Problem Statement

Sequentially Maximize f : D — R, f unknown, D C R¢ ]

e = 1" = argmax f(x)
xeD

= At each round t:

@ Learner chooses
v, € D based on

1+

0.5F

W) past
= 05 .
® Observes noisy
i reward

ye = f(xe) + &
@ Suffers regret
re = f(z") — f(21)

T

Goal: Minimize cumulative regret > r;
=1

Assumptions

= Noise g; is R-sub-Gaussian

= f lies in RKHS of functions: D — R

= Positive semi-definite kernel function £ : D x D — R
= Reproducing property: f(x) = (f, k(x,))x

= Induces smoothness:

flo) = Fy)l < Al 1R Cs -) = Ry, )l

= D is compact, || f||, < B known
= Bounded variance: k(x,x) <1, forall z € D

Example Kernels

= Squared Exponential kernel: k(x,y) = exp (_|‘§l—29”§>

= Matérn kernel:

k(a,y) = 2 (nx—mﬁﬁv) By(nx_ng@>

= Stationary kernels: k(x,y) = k(z — y)

Algorithm Design Philosophy

= Use (Gaussian
Process (GP) prior
and Gaussian

Likelihood model
= Prior of blue f:
GP(0,v°k(z,y))
= Noise g; ~ N (0, A\v*)

2 \ = After ¢ rounds, reward
L v—po vector Y. ~
0O 01 02 03 04 %{5 06 07 08 09 1 N(O, UQ(Kt 4 )\]))

=

Posterior after ¢ rounds is GP(us(x), v°ks(z,v)):

w(x) = kt(x)T(Kt + A])_lyu
ki(w,y) = k(z,y) — k(z)T (K; + M) ()
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Algorithm 1: Improved GP-UCB Algorithm 2: (Gaussian Process
(IGP-UCB) Thompson Sampling (GP-TS)
At each round t: play z; = argmax u(x) + Sr:0¢(x) At each round ¢: sample a random function and play its
— maximizer

= [ trades off b/w 1? = Sample f; from
exploration and 05 posterior of f
explmtatlop ~ 0 - Play

* Reduced width (5;) & v, = argmax f;(x)
of confidence interval B vel;
compared to 15 = ), C D: suitably
GP-UCB ( Srinivas 22 _ chosen Discretization

) et CI,Z., ]OML 2010) S0 01 02 03 04 05 06 07 08 09 1 sets
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Key Tool: New Self-Normalized Concentration Inequality for
RKHS-valued Martingales

For all ¢: HStH%/t—l < 2R’In <\/detht+])> with probability at least 1 — 0

= Feature map ¢ : D — RKHS = (Generalizes finite-dimensional result for vector-valued

. S = Et: esp(zs) <— RKHS-valued Martingale Martingales (Abbasi- Yadkori et al., NIPS 2011)
s=1

) = Uses method of mixtures technique

I+ S; o(xs)p(2s)" + possibly of infinite dimension = Curse of Dimensionality — Mixing over Gaussian Processes

Numerical Results

f sampled from RKHS (SE kernel) Temperature Sensor Data (Intel Research)
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[GP-UCB improves over GP-UCB, GP-T'S fares pretty well [ IGP-UCB performs same as GP-UCB, GP-TS fares the best

http://proceedings.mlr.press/v70/chowdhuryl7a.html

Regret Bound for IGP-UCDB

Regret of IGP-UCB: O (\/T(B« /7T+7T)> whp with the

choice of confidence width f5; ~ B + /7, for all ¢

= v is Maximum Information Gain after 7" rounds:

r=, max Iy fa

« Mutual Information b/w function values and rewards at A
» Reduction in uncertainty about f after observing

rewards
- SE kernel: 77 = O((InT)%™') — sublinear regret

= Regret of GP-UCB: O(\/T(B1 /T + Y In®/? T)) whp
and so we improve by O(In*? T |

Regret Bound for GP-TS

Regret of GP-T'S: O<\/Td In(BdT)(B\/y1 + WT)> whp

= First frequentist regret guarantee of TS in the
non-parametric setting of infinite action spaces

: \/ dIn(BdT") < Consequence of Discretization

= Open Question: Can the logarithmic dependency be
removed?

Recovering Linear Bandits

» Linear kernel: k(z,y) = oy
« f(z) = 012, 0 € R? unknown parameter
= Maximum Information Gain: v, = O(dInT)

= Regret of IGP-UCB: O(dV/T) and GP-TS:
O(d**VT)
= Fxactly recovers regrets of OFUL (Abbasi- Yadkori et

al., 2013) and Linear TS (Agrawal and Goyal,
ICML 2013)

« Lower Bound: Q)(d\/T) (Dani et al., COLT 2008)

Conclusion

For Non-parametric Bandits, we have improved the existing
UCB based algorithm, introduced a new Thompson Sam-
pling based algorithm and developed a novel selt-normalized
concentration inequality for RKHS-valued martingales.
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