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Black-Box Optimization with Gaussian Processes
Sequentially maximize an unknown function f : D → R
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At every round t, an agent:
1 Chooses xt ∈ D based on past observations
2 Observes noisy samples of f (xt)
3 Suffers regret f (x?)− f (xt)
Goal: Minimize cumulative regret

• Represent uncertainty over f using
Gaussian process prior GP (0, k(x, y))

• Squared Exponential (SE) kernel:
k(x, y) = exp

(−‖x−y‖22
2l2

)
• Posterior of f : GP (µt(x), kt(x, y))

Bayesian optimization application and key idea. Hyperparameter tuning in
DeepNN – huge set of parameters to tune – number of layers, weight regularization,
layer size, nonlinearity type, batch size, learning rate schedule, stopping conditions

etc – grid search is expensive – optimize a cheap proxy function instead !

BO Algorithms: IGP-UCB and GP-TS [1]
Improved GP-UCB. Choose the
maximizer xt of the Upper Confidence Bound
(UCB) envelope of posterior Gaussian process

GP-Thompson sampling. Sample a
random function ft from posterior Gaussian
process and choose its maximizer xt
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Performance of BO Algorithms
For sufficiently smooth f , the

cumulative regret of Bayesian
optimization algorithms in T rounds are

upper bounded by Õ(γT
√
T )

• γT : Maximum Information Gain about f
after T rounds – quantifies reduction in
uncertainty after observing T samples

• SE kernel: γT � O(lnT )
• Cumulative regret grows sublinearly with
T – average per-round regret vanishes 0 0.5 1 1.5 2 2.5 3 3.5
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Reinforcement Learning with Gaussian Processes
Episodically maximize reward in an unknown Markov Decision Process M = {S,A, R, P}

• State space S , Action space A, known
• Reward distribution R(s, a), unknown
• Transition distribution P (s, a), unknown
Goal: Minimize the loss incurred in the Value
function due to not knowing the optimal
policy of the unknown MDP M

At every round within an episode, an agent:
1 Takes an action a ∈ A based on the current
state s ∈ S and past observations

2 Receives reward r ∼ R(s, a)
3 Observes next state s′ ∼ P (s, a)

RL Algorithms: GP-UCRL and GP-TSRL [2]
Bayesian inference philosophy. Put separate Gaussian process priors over mean
reward and mean transition function, and update posteriors at the end of every episode

1 Construct two confidence sets, one each for
mean reward and mean transition function,
using parameters of posterior distributions

2 Find the set of all MDPs, for which mean
reward and mean transition function lie
within respective confidence sets and choose
the optimal policy for that set of MDPs

1 Sample two random functions, one each from
the posterior distributions of mean reward
and mean transition function

2 Build an MDP using the random samples of
mean reward and mean transition function
and choose the optimal policy for that
sampled MDP

Theoretical guarantees order-wise similar to Bayesian optimization.
At every episode/round, the unknown mean reward and mean transition function lie

within properly constructed confidence sets of shrinking width
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