Online Reinforcement Learning in Structured Environments

Sayak Ray Chowdhury

Department of Electrical Communication Engineering Indian Institute of Science

June 18, 2018

Reinforcement Learning is concerned with learning to take actions to maximize rewards, by trial and error, in environments that can evolve in response to actions

Motivation

Reinforcement Learning is concerned with learning to take actions to maximize rewards, by trial and error, in environments that can evolve in response to actions

Traditional Search Goal: Find a policy with high total reward using as few interactions with the environment as possible

Motivation

Reinforcement Learning is concerned with learning to take actions to maximize rewards, by trial and error, in environments that can evolve in response to actions

- Traditional Search Goal: Find a policy with high total reward using as few interactions with the environment as possible
- Optimization Goal: Maximize total reward / Minimize regret (shortfall) in total reward compared to an optimal policy

Reinforcement Learning is concerned with learning to take actions to maximize rewards, by trial and error, in environments that can evolve in response to actions

- Traditional Search Goal: Find a policy with high total reward using as few interactions with the environment as possible
- Optimization Goal: Maximize total reward / Minimize regret (shortfall) in total reward compared to an optimal policy
 - Applications: Recommendation systems/ Sequential investment/ Dynamic resource allocation in communication systems
 - No separate budget to purely exploring the unknown environment
 - Exploration and Exploitation must be carefully balanced

Develop RL algorithms for Regret Minimization in large structured (unknown) environments

Develop RL algorithms for Regret Minimization in large structured (unknown) environments

Part 1: Online learning in large scale Multi-armed Bandits

- Nonparametric model: Infinite number of actions
- Generalization across arms: Kernelized structure

Develop RL algorithms for Regret Minimization in large structured (unknown) environments

Part 1: Online learning in large scale Multi-armed Bandits

- Nonparametric model: Infinite number of actions
- Generalization across arms: Kernelized structure
- Part 2: Online learning in large unknown Markov Decision Processes
 - Nonparametric MDP model: Uncertainty is represented over Infinite dimensional function classes via Kernelized structure

Part 1: Online Learning in Kernelized Multi-armed Bandits¹

¹S. R. Chowdhury and A. Gopalan, *On kernelized multi-armed bandits*, In Proceedings of the 34th International Conference on Machine Learning (**ICML**), pp. 844853, 2017.

Sequentially Maximize $f: D \to \mathbb{R}$

• f unknown, $D \subset \mathbb{R}^d$

Sequentially Maximize $f: D \to \mathbb{R}$

• f unknown, $D \subset \mathbb{R}^d$

•
$$x^* \in \operatorname*{argmax}_{x \in D} f(x)$$

Sequentially Maximize $f: D \to \mathbb{R}$

• f unknown, $D \subset \mathbb{R}^d$

•
$$x^* \in \operatorname*{argmax}_{x \in D} f(x)$$

- At each round t:
 - ► Learner chooses x_t ∈ D based on past
 - Observes noisy reward
 y_t = f(x_t) + ε_t

Sequentially Maximize $f: D \to \mathbb{R}$

• f unknown, $D \subset \mathbb{R}^d$

•
$$x^* \in \operatorname*{argmax}_{x \in D} f(x)$$

- At each round t:
 - ► Learner chooses x_t ∈ D based on past
 - Observes noisy reward
 y_t = f(x_t) + ε_t

Performance Metric

• Minimize Cumulative Regret: $\sum_{t=1}^{T} (f(x^*) - f(x_t))$

- Smoothness: *f* lies in Reproducing Kernel Hilbert Space (RKHS) of functions *D* → ℝ
 - ▶ Positive semi-definite kernel function $k : D \times D \rightarrow \mathbb{R}$ (known)
 - Reproducing property: $f(x) = \langle f, k(x, \cdot) \rangle_k$
 - ► Induces smoothness: $|f(x) f(y)| \le ||f||_k ||k(x, \cdot) k(y, \cdot)||_k$

- Smoothness: *f* lies in Reproducing Kernel Hilbert Space (RKHS) of functions *D* → ℝ
 - ▶ Positive semi-definite kernel function $k : D \times D \rightarrow \mathbb{R}$ (known)
 - Reproducing property: $f(x) = \langle f, k(x, \cdot) \rangle_k$
 - ► Induces smoothness: $|f(x) f(y)| \le ||f||_k ||k(x, \cdot) k(y, \cdot)||_k$
- Example Kernels
 - Squared Exponential kernel: $k(x, y) = \exp\left(\frac{-\|x-y\|_2^2}{2l^2}\right)$
 - Linear Kernel: $k(x, y) = x^T y$
 - Maximize $f(x) = \theta^T x$, $\theta \in \mathbb{R}^d$ unknown

- Smoothness: *f* lies in Reproducing Kernel Hilbert Space (RKHS) of functions *D* → ℝ
 - ▶ Positive semi-definite kernel function $k : D \times D \rightarrow \mathbb{R}$ (known)
 - Reproducing property: $f(x) = \langle f, k(x, \cdot) \rangle_k$
 - ► Induces smoothness: $|f(x) f(y)| \le ||f||_k ||k(x, \cdot) k(y, \cdot)||_k$
- Example Kernels
 - Squared Exponential kernel: $k(x, y) = \exp\left(\frac{-\|x-y\|_2^2}{2l^2}\right)$
 - Linear Kernel: $k(x, y) = x^T y$
 - Maximize $f(x) = \theta^T x$, $\theta \in \mathbb{R}^d$ unknown
- Noise ε_t is zero mean, Sub-Gaussian

Algorithm Design Philosophy

Key Idea: Represent uncertainty over f using Gaussian Process (GP)

- Assume Gaussian Process Prior GP(0, k(x, y))
- Assume Gaussian Noise
 ε_t ~ N(0, λ)

Algorithm Design Philosophy

Key Idea: Represent uncertainty over f using Gaussian Process (GP)

- Assume Gaussian Process Prior GP(0, k(x, y))
- Assume Gaussian Noise
 ε_t ~ N(0, λ)
- Observe noisy rewards $y_{1:t} = [y_1, \dots, y_t]$, where $y_t = f(x_t) + \varepsilon_t$

Algorithm Design Philosophy

Key Idea: Represent uncertainty over f using Gaussian Process (GP)

- Assume Gaussian Process Prior GP(0, k(x, y))
- Assume Gaussian Noise $\varepsilon_t \sim \mathcal{N}(0, \lambda)$
- Observe noisy rewards $y_{1:t} = [y_1, \dots, y_t]$, where $y_t = f(x_t) + \varepsilon_t$

Posterior of f after t rounds: $\overline{GP}(\mu_t(x), k_t(x, y))$

$$\mu_t(x) = k_t(x)^T (K_t + \lambda I)^{-1} y_{1:t}$$

$$k_t(x, y) = k(x, y) - k_t(x)^T (K_t + \lambda I)^{-1} k_t(y)$$

Algorithm 1: Improved GP-UCB (IGP-UCB)

Key Idea: Play the arm with highest Upper Confidence Bound (UCB)

Algorithm 1: Improved GP-UCB (IGP-UCB)

Key Idea: Play the arm with highest Upper Confidence Bound (UCB)

Algorithm 1: Improved GP-UCB (IGP-UCB)

Key Idea: Play the arm with highest Upper Confidence Bound (UCB)

- β_t trades off b/w exploration and exploitation
- First appeared as GP-UCB (Srinivas et al., ICML 2010) → We Reduced (Improved) width (β_t) of confidence interval

Algorithm 2: Gaussian Process Thompson Sampling (GP-TS)

Key Idea: Sample a random function and play its maximizer

Algorithm 2: Gaussian Process Thompson Sampling (GP-TS)

Key Idea: Sample a random function and play its maximizer

Algorithm 2: Gaussian Process Thompson Sampling (GP-TS)

Key Idea: Sample a random function and play its maximizer

 $D_t \subset D$: suitably chosen Discretization sets

Regret Bounds [ICML, 2017]

Result 1

Cumulative regret of **IGP-UCB** is $O(\sqrt{T}(\sqrt{\gamma_T} + \gamma_T))$ with high probability (whp)

- γ_T is Maximum Information Gain about f after T rounds and quantifies Reduction in uncertainty after observing rewards
- Squared Exponential kernel: γ_T = O((In T)^{d+1}) → Sublinear regret

Regret Bounds [ICML, 2017]

Result 1

Cumulative regret of **IGP-UCB** is $O(\sqrt{T}(\sqrt{\gamma_T} + \gamma_T))$ with high probability (whp)

- γ_T is Maximum Information Gain about f after T rounds and quantifies Reduction in uncertainty after observing rewards
- Squared Exponential kernel: γ_T = O((In T)^{d+1}) → Sublinear regret
- Cumulative regret of **GP-UCB** (Srinivas et al., ICML 2010) is $O\left(\sqrt{T}(\sqrt{\gamma_T} + \gamma_T \ln^{3/2} T)\right)$ and so we **improve** by $O(\ln^{3/2} T)$!

Regret Bounds [ICML, 2017]

Result 1

Cumulative regret of **IGP-UCB** is $O(\sqrt{T}(\sqrt{\gamma_T} + \gamma_T))$ with high probability (whp)

- γ_T is Maximum Information Gain about f after T rounds and quantifies Reduction in uncertainty after observing rewards
- Squared Exponential kernel: γ_T = O((In T)^{d+1}) → Sublinear regret
- Cumulative regret of **GP-UCB** (Srinivas et al., ICML 2010) is $O\left(\sqrt{T}(\sqrt{\gamma_T} + \gamma_T \ln^{3/2} T)\right)$ and so we **improve** by $O(\ln^{3/2} T)$!

Result 2

- Cumulative regret of **GP-TS** is $O\left(\sqrt{Td \ln(dT)}(\sqrt{\gamma_T} + \gamma_T)\right)$ whp
- First frequentist regret guarantee of TS in the non-parametric setting of infinite action spaces

Linear Kernel

$$\flat \ k(x,y) = x^T y$$

- $f(x) = \theta^T x$, $\theta \in \mathbb{R}^d$ unknown parameter
- Maximum Information Gain $\gamma_T = O(d \ln T)$
- ▶ Regret of IGP-UCB is $\tilde{O}(d\sqrt{T})$ and GP-TS is $\tilde{O}(d^{3/2}\sqrt{T})$

Linear Kernel

$$\flat \ k(x,y) = x^T y$$

- $f(x) = \theta^T x$, $\theta \in \mathbb{R}^d$ unknown parameter
- Maximum Information Gain $\gamma_T = O(d \ln T)$
- ▶ Regret of IGP-UCB is $\tilde{O}(d\sqrt{T})$ and GP-TS is $\tilde{O}(d^{3/2}\sqrt{T})$

Exactly recovers regrets of Linear Bandit algorithms (Abbasi-Yadkori et al., NIPS 2011, Agrawal and Goyal, ICML 2013)

Algorithms Compared:

- 1. GP-Expected Improvement (Močkus, 1975)
- 2. GP-Probabilistic Improvement (Kushner, 1964)
- 3. GP-UCB (Srinivas et al., 2010)
- 4. IGP-UCB (this work)
- 5. GP-TS (this work)

f sampled from RKHS (Squared Exponential kernel)

f sampled from RKHS (Squared Exponential kernel)

- ► IGP-UCB improves over GP-UCB ©©
- ► GP-TS fares reasonably well ©

f sampled from RKHS (Squared Exponential kernel)

Temperature Sensor Data (Intel Berkeley Research lab)

- ► IGP-UCB improves over GP-UCB ☺☺
- ► GP-TS fares reasonably well ©

f sampled from RKHS (Squared Exponential kernel)

Temperature Sensor Data (Intel Berkeley Research lab)

- ► IGP-UCB improves over GP-UCB © ©
- ► GP-TS fares reasonably well ☺

- ► IGP-UCB performs similar to GP-UCB √
- ► GP-TS performs the best ☺

Key Technique: Posterior Concentration

Lemma: Concentration of Posterior Distribution

For all *t* and for all $x \in D$:

$$\mu_t(x) - \beta_t \sigma_t(x) \le f(x) \le \mu_t(x) + \beta_t \sigma_t(x)$$
 when

Key Technique: Posterior Concentration

Lemma: Concentration of Posterior Distribution

For all t and for all $x \in D$:

 $\mu_t(x) - \beta_t \sigma_t(x) \le f(x) \le \mu_t(x) + \beta_t \sigma_t(x)$ whp

Lemma: Concentration of Posterior Distribution

For all *t* and for all $x \in D$:

 $\mu_t(x) - \beta_t \sigma_t(x) \le f(x) \le \mu_t(x) + \beta_t \sigma_t(x)$ whp

At every round, the unknown original function lies within properly constructed confidence interval of shrinking width

Key Technique: New Concentration Inequality (CI)

Result 3: Self-Normalized CI for RKHS-valued Martingales

- For all t: $||S_t||_{V_t^{-1}}^2 \le 2R^2 \ln(\frac{\sqrt{\det(K_t+I)}}{\delta})$ with probability at least 1δ if K_t is positive-definite
- Generalizes finite-dimensional Inequality for vector-valued Martingales (Abbasi-Yadkori et al., NIPS 2011) to infinite dimensions

Key Technique: New Concentration Inequality (CI)

Result 3: Self-Normalized CI for RKHS-valued Martingales

- For all t: $||S_t||_{V_t^{-1}}^2 \le 2R^2 \ln(\frac{\sqrt{\det(K_t+I)}}{\delta})$ with probability at least 1δ if K_t is positive-definite
- Generalizes finite-dimensional Inequality for vector-valued Martingales (Abbasi-Yadkori et al., NIPS 2011) to infinite dimensions

Example: Let $\varepsilon_1, \varepsilon_2, \varepsilon_3, \ldots$ be a sequence of independent random variables and x_1, x_2, x_3, \ldots be a predictable sequence of random variables. Define $S_t = \sum_{s=1}^t \varepsilon_s x_s$ and $V_t = 1 + \sum_{s=1}^t x_s^2$. Then $S_t / \sqrt{V_t}$ is a Self-normalized process and its fluctuations are $O(\ln t)$

For Non-parametric Bandits, we

- Improved existing UCB based algorithm
- Introduced new Thompson Sampling based algorithm
- Developed new self-normalized concentration inequality for RKHS-valued martingales

For Non-parametric Bandits, we

- Improved existing UCB based algorithm
- Introduced new Thompson Sampling based algorithm
- Developed new self-normalized concentration inequality for RKHS-valued martingales

Possible Extensions:

- Kernel function not known to the learner
- Time varying functions from RKHS

Part 2: Online Learning in Kernelized Markov Decision Processes²

²S. R. Chowdhury and A. Gopalan, *Online Learning in Kernelized Markov Decision Processes*, ArXiv e-prints, May 2018. (Under review in **NIPS**)

Episodically maximize reward in (unknown) MDP $M = \{S, A, R, P, H, \rho\}$

- State space $S \subseteq \mathbb{R}^m$, known
- Action space $\mathcal{A} \subseteq \mathbb{R}^n$, known
- Reward distribution R(s, a), unknown
- Transition distribution P(s, a), unknown
- Episode length H, known
- State distribution ρ, known

Episodically maximize reward in (unknown) MDP $M = \{S, A, R, P, H, \rho\}$

- State space $S \subseteq \mathbb{R}^m$, known
- Action space $\mathcal{A} \subseteq \mathbb{R}^n$, known
- Reward distribution R(s, a), unknown
- Transition distribution P(s, a), unknown
- Episode length H, known
- State distribution ρ, known

At each period *h* within an episode:

- ► Learner takes action a_h ∈ A based on current state s_h and past observations
- Receives reward $r_h \sim R(s_h, a_h)$
- Observes next state
 s_{h+1} ~ P(s_h, a_h)

• Policy $\pi: \mathcal{S} \times \{1, \dots, H\} \to \mathcal{A}$

• Policy
$$\pi: \mathcal{S} \times \{1, \dots, H\} \to \mathcal{A}$$

► Value function
$$V_{\pi,h}(s) = \mathbb{E}\Big[\sum_{j=h}^{H} \overline{R}(s_j, a_j) \mid s_h = s\Big]$$

- ► Finite horizon, Undiscounted value function
- Mean reward $\overline{R}(s, a)$

• Policy
$$\pi: \mathcal{S} \times \{1, \dots, H\} \to \mathcal{A}$$

► Value function
$$V_{\pi,h}(s) = \mathbb{E}\left[\sum_{j=h}^{H} \overline{R}(s_j, a_j) \mid s_h = s\right]$$

- Finite horizon, Undiscounted value function
- Mean reward $\overline{R}(s, a)$
- Optimal policy $\pi_{\star} \in \operatorname{argmax}_{\pi} V_{\pi,h}(s) \ \forall s, \ \forall h$

• Policy
$$\pi: \mathcal{S} \times \{1, \dots, H\} \to \mathcal{A}$$

► Value function
$$V_{\pi,h}(s) = \mathbb{E}\Big[\sum_{j=h}^{H} \overline{R}(s_j, a_j) \mid s_h = s\Big]$$

- Finite horizon, Undiscounted value function
- Mean reward $\overline{R}(s, a)$
- Optimal policy $\pi_{\star} \in \operatorname{argmax}_{\pi} V_{\pi,h}(s) \ \forall s, \ \forall h$

• Cumulative Regret
$$= \sum_{I} \mathbb{E} \Big[V_{\pi_{\star},1}(s) - V_{\pi_{I},1}(s) \Big]$$

Goal: Minimize the loss incurred in Value function due to not knowing the optimal policy π_* of the unknown MDP *M* and instead using any other policy π_I at episode *I*

• View
$$r \sim R(s, a) \Longrightarrow r = \overline{R}(s, a) + \varepsilon_R$$

• View
$$s' \sim P(s, a) \Longrightarrow s' = \overline{P}(s, a) + \varepsilon_P$$

• View
$$r \sim R(s, a) \Longrightarrow r = \overline{R}(s, a) + \varepsilon_R$$

• View
$$s' \sim P(s, a) \Longrightarrow s' = \overline{P}(s, a) + \varepsilon_P$$

• ε_R and ε_P samples of zero-mean, additive sub-Gaussian noise

• View
$$r \sim R(s, a) \Longrightarrow r = \overline{R}(s, a) + \varepsilon_R$$

• View
$$s' \sim P(s, a) \Longrightarrow s' = \overline{P}(s, a) + \varepsilon_P$$

• ε_R and ε_P samples of zero-mean, additive sub-Gaussian noise

► Unknown Mean reward function R and mean transition function P lies in RKHS of functions S × A → R

• View
$$r \sim R(s, a) \Longrightarrow r = \overline{R}(s, a) + \varepsilon_R$$

• View
$$s' \sim P(s, a) \Longrightarrow s' = \overline{P}(s, a) + \varepsilon_P$$

• ε_R and ε_P samples of zero-mean, additive sub-Gaussian noise

- ► Unknown Mean reward function R and mean transition function P lies in RKHS of functions S × A → R
 - Positive semi-definite kernel functions in the product space
 - Product kernels:

$$(k_{\mathcal{S}}\otimes k_{\mathcal{A}})\Big((s,a),(s',a')\Big)=k_{\mathcal{S}}(s,s')\times k_{\mathcal{A}}(a,a')$$

• View
$$r \sim R(s, a) \Longrightarrow r = \overline{R}(s, a) + \varepsilon_R$$

• View
$$s' \sim P(s, a) \Longrightarrow s' = \overline{P}(s, a) + \varepsilon_P$$

• ε_R and ε_P samples of zero-mean, additive sub-Gaussian noise

- ► Unknown Mean reward function R and mean transition function P lies in RKHS of functions S × A → R
 - Positive semi-definite kernel functions in the product space
 - Product kernels: $(k_{\mathcal{S}} \otimes k_{\mathcal{A}})((s, a), (s', a')) = k_{\mathcal{S}}(s, s') \times k_{\mathcal{A}}(a, a')$
- ► Additional Regularity condition on Value function → Transition distributions with same means are identical

Same philosophy as earlier: Put *separate* Gaussian process priors over mean reward and mean transition functions and update posteriors at the end of every episode

Same philosophy as earlier: Put *separate* Gaussian process priors over mean reward and mean transition functions and update posteriors at the end of every episode

At each episode *I*:

1. Construct confidence sets, one each for mean reward and mean transition functions, using parameters of posterior distributions respectively

Same philosophy as earlier: Put *separate* Gaussian process priors over mean reward and mean transition functions and update posteriors at the end of every episode

At each episode *I*:

- 1. Construct confidence sets, one each for mean reward and mean transition functions, using parameters of posterior distributions respectively
- 2. Build the set M_I of all plausible MDPs such that mean reward and mean transition functions lie within respective confidence sets

Same philosophy as earlier: Put *separate* Gaussian process priors over mean reward and mean transition functions and update posteriors at the end of every episode

At each episode *I*:

- 1. Construct confidence sets, one each for mean reward and mean transition functions, using parameters of posterior distributions respectively
- 2. Build the set M_I of all plausible MDPs such that mean reward and mean transition functions lie within respective confidence sets
- 3. Choose the optimistic policy π_l for the set of MDPs \mathcal{M}_l and execute it for the entire episode

Algorithm 2: Thompson Sampling for Reinforcement Learning (TSRL)

General Philosophy: Start with **any** prior distribution over MDPs and at the start of every episode sample an MDP from the posterior

Algorithm 2: Thompson Sampling for Reinforcement Learning (TSRL)

General Philosophy: Start with **any** prior distribution over MDPs and at the start of every episode sample an MDP from the posterior

At each episode I:

- 1. Build an MDP *M*₁ such that mean reward and mean transition functions are samples from respective posterior distributions
- 2. Choose the optimal policy π_l for the sampled MDP M_l and execute it for the entire episode

Algorithm 2: Thompson Sampling for Reinforcement Learning (TSRL)

General Philosophy: Start with **any** prior distribution over MDPs and at the start of every episode sample an MDP from the posterior

At each episode I:

- 1. Build an MDP *M*₁ such that mean reward and mean transition functions are samples from respective posterior distributions
- 2. Choose the optimal policy π_l for the sampled MDP M_l and execute it for the entire episode

GP-TSRL: For Gaussian Process prior and Gaussian likelihood model, the posteriors admit nice closed form of Gaussian processes

Result 1

Cumulative Regret of **GP-UCRL** is
$$\tilde{O}\left((\gamma_{R,T} + \gamma_{P,T})\sqrt{T}\right)$$
 whp

Result 1

Cumulative Regret of **GP-UCRL** is
$$\tilde{O}\left((\gamma_{R,T} + \gamma_{P,T})\sqrt{T}\right)$$
 whp

Result 2

Expected (over prior distribution of MDPs) cumulative Regret of **GP-TSRL** is $\tilde{O}\left((\gamma_{R,T} + \gamma_{P,T})\sqrt{T}\right)$

Result 1

Cumulative Regret of **GP-UCRL** is
$$\tilde{O}\left((\gamma_{R,T} + \gamma_{P,T})\sqrt{T}\right)$$
 whp

Result 2

Expected (over prior distribution of MDPs) cumulative Regret of **GP-TSRL** is $\tilde{O}\left((\gamma_{R,T} + \gamma_{P,T})\sqrt{T}\right)$

- γ_{R,T} and γ_{P,T} are Maximum Information Gain about (unknown) mean reward and mean transition functions after T rounds
- Grow sub-linearly with T for common kernels (e.g. Squared Exponential) and for their compositions (products, sums)

Proved First regret guarantees of UCRL and TSRL in kernel based MDPs, where

- Mean reward and transition functions are elements from Reproducing Kernel Hilbert Spaces
- Mean reward and transition functions are samples from Gaussian Processes (Bayesian setup, not presented here)

Proved First regret guarantees of UCRL and TSRL in kernel based MDPs, where

- Mean reward and transition functions are elements from Reproducing Kernel Hilbert Spaces
- Mean reward and transition functions are samples from Gaussian Processes (Bayesian setup, not presented here)

Future work:

- Frequentist regret bound of GP-PSRL
- Online learning in Model free MDPs (obviate complicated planning step)

Thank You