
Online Reinforcement Learning in Structured
Environments

Sayak Ray Chowdhury

Department of Electrical Communication Engineering
Indian Institute of Science

June 18, 2018

Motivation

Reinforcement Learning is concerned with learning to take actions
to maximize rewards, by trial and error, in environments that can
evolve in response to actions

I Traditional Search Goal: Find a policy with high total reward using
as few interactions with the environment as possible

I Optimization Goal: Maximize total reward / Minimize regret
(shortfall) in total reward compared to an optimal policy

I Applications: Recommendation systems/ Sequential
investment/ Dynamic resource allocation in communication
systems

I No separate budget to purely exploring the unknown
environment

I Exploration and Exploitation must be carefully balanced

Motivation

Reinforcement Learning is concerned with learning to take actions
to maximize rewards, by trial and error, in environments that can
evolve in response to actions

I Traditional Search Goal: Find a policy with high total reward using
as few interactions with the environment as possible

I Optimization Goal: Maximize total reward / Minimize regret
(shortfall) in total reward compared to an optimal policy

I Applications: Recommendation systems/ Sequential
investment/ Dynamic resource allocation in communication
systems

I No separate budget to purely exploring the unknown
environment

I Exploration and Exploitation must be carefully balanced

Motivation

Reinforcement Learning is concerned with learning to take actions
to maximize rewards, by trial and error, in environments that can
evolve in response to actions

I Traditional Search Goal: Find a policy with high total reward using
as few interactions with the environment as possible

I Optimization Goal: Maximize total reward / Minimize regret
(shortfall) in total reward compared to an optimal policy

I Applications: Recommendation systems/ Sequential
investment/ Dynamic resource allocation in communication
systems

I No separate budget to purely exploring the unknown
environment

I Exploration and Exploitation must be carefully balanced

Motivation

Reinforcement Learning is concerned with learning to take actions
to maximize rewards, by trial and error, in environments that can
evolve in response to actions

I Traditional Search Goal: Find a policy with high total reward using
as few interactions with the environment as possible

I Optimization Goal: Maximize total reward / Minimize regret
(shortfall) in total reward compared to an optimal policy

I Applications: Recommendation systems/ Sequential
investment/ Dynamic resource allocation in communication
systems

I No separate budget to purely exploring the unknown
environment

I Exploration and Exploitation must be carefully balanced

Intended Goal of Thesis

Develop RL algorithms for Regret Minimization in large structured
(unknown) environments

I Part 1: Online learning in large scale Multi-armed Bandits

I Nonparametric model: Infinite number of actions

I Generalization across arms: Kernelized structure

I Part 2: Online learning in large unknown Markov Decision
Processes

I Nonparametric MDP model: Uncertainty is represented over
Infinite dimensional function classes via Kernelized structure

Intended Goal of Thesis

Develop RL algorithms for Regret Minimization in large structured
(unknown) environments

I Part 1: Online learning in large scale Multi-armed Bandits

I Nonparametric model: Infinite number of actions

I Generalization across arms: Kernelized structure

I Part 2: Online learning in large unknown Markov Decision
Processes

I Nonparametric MDP model: Uncertainty is represented over
Infinite dimensional function classes via Kernelized structure

Intended Goal of Thesis

Develop RL algorithms for Regret Minimization in large structured
(unknown) environments

I Part 1: Online learning in large scale Multi-armed Bandits

I Nonparametric model: Infinite number of actions

I Generalization across arms: Kernelized structure

I Part 2: Online learning in large unknown Markov Decision
Processes

I Nonparametric MDP model: Uncertainty is represented over
Infinite dimensional function classes via Kernelized structure

Part 1: Online Learning in Kernelized Multi-armed Bandits1

1S. R. Chowdhury and A. Gopalan, On kernelized multi-armed bandits, In
Proceedings of the 34th International Conference on Machine Learning
(ICML), pp. 844853, 2017.

Problem Statement

Sequentially Maximize f : D → R

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

f(
x
)

x

D

I f unknown, D ⊂ Rd

I x? ∈ argmax
x∈D

f (x)

I At each round t:

I Learner chooses xt ∈ D
based on past

I Observes noisy reward
yt = f (xt) + εt

Performance Metric

I Minimize Cumulative Regret:
T∑
t=1

(
f (x?)− f (xt)

)

Problem Statement

Sequentially Maximize f : D → R

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

f(
x
)

x

f(x
*
)

D
x

*

I f unknown, D ⊂ Rd

I x? ∈ argmax
x∈D

f (x)

I At each round t:

I Learner chooses xt ∈ D
based on past

I Observes noisy reward
yt = f (xt) + εt

Performance Metric

I Minimize Cumulative Regret:
T∑
t=1

(
f (x?)− f (xt)

)

Problem Statement

Sequentially Maximize f : D → R

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

f(
x
)

x

f(x
t
)

f(x
*
)

x
t

D
x

*

I f unknown, D ⊂ Rd

I x? ∈ argmax
x∈D

f (x)

I At each round t:

I Learner chooses xt ∈ D
based on past

I Observes noisy reward
yt = f (xt) + εt

Performance Metric

I Minimize Cumulative Regret:
T∑
t=1

(
f (x?)− f (xt)

)

Problem Statement

Sequentially Maximize f : D → R

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

f(
x
)

x

f(x
t
)

f(x
*
)

x
t

D
x

*

r
t

I f unknown, D ⊂ Rd

I x? ∈ argmax
x∈D

f (x)

I At each round t:

I Learner chooses xt ∈ D
based on past

I Observes noisy reward
yt = f (xt) + εt

Performance Metric

I Minimize Cumulative Regret:
T∑
t=1

(
f (x?)− f (xt)

)

Assumptions

I Smoothness: f lies in Reproducing Kernel Hilbert Space (RKHS)
of functions D → R

I Positive semi-definite kernel function k : D × D → R (known)

I Reproducing property: f (x) = 〈f , k(x , ·)〉k
I Induces smoothness: |f (x)− f (y)| ≤ ‖f ‖k ‖k(x , ·)− k(y , ·)‖k

I Example Kernels

I Squared Exponential kernel: k(x , y) = exp
(
−‖x−y‖22

2l2

)
I Linear Kernel: k(x , y) = xT y

I Maximize f (x) = θT x , θ ∈ Rd unknown

I Noise εt is zero mean, Sub-Gaussian

Assumptions

I Smoothness: f lies in Reproducing Kernel Hilbert Space (RKHS)
of functions D → R

I Positive semi-definite kernel function k : D × D → R (known)

I Reproducing property: f (x) = 〈f , k(x , ·)〉k
I Induces smoothness: |f (x)− f (y)| ≤ ‖f ‖k ‖k(x , ·)− k(y , ·)‖k

I Example Kernels

I Squared Exponential kernel: k(x , y) = exp
(
−‖x−y‖22

2l2

)
I Linear Kernel: k(x , y) = xT y

I Maximize f (x) = θT x , θ ∈ Rd unknown

I Noise εt is zero mean, Sub-Gaussian

Assumptions

I Smoothness: f lies in Reproducing Kernel Hilbert Space (RKHS)
of functions D → R

I Positive semi-definite kernel function k : D × D → R (known)

I Reproducing property: f (x) = 〈f , k(x , ·)〉k
I Induces smoothness: |f (x)− f (y)| ≤ ‖f ‖k ‖k(x , ·)− k(y , ·)‖k

I Example Kernels

I Squared Exponential kernel: k(x , y) = exp
(
−‖x−y‖22

2l2

)
I Linear Kernel: k(x , y) = xT y

I Maximize f (x) = θT x , θ ∈ Rd unknown

I Noise εt is zero mean, Sub-Gaussian

Algorithm Design Philosophy

Key Idea: Represent uncertainty over f using Gaussian Process (GP)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

x

f(
x
)

µ−βσ

µ+βσ

µ

I Assume Gaussian Process Prior
GP
(

0, k(x , y)
)

I Assume Gaussian Noise
εt ∼ N (0, λ)

I Observe noisy rewards
y1:t = [y1, . . . , yt], where
yt = f (xt) + εt

Posterior of f after t rounds: GP(µt(x), kt(x , y))

µt(x) = kt(x)T (Kt + λI)−1y1:t

kt(x , y) = k(x , y)− kt(x)T (Kt + λI)−1kt(y)

Algorithm Design Philosophy

Key Idea: Represent uncertainty over f using Gaussian Process (GP)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

x

f(
x
)

µ−βσ

µ+βσ

µ

I Assume Gaussian Process Prior
GP
(

0, k(x , y)
)

I Assume Gaussian Noise
εt ∼ N (0, λ)

I Observe noisy rewards
y1:t = [y1, . . . , yt], where
yt = f (xt) + εt

Posterior of f after t rounds: GP(µt(x), kt(x , y))

µt(x) = kt(x)T (Kt + λI)−1y1:t

kt(x , y) = k(x , y)− kt(x)T (Kt + λI)−1kt(y)

Algorithm Design Philosophy

Key Idea: Represent uncertainty over f using Gaussian Process (GP)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f(
x
)

µ
t
+βσ

t

µ
t
−βσ

t

µ
t

I Assume Gaussian Process Prior
GP
(

0, k(x , y)
)

I Assume Gaussian Noise
εt ∼ N (0, λ)

I Observe noisy rewards
y1:t = [y1, . . . , yt], where
yt = f (xt) + εt

Posterior of f after t rounds: GP(µt(x), kt(x , y))

µt(x) = kt(x)T (Kt + λI)−1y1:t

kt(x , y) = k(x , y)− kt(x)T (Kt + λI)−1kt(y)

Algorithm 1: Improved GP-UCB (IGP-UCB)

Key Idea: Play the arm with highest Upper Confidence Bound (UCB)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f(
x
)

µ
t

At each round t, play:

xt = argmax
x∈D

µt(x) + βtσt(x)

I βt trades off b/w exploration and exploitation

I First appeared as GP-UCB (Srinivas et al., ICML 2010) → We
Reduced (Improved) width (βt) of confidence interval

Algorithm 1: Improved GP-UCB (IGP-UCB)

Key Idea: Play the arm with highest Upper Confidence Bound (UCB)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f(
x
)

µ
t

x
t

At each round t, play:

xt = argmax
x∈D

µt(x) + βtσt(x)

I βt trades off b/w exploration and exploitation

I First appeared as GP-UCB (Srinivas et al., ICML 2010) → We
Reduced (Improved) width (βt) of confidence interval

Algorithm 1: Improved GP-UCB (IGP-UCB)

Key Idea: Play the arm with highest Upper Confidence Bound (UCB)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f(
x
)

µ
t

x
t

At each round t, play:

xt = argmax
x∈D

µt(x) + βtσt(x)

I βt trades off b/w exploration and exploitation

I First appeared as GP-UCB (Srinivas et al., ICML 2010) → We
Reduced (Improved) width (βt) of confidence interval

Algorithm 2: Gaussian Process Thompson Sampling
(GP-TS)

Key Idea: Sample a random function and play its maximizer

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f(
x
)

µ
t

At each round t:

I Sample ft from posterior
of f

I Play xt = argmax
x∈Dt

ft(x)

Dt ⊂ D: suitably chosen Discretization sets

Algorithm 2: Gaussian Process Thompson Sampling
(GP-TS)

Key Idea: Sample a random function and play its maximizer

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f(
x
)

f
t

µ
t At each round t:

I Sample ft from posterior
of f

I Play xt = argmax
x∈Dt

ft(x)

Dt ⊂ D: suitably chosen Discretization sets

Algorithm 2: Gaussian Process Thompson Sampling
(GP-TS)

Key Idea: Sample a random function and play its maximizer

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f(
x
)

f
t

µ
t

x
t

At each round t:

I Sample ft from posterior
of f

I Play xt = argmax
x∈Dt

ft(x)

Dt ⊂ D: suitably chosen Discretization sets

Regret Bounds [ICML, 2017]

Result 1

Cumulative regret of IGP-UCB is O
(√

T (
√
γT + γT)

)
with high

probability (whp)

I γT is Maximum Information Gain about f after T rounds and
quantifies Reduction in uncertainty after observing rewards

I Squared Exponential kernel: γT = O((lnT)d+1) → Sublinear
regret

I Cumulative regret of GP-UCB (Srinivas et al., ICML 2010) is

O
(√

T (
√
γT + γT ln3/2 T)

)
and so we improve by O(ln3/2 T) !

Result 2

I Cumulative regret of GP-TS is O
(√

Td ln(dT)(
√
γT + γT)

)
whp

I First frequentist regret guarantee of TS in the non-parametric
setting of infinite action spaces

Regret Bounds [ICML, 2017]

Result 1

Cumulative regret of IGP-UCB is O
(√

T (
√
γT + γT)

)
with high

probability (whp)

I γT is Maximum Information Gain about f after T rounds and
quantifies Reduction in uncertainty after observing rewards

I Squared Exponential kernel: γT = O((lnT)d+1) → Sublinear
regret

I Cumulative regret of GP-UCB (Srinivas et al., ICML 2010) is

O
(√

T (
√
γT + γT ln3/2 T)

)
and so we improve by O(ln3/2 T) !

Result 2

I Cumulative regret of GP-TS is O
(√

Td ln(dT)(
√
γT + γT)

)
whp

I First frequentist regret guarantee of TS in the non-parametric
setting of infinite action spaces

Regret Bounds [ICML, 2017]

Result 1

Cumulative regret of IGP-UCB is O
(√

T (
√
γT + γT)

)
with high

probability (whp)

I γT is Maximum Information Gain about f after T rounds and
quantifies Reduction in uncertainty after observing rewards

I Squared Exponential kernel: γT = O((lnT)d+1) → Sublinear
regret

I Cumulative regret of GP-UCB (Srinivas et al., ICML 2010) is

O
(√

T (
√
γT + γT ln3/2 T)

)
and so we improve by O(ln3/2 T) !

Result 2

I Cumulative regret of GP-TS is O
(√

Td ln(dT)(
√
γT + γT)

)
whp

I First frequentist regret guarantee of TS in the non-parametric
setting of infinite action spaces

Recovering Regret Bounds for Linear Bandits

Linear Kernel

I k(x , y) = xT y

I f (x) = θT x , θ ∈ Rd unknown parameter

I Maximum Information Gain γT = O(d lnT)

I Regret of IGP-UCB is Õ(d
√
T) and GP-TS is Õ(d3/2

√
T)

Exactly recovers regrets of Linear Bandit algorithms (Abbasi-Yadkori et
al., NIPS 2011, Agrawal and Goyal, ICML 2013)

Recovering Regret Bounds for Linear Bandits

Linear Kernel

I k(x , y) = xT y

I f (x) = θT x , θ ∈ Rd unknown parameter

I Maximum Information Gain γT = O(d lnT)

I Regret of IGP-UCB is Õ(d
√
T) and GP-TS is Õ(d3/2

√
T)

Exactly recovers regrets of Linear Bandit algorithms (Abbasi-Yadkori et
al., NIPS 2011, Agrawal and Goyal, ICML 2013)

Numerical Results

Algorithms Compared:

1. GP-Expected Improvement (Močkus, 1975)

2. GP-Probabilistic Improvement (Kushner, 1964)

3. GP-UCB (Srinivas et al., 2010)

4. IGP-UCB (this work)

5. GP-TS (this work)

Numerical Results

f sampled from RKHS
(Squared Exponential kernel)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Rounds

C
u
m
u
la
ti
v
e
R
eg
re
t

GP-PI

GP-EI

GP-TS

GP-UCB

IGP-UCB

I IGP-UCB improves over
GP-UCB ,,

I GP-TS fares reasonably well ,

Temperature Sensor Data
(Intel Berkeley Research lab)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

Rounds

C
u
m
u
la
ti
v
e
R
eg
re
t

GP-PI

GP-EI

GP-TS

GP-UCB

IGP-UCB

I IGP-UCB performs similar to
GP-UCB �

I GP-TS performs the best ,

Numerical Results

f sampled from RKHS
(Squared Exponential kernel)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Rounds

C
u
m
u
la
ti
v
e
R
eg
re
t

GP-PI

GP-EI

GP-TS

GP-UCB

IGP-UCB

I IGP-UCB improves over
GP-UCB ,,

I GP-TS fares reasonably well ,

Temperature Sensor Data
(Intel Berkeley Research lab)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

Rounds

C
u
m
u
la
ti
v
e
R
eg
re
t

GP-PI

GP-EI

GP-TS

GP-UCB

IGP-UCB

I IGP-UCB performs similar to
GP-UCB �

I GP-TS performs the best ,

Numerical Results

f sampled from RKHS
(Squared Exponential kernel)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Rounds

C
u
m
u
la
ti
v
e
R
eg
re
t

GP-PI

GP-EI

GP-TS

GP-UCB

IGP-UCB

I IGP-UCB improves over
GP-UCB ,,

I GP-TS fares reasonably well ,

Temperature Sensor Data
(Intel Berkeley Research lab)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

Rounds

C
u
m
u
la
ti
v
e
R
eg
re
t

GP-PI

GP-EI

GP-TS

GP-UCB

IGP-UCB

I IGP-UCB performs similar to
GP-UCB �

I GP-TS performs the best ,

Numerical Results

f sampled from RKHS
(Squared Exponential kernel)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Rounds

C
u
m
u
la
ti
v
e
R
eg
re
t

GP-PI

GP-EI

GP-TS

GP-UCB

IGP-UCB

I IGP-UCB improves over
GP-UCB ,,

I GP-TS fares reasonably well ,

Temperature Sensor Data
(Intel Berkeley Research lab)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

Rounds

C
u
m
u
la
ti
v
e
R
eg
re
t

GP-PI

GP-EI

GP-TS

GP-UCB

IGP-UCB

I IGP-UCB performs similar to
GP-UCB �

I GP-TS performs the best ,

Key Technique: Posterior Concentration

Lemma: Concentration of Posterior Distribution

For all t and for all x ∈ D:

µt(x)− βtσt(x) ≤ f (x) ≤ µt(x) + βtσt(x) whp

At every round, the un-
known original function
lies within properly con-
structed confidence inter-
val of shrinking width

Key Technique: Posterior Concentration

Lemma: Concentration of Posterior Distribution

For all t and for all x ∈ D:

µt(x)− βtσt(x) ≤ f (x) ≤ µt(x) + βtσt(x) whp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f(
x
) µ

t

µ
t
+β

t
σ

t

µ
t
−β

t
σ

t

At every round, the un-
known original function
lies within properly con-
structed confidence inter-
val of shrinking width

Key Technique: Posterior Concentration

Lemma: Concentration of Posterior Distribution

For all t and for all x ∈ D:

µt(x)− βtσt(x) ≤ f (x) ≤ µt(x) + βtσt(x) whp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f(
x
) µ

t

f
µ

t
+β

t
σ

t

µ
t
−β

t
σ

t

At every round, the un-
known original function
lies within properly con-
structed confidence inter-
val of shrinking width

Key Technique: New Concentration Inequality (CI)

Result 3: Self-Normalized CI for RKHS-valued Martingales

I For all t: ‖St‖2V−1
t
≤ 2R2 ln(

√
det(Kt+I)

δ) with probability at least
1− δ if Kt is positive-definite

I Generalizes finite-dimensional Inequality for vector-valued
Martingales (Abbasi-Yadkori et al., NIPS 2011) to infinite
dimensions

Example: Let ε1, ε2, ε3, . . . be a sequence of independent random
variables and x1, x2, x3, . . . be a predictable sequence of random
variables. Define St =

∑t
s=1 εsxs and Vt = 1 +

∑t
s=1 x

2
s . Then

St/
√
Vt is a Self-normalized process and its fluctuations are O(ln t)

Key Technique: New Concentration Inequality (CI)

Result 3: Self-Normalized CI for RKHS-valued Martingales

I For all t: ‖St‖2V−1
t
≤ 2R2 ln(

√
det(Kt+I)

δ) with probability at least
1− δ if Kt is positive-definite

I Generalizes finite-dimensional Inequality for vector-valued
Martingales (Abbasi-Yadkori et al., NIPS 2011) to infinite
dimensions

Example: Let ε1, ε2, ε3, . . . be a sequence of independent random
variables and x1, x2, x3, . . . be a predictable sequence of random
variables. Define St =

∑t
s=1 εsxs and Vt = 1 +

∑t
s=1 x

2
s . Then

St/
√
Vt is a Self-normalized process and its fluctuations are O(ln t)

Summary

For Non-parametric Bandits, we

I Improved existing UCB based algorithm

I Introduced new Thompson Sampling based algorithm

I Developed new self-normalized concentration inequality for
RKHS-valued martingales

Possible Extensions:

I Kernel function not known to the learner

I Time varying functions from RKHS

Summary

For Non-parametric Bandits, we

I Improved existing UCB based algorithm

I Introduced new Thompson Sampling based algorithm

I Developed new self-normalized concentration inequality for
RKHS-valued martingales

Possible Extensions:

I Kernel function not known to the learner

I Time varying functions from RKHS

Part 2: Online Learning in Kernelized Markov Decision Processes2

2S. R. Chowdhury and A. Gopalan, Online Learning in Kernelized Markov
Decision Processes, ArXiv e-prints, May 2018. (Under review in NIPS)

Problem Statement

Episodically maximize reward in (unknown) MDP M = {S,A,R,P,H, ρ}

I State space S ⊆ Rm, known

I Action space A ⊆ Rn, known

I Reward distribution R(s, a),
unknown

I Transition distribution P(s, a),
unknown

I Episode length H, known

I State distribution ρ, known

At each period h within an episode:

I Learner takes action ah ∈ A
based on current state sh and
past observations

I Receives reward rh ∼ R(sh, ah)

I Observes next state
sh+1 ∼ P(sh, ah)

Problem Statement

Episodically maximize reward in (unknown) MDP M = {S,A,R,P,H, ρ}

I State space S ⊆ Rm, known

I Action space A ⊆ Rn, known

I Reward distribution R(s, a),
unknown

I Transition distribution P(s, a),
unknown

I Episode length H, known

I State distribution ρ, known

At each period h within an episode:

I Learner takes action ah ∈ A
based on current state sh and
past observations

I Receives reward rh ∼ R(sh, ah)

I Observes next state
sh+1 ∼ P(sh, ah)

Definitions

I Policy π : S × {1, . . . ,H} → A

I Value function Vπ,h(s) = E
[∑H

j=h R(sj , aj)
∣∣ sh = s

]
I Finite horizon, Undiscounted value function

I Mean reward R(s, a)

I Optimal policy π? ∈ argmaxπ Vπ,h(s) ∀s, ∀h

I Cumulative Regret =
∑

l E
[
Vπ?,1(s)− Vπl ,1(s)

]

Goal: Minimize the loss incurred in Value function due to not
knowing the optimal policy π? of the unknown MDP M and instead
using any other policy πl at episode l

Definitions

I Policy π : S × {1, . . . ,H} → A

I Value function Vπ,h(s) = E
[∑H

j=h R(sj , aj)
∣∣ sh = s

]
I Finite horizon, Undiscounted value function

I Mean reward R(s, a)

I Optimal policy π? ∈ argmaxπ Vπ,h(s) ∀s, ∀h

I Cumulative Regret =
∑

l E
[
Vπ?,1(s)− Vπl ,1(s)

]

Goal: Minimize the loss incurred in Value function due to not
knowing the optimal policy π? of the unknown MDP M and instead
using any other policy πl at episode l

Definitions

I Policy π : S × {1, . . . ,H} → A

I Value function Vπ,h(s) = E
[∑H

j=h R(sj , aj)
∣∣ sh = s

]
I Finite horizon, Undiscounted value function

I Mean reward R(s, a)

I Optimal policy π? ∈ argmaxπ Vπ,h(s) ∀s, ∀h

I Cumulative Regret =
∑

l E
[
Vπ?,1(s)− Vπl ,1(s)

]

Goal: Minimize the loss incurred in Value function due to not
knowing the optimal policy π? of the unknown MDP M and instead
using any other policy πl at episode l

Definitions

I Policy π : S × {1, . . . ,H} → A

I Value function Vπ,h(s) = E
[∑H

j=h R(sj , aj)
∣∣ sh = s

]
I Finite horizon, Undiscounted value function

I Mean reward R(s, a)

I Optimal policy π? ∈ argmaxπ Vπ,h(s) ∀s, ∀h

I Cumulative Regret =
∑

l E
[
Vπ?,1(s)− Vπl ,1(s)

]

Goal: Minimize the loss incurred in Value function due to not
knowing the optimal policy π? of the unknown MDP M and instead
using any other policy πl at episode l

Assumptions

I View r ∼ R(s, a) =⇒ r = R(s, a) + εR

I View s ′ ∼ P(s, a) =⇒ s ′ = P(s, a) + εP

I εR and εP samples of zero-mean, additive sub-Gaussian noise

I Unknown Mean reward function R and mean transition function P
lies in RKHS of functions S ×A → R

I Positive semi-definite kernel functions in the product space

I Product kernels:
(kS ⊗ kA)

(
(s, a), (s ′, a′)

)
= kS(s, s ′)× kA(a, a′)

I Additional Regularity condition on Value function → Transition
distributions with same means are identical

Assumptions

I View r ∼ R(s, a) =⇒ r = R(s, a) + εR

I View s ′ ∼ P(s, a) =⇒ s ′ = P(s, a) + εP

I εR and εP samples of zero-mean, additive sub-Gaussian noise

I Unknown Mean reward function R and mean transition function P
lies in RKHS of functions S ×A → R

I Positive semi-definite kernel functions in the product space

I Product kernels:
(kS ⊗ kA)

(
(s, a), (s ′, a′)

)
= kS(s, s ′)× kA(a, a′)

I Additional Regularity condition on Value function → Transition
distributions with same means are identical

Assumptions

I View r ∼ R(s, a) =⇒ r = R(s, a) + εR

I View s ′ ∼ P(s, a) =⇒ s ′ = P(s, a) + εP

I εR and εP samples of zero-mean, additive sub-Gaussian noise

I Unknown Mean reward function R and mean transition function P
lies in RKHS of functions S ×A → R

I Positive semi-definite kernel functions in the product space

I Product kernels:
(kS ⊗ kA)

(
(s, a), (s ′, a′)

)
= kS(s, s ′)× kA(a, a′)

I Additional Regularity condition on Value function → Transition
distributions with same means are identical

Assumptions

I View r ∼ R(s, a) =⇒ r = R(s, a) + εR

I View s ′ ∼ P(s, a) =⇒ s ′ = P(s, a) + εP

I εR and εP samples of zero-mean, additive sub-Gaussian noise

I Unknown Mean reward function R and mean transition function P
lies in RKHS of functions S ×A → R

I Positive semi-definite kernel functions in the product space

I Product kernels:
(kS ⊗ kA)

(
(s, a), (s ′, a′)

)
= kS(s, s ′)× kA(a, a′)

I Additional Regularity condition on Value function → Transition
distributions with same means are identical

Assumptions

I View r ∼ R(s, a) =⇒ r = R(s, a) + εR

I View s ′ ∼ P(s, a) =⇒ s ′ = P(s, a) + εP

I εR and εP samples of zero-mean, additive sub-Gaussian noise

I Unknown Mean reward function R and mean transition function P
lies in RKHS of functions S ×A → R

I Positive semi-definite kernel functions in the product space

I Product kernels:
(kS ⊗ kA)

(
(s, a), (s ′, a′)

)
= kS(s, s ′)× kA(a, a′)

I Additional Regularity condition on Value function → Transition
distributions with same means are identical

Algorithm 1: Gaussian Process-UCRL (GP-UCRL)

Same philosophy as earlier: Put separate Gaussian process priors over
mean reward and mean transition functions and update posteriors at the
end of every episode

At each episode l :

1. Construct confidence sets, one each for mean reward and
mean transition functions, using parameters of posterior
distributions respectively

2. Build the set Ml of all plausible MDPs such that mean
reward and mean transition functions lie within respective
confidence sets

3. Choose the optimistic policy πl for the set of MDPsMl

and execute it for the entire episode

Algorithm 1: Gaussian Process-UCRL (GP-UCRL)

Same philosophy as earlier: Put separate Gaussian process priors over
mean reward and mean transition functions and update posteriors at the
end of every episode

At each episode l :

1. Construct confidence sets, one each for mean reward and
mean transition functions, using parameters of posterior
distributions respectively

2. Build the set Ml of all plausible MDPs such that mean
reward and mean transition functions lie within respective
confidence sets

3. Choose the optimistic policy πl for the set of MDPsMl

and execute it for the entire episode

Algorithm 1: Gaussian Process-UCRL (GP-UCRL)

Same philosophy as earlier: Put separate Gaussian process priors over
mean reward and mean transition functions and update posteriors at the
end of every episode

At each episode l :

1. Construct confidence sets, one each for mean reward and
mean transition functions, using parameters of posterior
distributions respectively

2. Build the set Ml of all plausible MDPs such that mean
reward and mean transition functions lie within respective
confidence sets

3. Choose the optimistic policy πl for the set of MDPsMl

and execute it for the entire episode

Algorithm 1: Gaussian Process-UCRL (GP-UCRL)

Same philosophy as earlier: Put separate Gaussian process priors over
mean reward and mean transition functions and update posteriors at the
end of every episode

At each episode l :

1. Construct confidence sets, one each for mean reward and
mean transition functions, using parameters of posterior
distributions respectively

2. Build the set Ml of all plausible MDPs such that mean
reward and mean transition functions lie within respective
confidence sets

3. Choose the optimistic policy πl for the set of MDPsMl

and execute it for the entire episode

Algorithm 2: Thompson Sampling for Reinforcement
Learning (TSRL)

General Philosophy: Start with any prior distribution over MDPs and
at the start of every episode sample an MDP from the posterior

At each episode l :

1. Build an MDP Ml such that mean reward and mean
transition functions are samples from respective posterior
distributions

2. Choose the optimal policy πl for the sampled MDP Ml and
execute it for the entire episode

GP-TSRL: For Gaussian Process prior and Gaussian likelihood model,

the posteriors admit nice closed form of Gaussian processes

Algorithm 2: Thompson Sampling for Reinforcement
Learning (TSRL)

General Philosophy: Start with any prior distribution over MDPs and
at the start of every episode sample an MDP from the posterior

At each episode l :

1. Build an MDP Ml such that mean reward and mean
transition functions are samples from respective posterior
distributions

2. Choose the optimal policy πl for the sampled MDP Ml and
execute it for the entire episode

GP-TSRL: For Gaussian Process prior and Gaussian likelihood model,

the posteriors admit nice closed form of Gaussian processes

Algorithm 2: Thompson Sampling for Reinforcement
Learning (TSRL)

General Philosophy: Start with any prior distribution over MDPs and
at the start of every episode sample an MDP from the posterior

At each episode l :

1. Build an MDP Ml such that mean reward and mean
transition functions are samples from respective posterior
distributions

2. Choose the optimal policy πl for the sampled MDP Ml and
execute it for the entire episode

GP-TSRL: For Gaussian Process prior and Gaussian likelihood model,

the posteriors admit nice closed form of Gaussian processes

Regret Bounds

Result 1

Cumulative Regret of GP-UCRL is Õ
(

(γR,T + γP,T)
√
T
)
whp

Result 2

Expected (over prior distribution of MDPs) cumulative Regret of

GP-TSRL is Õ
(

(γR,T + γP,T)
√
T
)

I γR,T and γP,T are Maximum Information Gain about (unknown)
mean reward and mean transition functions after T rounds

I Grow sub-linearly with T for common kernels (e.g. Squared
Exponential) and for their compositions (products, sums)

Regret Bounds

Result 1

Cumulative Regret of GP-UCRL is Õ
(

(γR,T + γP,T)
√
T
)
whp

Result 2

Expected (over prior distribution of MDPs) cumulative Regret of

GP-TSRL is Õ
(

(γR,T + γP,T)
√
T
)

I γR,T and γP,T are Maximum Information Gain about (unknown)
mean reward and mean transition functions after T rounds

I Grow sub-linearly with T for common kernels (e.g. Squared
Exponential) and for their compositions (products, sums)

Regret Bounds

Result 1

Cumulative Regret of GP-UCRL is Õ
(

(γR,T + γP,T)
√
T
)
whp

Result 2

Expected (over prior distribution of MDPs) cumulative Regret of

GP-TSRL is Õ
(

(γR,T + γP,T)
√
T
)

I γR,T and γP,T are Maximum Information Gain about (unknown)
mean reward and mean transition functions after T rounds

I Grow sub-linearly with T for common kernels (e.g. Squared
Exponential) and for their compositions (products, sums)

Summary

Proved First regret guarantees of UCRL and TSRL in kernel based
MDPs, where

I Mean reward and transition functions are elements from
Reproducing Kernel Hilbert Spaces

I Mean reward and transition functions are samples from Gaussian
Processes (Bayesian setup, not presented here)

Future work:

I Frequentist regret bound of GP-PSRL

I Online learning in Model free MDPs (obviate complicated planning
step)

Summary

Proved First regret guarantees of UCRL and TSRL in kernel based
MDPs, where

I Mean reward and transition functions are elements from
Reproducing Kernel Hilbert Spaces

I Mean reward and transition functions are samples from Gaussian
Processes (Bayesian setup, not presented here)

Future work:

I Frequentist regret bound of GP-PSRL

I Online learning in Model free MDPs (obviate complicated planning
step)

Thank You

	Problem Formulation
	Algorithms
	Regret Bounds
	Numerical Results
	Kernelized Markov Decision Processes
	RL algo
	Regret Bounds
	Backup Slides

