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Black-Box Optimization with Gaussian Processes

Sequentially maximize an unknown function f : D — R
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At every round ¢, an agent: = Represent uncertainty over f using
® Chooses x4 € D based on past observations Gaussian process prior GP(0, k(x,y))

® Observes noisy samples of f(1y)
© Suffers regret f(x*) — f(1¢)

= Squared Exponential (SE) kernel:
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= Posterior of f: GP(ut(x), kt(x,y))

Goal: Minimize cumulative regret

Bayesian optimization application and key idea. Hyperparameter tuning in

DeepNN — huge set of parameters to tune — number of layers, weight reqularization,

layer size, nonlinearity type, batch size, learning rate schedule, stopping conditions
etc — grid search is expensive — optimize a cheap proxy function instead !

BO Algorithms: IGP-UCB and GP-TS [1]

Improved GP-UCB. Choose the
maximizer x4 of the Upper Confidence Bound

(UCB) envelope of posterior Gaussian process

GP-Thompson sampling. Sample a
random function [+ from posterior Gaussian
process and choose its maximizer ¢
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Performance of BO Algorithms
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For sufficiently smooth f, the 4 '
cumulative regret of Bayesian 35 GP-Pl
optimization algorithms in T rounds are ol _@_gi?s
upper bounded by O(yp/T) %25_ = GP-UCB
= yp: Maximum Information Gain about f E ol o
after 1" rounds — quantifies reduction in i«;@ ol
uncertainty atter observing 7" samples § 1
= SE kernel: vy =< O(InT) |
= Cumulative regret grows sublinearly with | | | |
T — average per-round regret vanishes oo ! Rounds 25 -

Reinforcement Learning with (Gaussian Processes

Episodically maximize reward in an unknown Markov Decision Process M = {S, A, R, P}

* State space S, Action space A, known At every round within an episode, an agent:

= Reward distribution R(s,a), unknown |
® Takes an action a € A based on the current

= Transition distribution P(s, a), unknown state s € S and past observations

Goal: Minimize the loss incurred in the Value
function due to not knowing the optimal

policy of the unknown MDP M
RL Algorithms: GP-UCRL and GP-TSRL [2]

Bayesian inference philosophy. Put separate Gaussian process priors over mean
reward and mean transition function, and update posteriors at the end of every episode

® Receives reward r ~ R(s, a)

® Observes next state s’ ~ P(s, a)

® Sample two random functions, one each from
the posterior distributions of mean reward
and mean transition function

@ Construct two confidence sets, one each for
mean reward and mean transition function,
using parameters of posterior distributions

® Find the set of all MDPs, for which mean
reward and mean transition function lie

within respective confidence sets and choose and choose the optimal policy for that
the optimal policy for that set of MDPs sampled MDP

Theoretical guarantees order-wise similar to Bayesian optimization.
At every episode/round, the unknown mean reward and mean transition function lie
within properly constructed confidence sets of shrinking width

® Build an MDP using the random samples of
mean reward and mean transition function

References

1] On Kernelized Multi-armed Bandits, S. R. Chowdhury and A. Gopalan, ICML 2017.
2]  Online Learning in Kernelized Markov Decision Processes, S. R. Chowdhury and A. Gopalan, ArXiv
e-prints, May 2018.



