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Problem Statement
Episodically maximize reward in an unknown Markov Decision Process M = {S,A, R, P,H}

• State space S ⊆ Rm, known
• Action space A ⊆ Rn, known
• Reward distribution R(s, a), unknown
• Transition distribution P (s, a), unknown
• Episode length H , known

At every round h within an episode, an agent:
1 Takes an action ah ∈ A based on the current state
sh ∈ S and past observations

2 Receives reward rh ∼ R(sh, ah)
3 Observes next state sh+1 ∼ P (sh, ah)

Definitions
• Policy π : S × {1, . . . , H} → A
• Finite horizon undiscounted Value function
Vπ,h(s) = E[

∑H
j=hR(sj, aj)

∣∣ sh = s]
• Optimal policy π? ∈ argmaxπ Vπ,h(s) ∀s, ∀h
• Agent choses policy πl at episode l
• Cumulative Regret =

∑
l E[Vπ?,1(s)− Vπl,1(s)]

Assumptions
• Reward rh = R(sh, ah) + εR
• Next state sh+1 = P (sh, ah) + εP
•R, P elements of reproducing kernel Hilbert spaces
• εR and εP are samples of zero-mean, additive

sub-Gaussian noise
• One step future value function is Lipschitz

Goal: Minimize the loss incurred in the Value function due to not knowing the optimal policy π? and
instead using any other policy πl at episode l

Algorithm Design: How to Choose Policy?
Building Block: Gaussian Process (GP) prior and Gaussian likelihood model
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• Represent uncertainty over any unknown function f
using Gaussian process prior GP (0, k(x, y))

• Squared Exponential (SE) kernel:
k(x, y) = exp

(−‖x−y‖22
2l2

)
• Observe t reward samples y = f (x) + noise
• Noise: iid Gaussian N (0, λ)

Posterior of f : GP (µt(x), kt(x, y))

µt(x) = kt(x)T (Kt + λI)−1Yt
kt(x, y) = k(x, y)− kt(x)T (Kt + λI)−1kt(y)

No Regret Algorithms: GP-UCRL and PSRL
Bayesian Inference Philosophy: Put separate Gaussian process priors over mean reward and mean

transition function, and update posteriors at the end of every episode

1 Construct two confidence sets, one each for mean
reward and mean transition function, using
parameters of posterior distributions

2 Find the set of all MDPs, for which mean reward and
mean transition function lie within respective
confidence sets and choose the optimal policy for
that set of MDPs

1 Sample two random functions, one each from the
posterior distributions of mean reward and mean
transition function

2 Build an MDP using the random samples of mean
reward and mean transition function and choose the
optimal policy for that sampled MDP (Osband et
al., NeurIPS 2013)

Theorem 1: Cumulative Regret of GP-UCRL is O
((
γT (R) + γmT (P )

)√
T
)
with high probability

Theorem 2: Expected Cumulative Regret of PSRL is O
((
γT (R) + γmT (P )

)√
T
)

• γt(P ) (resp. γt(R)) roughly represents the maximum information gain about the unknown dynamics (resp.
rewards) after t rounds – measure reduction in uncertainty

• polylog(t) for common kernels (e.g. Polynomial, Squared Exponential) and for their products and sums

Key Idea: At every episode/round, the unknown mean reward and mean transition function lie
within properly constructed confidence sets of shrinking width

Application: Linear Quadratic Regulator (LQR) Control

• Model: sh+1 = Ash +Bah + εP and rh = sThPsh + aThQah + εR (Abbasi-Yadkori et al., COLT 2011)
•A, B, P and Q are unknown matrices, P and Q positive-definite
• Linear kernel structure for state transitions and quadratic kernel structure for rewards

Corollary 1: Cumulative Regret of GP-UCRL is O
((
m2 +n2 +m(m+n)

)√
T
)
with high probability

Corollary 2: Expected Cumulative Regret of PSRL is O
((
m2 + n2 +m(m + n)

)√
T
)

Computational Challenges and Open Questions
1 GP-UCRL requires optimistic planning over a family of MDPs: generally not tractable
2 PSRL requires optimal planning for only a single MDP: Is it tractable for continuous state/action MDPs?
3 If not, can we design an approximate MDP planner for a single MDP?
4 If so, can we obtain (through extended value iteration or otherwise) an efficient approximate planner for a
family of MDPs?
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