
On Batch Bayesian Optimization
Sayak Ray Chowdhury Aditya Gopalan

Department of Electrical Communication Engineering, Indian Institute of Science

Bayesian Optimization

Sequentially maximize an unknown function f : D → R, D ⊂ Rd

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

f(
x
)

x

f(x
t
)

f(x
*
)

r
t

x
t

D
x

*

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f(
x
)

µ
t

At every round t, an agent:
1 Chooses xt ∈ D based on past observations
2 Observes noisy samples of f (xt)
3 Suffers regret rt = f (x?)− f (xt)
Goal: Minimize cumulative regret

• Represent uncertainty over f using Gaussian process
prior GP (0, k(x, y))

• Squared Exponential (SE) kernel:
k(x, y) = exp

(−‖x−y‖22
2l2

)
• Posterior of f : GP (µt−1(x), kt−1(x, y))

Application and key idea: Hyperparameter tuning in DeepNN – huge set of parameters to tune –
number of layers, weight regularization, layer size, nonlinearity type, batch size, learning rate

schedule, stopping conditions etc – grid search is expensive – optimize a cheap proxy function instead !

Batch Bayesian Optimization
Feedback Structure

• Rewards are delayed or available in batches
• S(t) ≤ t− 1 is the most recent round upto which

rewards are available
• xt is chosen using rewards obtained till round S(t)
• Assume t− S(t) ≤M , M ≥ 1 known

Regularity Assumptions
• f lies in RKHS of functions: D → R
• Reproducing property: f (x) = 〈f, k(x, ·)〉k
• Induces smoothness:
|f (x)− f (y)| ≤ ‖f‖k ‖k(x, ·)− k(y, ·)‖k

• ‖f‖k ≤ B (known)
• Zero mean additive sub-Gaussian noise

Application
• Parallelizing an expensive computer simulation over

multiple cores
• Simple batch setting: S(t) = Mb(t− 1)/Mc
• Simple delay setting: S(t) = max{t−M, 0}
• Strictly sequential setting: M = 1 or S(t) = t− 1

Posterior GP with Batch Feedback
• Available rewards at round t: y1, . . . , yS(t)
• Hallucinate missing rewards yS(t)+1, . . . , yt−1 using

the most recently updated posterior mean µS(t)
• Set ys = µS(t)(xs), s = S(t) + 1, S(t) + 2, . . . , t− 1
• Posterior mean remains µS(t), but the posterior

covariance decreases to kt−1

Algorithms: IGP-BUCB and GP-BTS

IGP-BUCB: At each round t, choose
xt = argmaxx∈D µS(t)(x) + βtσt−1(x)

GP-BTS: Sample ft ∼ GP (µS(t), v
2
tkt−1) and

choose xt = argmaxx∈Dt ft(x)

• βt and vt: (a) Governs exploration and exploitation trade-off, (b) Compensates for the bias created by the
hallucinated data in the attempt to aggressively shrink the confidence interval and reduce exploration

• IGP-BUCB: Reduced width (βt) of confidence interval compared to GP-BUCB (Desautels et al.,
JMLR 2014) – Improved theoretical and numerical performance

• GP-BTS: Dt is a suitable discretization of D
• Strictly sequential setting: Recover IGP-UCB and GP-TS algorithms (Chowdhury et al., ICML 2017)

Regret Bounds

IGP-BUCB: O
(√

ξMT
(
B
√
γT + γT

))
with

high probability
GP-BTS: O

(√
ξMTd ln(BdT)

(
B
√
γT + γT

))
with high probability

• γT : Maximum Information Gain about f after T rounds – quantifies reduction in uncertainty
• Squared-exponential kernel: γT � O(lnT) – Cumulative regret grows sublinearly with T
• ξM : Bounds information gain about f from at most M hallucinations given actual rewards
• Squared-exponential kernel: ξM � O(M) – Cumulative regret grow linearly with the batch size M
• Uncertainty sampling based initialization scheme makes ξM constant – average per-round regret vanishes

Numerical Results

−0.5 0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Rounds

T
im

e
-a
v
e
ra
g
e
R
e
g
re
t

GP-BTS
GP-BUCB
IGP-BUCB

(a)

−0.5 0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Rounds

T
im

e
-a
v
e
ra
g
e
R
e
g
re
t

GP-BTS
GP-BUCB
IGP-BUCB

(b)

−0.5 0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Rounds

T
im

e
-a
v
e
ra
g
e
R
e
g
re
t

GP-BTS
GP-BUCB
IGP-BUCB

(c)
Figure 1: Time-average regret for (a) RKHS functions of SE kernel, (b) Rosenbrock function, (c) Temperature sensor data.

References
[1] Parallelizing exploration-exploitation tradeoffs in gaussian process bandit optimization, Thomas Desautels, Andreas

Krause, and Joel W Burdick, JMLR 2014.
[2] On Kernelized Multi-armed Bandits, S. R. Chowdhury and A. Gopalan, ICML 2017.

Acknowledgment. Google India PhD fellowship grant in Machine Learning, 2017

