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Bayesian Optimization

Sequentially maximize an unknown function f: D — R, D C R
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At every round ¢, an agent:
® Chooses 7+ € D based on past observations

® Observes noisy samples of (1)
® Suffers regret 14 = f(27) — f(1¢)

Goal: Minimize cumulative regret
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= Squared Exponential (SE) kernel:

k(x,y) = exp (
= Posterior of f: GP(ut—1(x), kr—1(x,y))
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= Represent uncertainty over f using (zaussian process

Application and key idea: Hyperparameter tuning in DeepNN — huge set of parameters to tune —
number of layers, weight reqularization, layer size, nonlinearity type, batch size, learning rate
schedule, stopping conditions etc — grid search is expensive — optimize a cheap proxy function instead !

Batch Bayesian Optimization

Feedback Structure

= Rewards are delayed or available in batches

= §(t) <t —1is the most recent round upto which
rewards are available

= x4 is chosen using rewards obtained till round S(¢)
= Assume t — S(t) < M, M > 1 known

Regularity Assumptions

= f lies in RKHS of functions: D — R

= Reproducing property: f(x) = (f, k(x,))r
= Induces smoothness:

f@) = F)l < [l IR, ) = Ry, )k
* [Ifllx = B (known)

= Zero mean additive sub-Gaussian noise

multiple cores

Application

= Parallelizing an expensive computer simulation over

= Simple batch setting: S(t) = M |(t —1)/M |
= Simple delay setting: S(t) = max{t — M, 0}
= Strictly sequential setting: M =1or S(t) =t —1

Posterior GP with Batch Feedback

= Available rewards at round t: yq, ...

US()
= Hallucinate missing rewards YS(t)+1s - -

) Yt—1 using

the most recently updated posterior mean pig )

= Set ys = pg(y)(s), s =S(t) +1,5(t) +2,...,
= Posterior mean remains u S(t): but the posterior
covariance decreases to ky_1

t—1
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Algorithms: IGP-BUCB and GP-BTS

IGP-BUCB: At each round t, choose

GP-BTS: Sample f; ~ GP(ug ), vk 1) and
r = argmaxye p fs() (%) + Sror—1(x)

choose xt = argmax,ep, ft(x)

= B¢ and v (a) Governs exploration and exploitation trade-off, (b) Compensates for the bias created by the
hallucinated data in the attempt to aggressively shrink the confidence interval and reduce exploration

« IGP-BUCB: Reduced width (8¢) of confidence interval compared to GP-BUCB (Desautels et al.,
JMLR 2014 ) — Improved theoretical and numerical performance

« GP-BTS: Dy is a suitable discretization of D
= Strictly sequential setting: Recover IGP-UCB and GP-TS algorithms (Chowdhury et al., ICML 2017)

Regret Bounds

GP-BTS: O (\/gMTd In(BdT) (B\/7T + ) )

IGP-BUCB: O (\ JET(BAT + VT)) with
with high probability

high probability

= vy Mazimum Information Gain about f after T rounds — quantifies reduction in uncertainty

= Squared-exponential kernel: yp =< O(InT") — Cumulative regret grows sublinearly with T

= £37: Bounds information gain about f from at most M hallucinations given actual rewards

= Squared-exponential kernel: &3 < O(M) — Cumulative regret grow linearly with the batch size M

= Uncertainty sampling based initialization scheme makes &3 constant — average per-round regret vanishes

Numerical Results
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Figure 1: Time-average regret for (a) RKHS functions of SE kernel, (b) Rosenbrock function, (c) Temperature sensor data.
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