remains $\mu_{\mathcal{S}(t)}$, but the posterior covariance decreases to k_{t-1}

On Batch Bayesian Optimization

Sayak Ray Chowdhury Aditya Gopalan

Department of Electrical Communication Engineering, Indian Institute of Science

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

$$(x), k_{t-1}(x, y))$$

$$) = M \lfloor (t-1)/M \rfloor$$

$$) = \max\{t - M, 0\}$$

$$x: M = 1 \text{ or } \mathcal{S}(t) = t - 1$$

IGP-BUCB: At each round *t*, choose $x_t = \operatorname{argmax}_{x \in D} \mu_{\mathcal{S}(t)}(x) + \beta_t \sigma_{t-1}(x)$

- β_t and v_t : (a) Governs exploration and exploitation trade-off, (b) Compensates for the bias created by the hallucinated data in the attempt to aggressively shrink the confidence interval and reduce exploration
- IGP-BUCB: Reduced width (β_t) of confidence interval compared to GP-BUCB (*Desautels et al.*, $JMLR \ 2014)$ – Improved theoretical and numerical performance
- **GP-BTS:** D_t is a suitable discretization of D
- Strictly sequential setting: Recover IGP-UCB and GP-TS algorithms (Chowdhury et al., ICML 2017)

Regret Bounds

IGP-BUCB: $O\left(\sqrt{\xi_M T} \left(B\sqrt{\gamma_T} + \gamma_T\right)\right)$ with high probability

- γ_T : Maximum Information Gain about f after T rounds quantifies reduction in uncertainty
- Squared-exponential kernel: $\gamma_T \simeq O(\ln T) Cumulative regret grows sublinearly with T$
- ξ_M : Bounds information gain about f from at most M hallucinations given actual rewards
- Squared-exponential kernel: $\xi_M \simeq O(M)$ Cumulative regret grow linearly with the batch size M
- Uncertainty sampling based initialization scheme makes ξ_M constant average per-round regret vanishes

Numerical Results

Figure 1: Time-average regret for (a) RKHS functions of SE kernel, (b) Rosenbrock function, (c) Temperature sensor data.

References

- Parallelizing exploration-exploitation tradeoffs in gaussian process bandit optimization, Thomas Desautels, Andreas Krause, and Joel W Burdick, JMLR 2014.
- [2] On Kernelized Multi-armed Bandits, S. R. Chowdhury and A. Gopalan, ICML 2017.

Algorithms: IGP-BUCB and GP-BTS

GP-BTS: Sample $f_t \sim GP(\mu_{\mathcal{S}(t)}, v_t^2 k_{t-1})$ and choose $x_t = \operatorname{argmax}_{x \in D_t} f_t(x)$

GP-BTS: $O\left(\sqrt{\xi_M T d \ln(B d T)} \left(B \sqrt{\gamma_T} + \gamma_T\right)\right)$ with high probability