
Online Learning in Kernelized Markov Decision Processes
Sayak Ray Chowdhury Aditya Gopalan

Department of Electrical Communication Engineering, Indian Institute of Science

Problem Statement
Episodically maximize reward in an unknown Markov Decision Process M = {S,A, R, P,H}

• State space S ⊆ Rm, known
• Action space A ⊆ Rn, known
• Reward distribution R(s, a), unknown
• Transition distribution P (s, a), unknown
• Episode length H , known

At every round h within an episode, an agent:
1 Takes an action ah ∈ A based on the current state
sh ∈ S and past observations

2 Receives reward rh ∼ R(sh, ah)
3 Observes next state sh+1 ∼ P (sh, ah)

Definitions
• Policy π : S × {1, . . . , H} → A
• Finite horizon undiscounted Value function
Vπ,h(s) = E[

∑H
j=hR(sj, aj)

∣∣ sh = s]
• Optimal policy π? ∈ argmaxπ Vπ,h(s) ∀s, ∀h
• Agent choses policy πl at episode l
• Cumulative Regret =

∑
l E[Vπ?,1(s)− Vπl,1(s)]

Assumptions
• Reward rh = R(sh, ah) + εR
• Next state sh+1 = P (sh, ah) + εP
•R, P elements of reproducing kernel Hilbert spaces
• εR and εP are samples of zero-mean, additive

sub-Gaussian noise
• One step future value function is Lipschitz

Goal: Minimize the loss incurred in the Value function due to not knowing the optimal policy π? and
instead using any other policy πl at episode l

Algorithm Design: How to Choose Policy?
Building Block: Gaussian Process (GP) prior and Gaussian likelihood model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

x

f(
x
)

µ−βσ

µ+βσ

µ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f(
x
)

µ
t

• Represent uncertainty over any unknown function f
using Gaussian process prior GP (0, k(x, y))

• Squared Exponential (SE) kernel:
k(x, y) = exp

(−‖x−y‖22
2l2

)
• Observe t reward samples y = f (x) + noise
• Noise: iid Gaussian N (0, λ)

Posterior of f : GP (µt(x), kt(x, y))

µt(x) = kt(x)T (Kt + λI)−1Yt
kt(x, y) = k(x, y)− kt(x)T (Kt + λI)−1kt(y)

No Regret Algorithms: GP-UCRL and PSRL
Bayesian Inference Philosophy: Put separate Gaussian process priors over mean reward and mean

transition function, and update posteriors at the end of every episode

1 Construct two confidence sets, one each for mean
reward and mean transition function, using
parameters of posterior distributions

2 Find the set of all MDPs, for which mean reward and
mean transition function lie within respective
confidence sets and choose the optimal policy for
that set of MDPs

1 Sample two random functions, one each from the
posterior distributions of mean reward and mean
transition function

2 Build an MDP using the random samples of mean
reward and mean transition function and choose the
optimal policy for that sampled MDP (Osband et
al., NeurIPS 2013)

Theorem 1: Cumulative Regret of GP-UCRL is O
((
γT (R) + γmT (P )

)√
T
)
with high probability

Theorem 2: Expected Cumulative Regret of PSRL is O
((
γT (R) + γmT (P )

)√
T
)

• γt(P ) (resp. γt(R)) roughly represents the maximum information gain about the unknown dynamics (resp.
rewards) after t rounds – measure reduction in uncertainty

• polylog(t) for common kernels (e.g. Polynomial, Squared Exponential) and for their products and sums

Key Idea: At every episode/round, the unknown mean reward and mean transition function lie
within properly constructed confidence sets of shrinking width

Application: Linear Quadratic Regulator (LQR) Control

• Model: sh+1 = Ash +Bah + εP and rh = sThPsh + aThQah + εR (Abbasi-Yadkori et al., COLT 2011)
•A, B, P and Q are unknown matrices, P and Q positive-definite
• Linear kernel structure for state transitions and quadratic kernel structure for rewards

Corollary 1: Cumulative Regret of GP-UCRL is O
((
m2 +n2 +m(m+n)

)√
T
)
with high probability

Corollary 2: Expected Cumulative Regret of PSRL is O
((
m2 + n2 +m(m + n)

)√
T
)

Computational Challenges and Open Questions
1 GP-UCRL requires optimistic planning over a family of MDPs: generally not tractable
2 PSRL requires optimal planning for only a single MDP: Is it tractable for continuous state/action MDPs?
3 If not, can we design an approximate MDP planner for a single MDP?
4 If so, can we obtain (through extended value iteration or otherwise) an efficient approximate planner for a
family of MDPs?

References
[1] (More) efficient reinforcement learning via posterior sampling, I. Osband, D. Russo, and B. Van Roy, NeurIPS 2013.
[2] Regret bounds for the adaptive control of linear quadratic systems, Y. Abbasi-Yadkori and C. SzepesvÃąri, COLT 2011.

Acknowledgment. Google India PhD fellowship grant in Machine Learning, 2017


