

Problem Statement

Assumptions

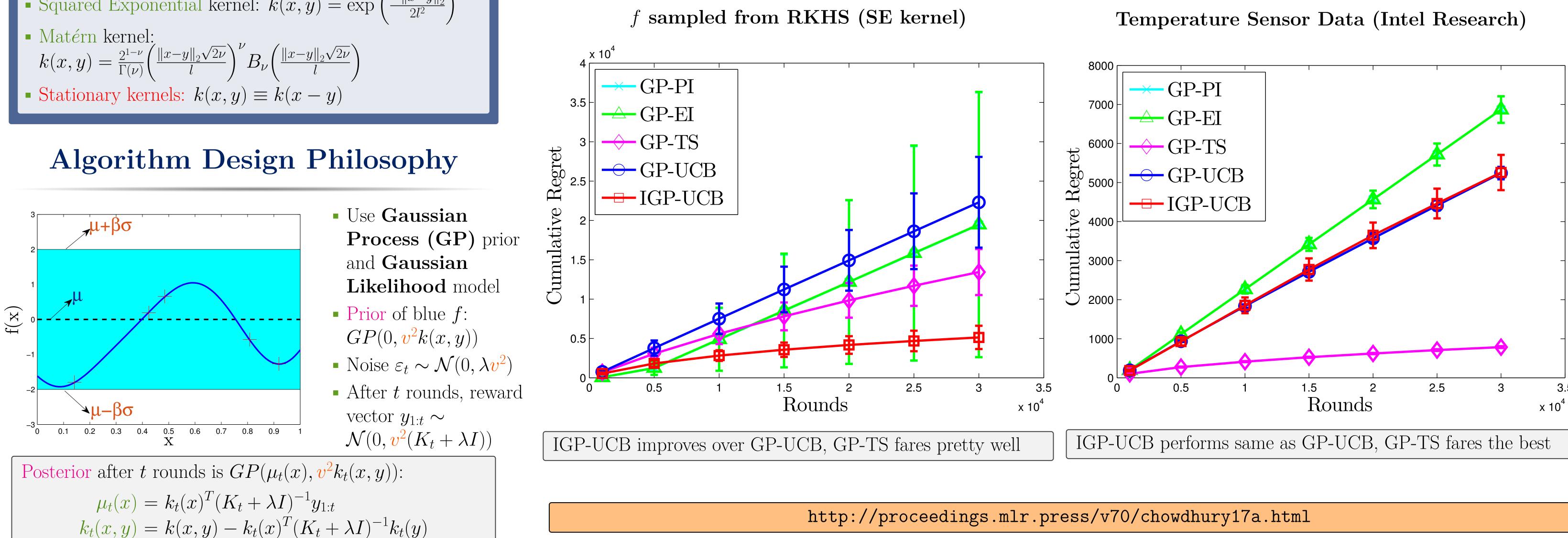
- Noise ε_t is *R*-sub-Gaussian
- f lies in **RKHS** of functions: $D \to \mathbb{R}$
- Positive semi-definite **kernel** function $k : D \times D \to \mathbb{R}$
- Reproducing property: $f(x) = \langle f, k(x, \cdot) \rangle_k$
- Induces smoothness:

 $|f(x) - f(y)| \le ||f||_k ||k(x, \cdot) - k(y, \cdot)||_k$

- D is compact, $||f||_k \leq B$ known
- Bounded variance: $k(x, x) \leq 1$, for all $x \in D$

Example Kernels

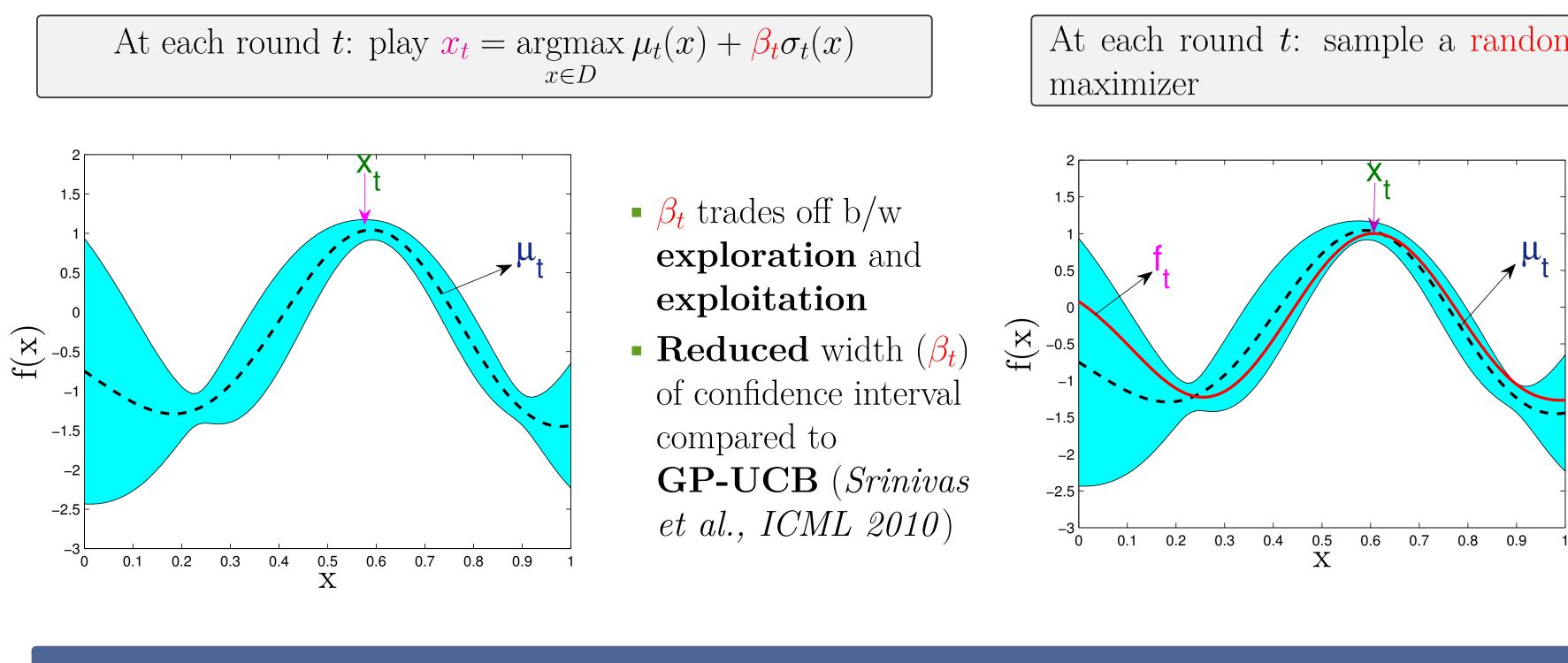
- Squared Exponential kernel: $k(x, y) = \exp\left(\frac{-\|x-y\|_2^2}{2l^2}\right)$



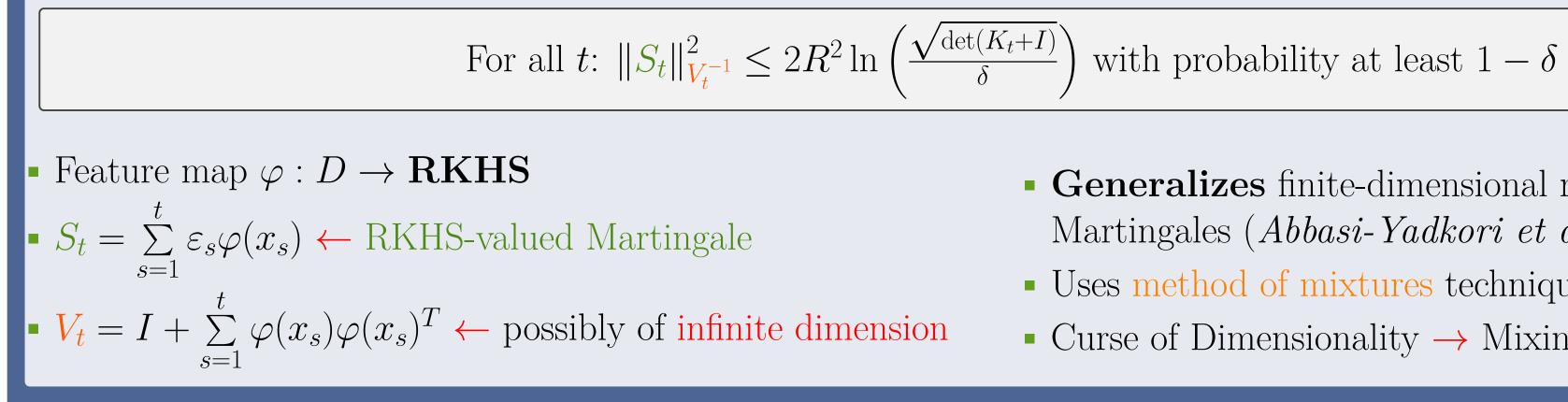
On Kernelized Multi-armed Bandits Sayak Ray Chowdhury and Aditya Gopalan

Department of Electrical Communication Engineering, Indian Institute of Science

Algorithm 1: Improved GP-UCB (IGP-UCB)



Key Tool: New Self-Normalized Concentration Inequality for **RKHS-valued** Martingales

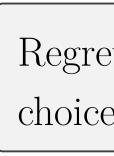


Numerical Results

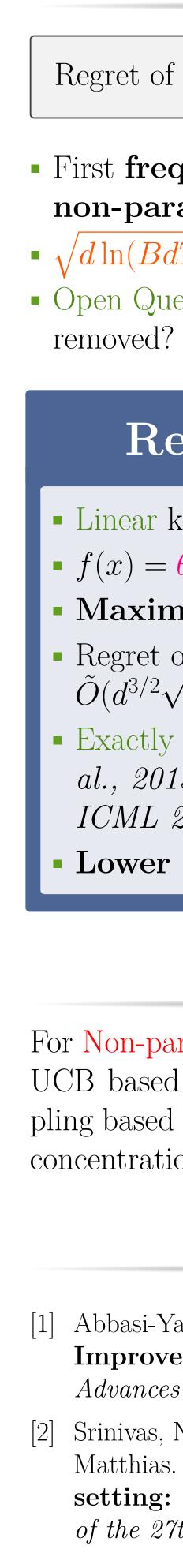
Algorithm 2: Gaussian Process Thompson Sampling (GP-TS)

At each round t: sample a random function and play its

- Sample f_t from posterior of f
- Play $x_t = \operatorname{argmax} f_t(x)$
- $D_t \subset D$: suitably chosen Discretization sets



• Generalizes finite-dimensional result for vector-valued Martingales (Abbasi-Yadkori et al., NIPS 2011) • Uses method of mixtures technique • Curse of Dimensionality \rightarrow Mixing over Gaussian Processes



Regret Bound for IGP-UCB

Regret of **IGP-UCB**: $O\left(\sqrt{T}(B\sqrt{\gamma_T}+\gamma_T)\right)$ whp with the choice of confidence width $\beta_t \approx B + \sqrt{\gamma_t}$ for all t

• γ_T is Maximum Information Gain after T rounds: $\gamma_T = \max_{A \subset D: |A| = T} I(y_A; f_A)$

• Mutual Information b/w function values and rewards at A• **Reduction in uncertainty** about *f* after observing rewards

• SE kernel: $\gamma_T = O((\ln T)^{d+1}) \rightarrow \text{sublinear regret}$

• Regret of **GP-UCB**: $O\left(\sqrt{T}(B\sqrt{\gamma_T} + \gamma_T \ln^{3/2} T)\right)$ whp and so we improve by $O(\ln^{3/2} T)$!

Regret Bound for GP-TS

Regret of **GP-TS**: $O\left(\sqrt{Td\ln(BdT)}(B\sqrt{\gamma_T}+\gamma_T)\right)$ whp

• First **frequentist** regret guarantee of **TS** in the **non-parametric** setting of infinite action spaces • $\sqrt{d \ln(BdT)}$ \leftarrow Consequence of **Discretization** • Open Question: Can the logarithmic dependency be

Recovering Linear Bandits

• Linear kernel: $k(x, y) = x^T y$ • $f(x) = \theta^T x, \ \theta \in \mathbb{R}^d$ unknown parameter • Maximum Information Gain: $\gamma_T = O(d \ln T)$ • Regret of IGP-UCB: $\tilde{O}(d\sqrt{T})$ and GP-TS: $ilde{O}(d^{3/2}\sqrt{T})$

• Exactly recovers regrets of **OFUL** (Abbasi-Yadkori et al., 2013) and Linear TS (Agrawal and Goyal, $ICML \ 2013)$

• Lower Bound: $\Omega(d\sqrt{T})$ (Dani et al., COLT 2008)

Conclusion

For Non-parametric Bandits, we have **improved** the existing UCB based algorithm, **introduced** a new Thompson Sampling based algorithm and **developed** a novel self-normalized concentration inequality for RKHS-valued martingales.

Selected References

[1] Abbasi-Yadkori, Yasin, Pál, Dávid, and Szepesvári, Csaba. Improved algorithms for linear stochastic bandits. In Advances in Neural Information Processing Systems, 2011.

[2] Srinivas, Niranjan, Krause, Andreas, Kakade, Sham M, and Seeger, Matthias. Gaussian process optimization in the bandit setting: No regret and experimental design. In Proceedings of the 27th International Conference on Machine Learning, 2010.