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Problem Statement

Sequentially Maximize f : D → R, f unknown, D ⊂ Rd
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• x? = argmax
x∈D

f (x)

•At each round t:
1 Learner chooses
xt ∈ D based on
past

2 Observes noisy
reward
yt = f (xt) + εt

3 Suffers regret
rt = f (x?)− f (xt)

Goal: Minimize cumulative regret
T∑
t=1
rt

Assumptions

•Noise εt is R-sub-Gaussian
• f lies in RKHS of functions: D → R
•Positive semi-definite kernel function k : D ×D → R
•Reproducing property: f (x) = 〈f, k(x, ·)〉k
• Induces smoothness:
|f (x)− f (y)| ≤ ‖f‖k ‖k(x, ·)− k(y, ·)‖k

•D is compact, ‖f‖k ≤ B known
•Bounded variance: k(x, x) ≤ 1, for all x ∈ D

Example Kernels

• Squared Exponential kernel: k(x, y) = exp
(
−‖x−y‖2

2
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)
•Matérn kernel:
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• Stationary kernels: k(x, y) ≡ k(x− y)

Algorithm Design Philosophy
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•Use Gaussian
Process (GP) prior
and Gaussian
Likelihood model

•Prior of blue f :
GP (0, v2k(x, y))

•Noise εt ∼ N (0, λv2)
•After t rounds, reward
vector y1:t ∼
N (0, v2(Kt + λI))

Posterior after t rounds is GP (µt(x), v2kt(x, y)):
µt(x) = kt(x)T (Kt + λI)−1y1:t

kt(x, y) = k(x, y)− kt(x)T (Kt + λI)−1kt(y)

Algorithm 1: Improved GP-UCB
(IGP-UCB)

At each round t: play xt = argmax
x∈D

µt(x) + βtσt(x)
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• βt trades off b/w
exploration and
exploitation

• Reduced width (βt)
of confidence interval
compared to
GP-UCB (Srinivas
et al., ICML 2010 )

Algorithm 2: Gaussian Process
Thompson Sampling (GP-TS)

At each round t: sample a random function and play its
maximizer
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• Sample ft from
posterior of f

•Play
xt = argmax

x∈Dt

ft(x)

•Dt ⊂ D: suitably
chosen Discretization
sets

Key Tool: New Self-Normalized Concentration Inequality for
RKHS-valued Martingales

For all t: ‖St‖2
V −1
t
≤ 2R2 ln

(√
det(Kt+I)

δ

)
with probability at least 1− δ

•Feature map ϕ : D → RKHS

•St =
t∑

s=1
εsϕ(xs) ← RKHS-valued Martingale

• Vt = I +
t∑

s=1
ϕ(xs)ϕ(xs)T ← possibly of infinite dimension

• Generalizes finite-dimensional result for vector-valued
Martingales (Abbasi-Yadkori et al., NIPS 2011 )

•Uses method of mixtures technique
•Curse of Dimensionality → Mixing over Gaussian Processes

Numerical Results

f sampled from RKHS (SE kernel)
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IGP-UCB improves over GP-UCB, GP-TS fares pretty well

Temperature Sensor Data (Intel Research)
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IGP-UCB performs same as GP-UCB, GP-TS fares the best

http://proceedings.mlr.press/v70/chowdhury17a.html

Regret Bound for IGP-UCB

Regret of IGP-UCB: O
(√

T (B√γT +γT )
)
whp with the

choice of confidence width βt ≈ B +√γt for all t

• γT is Maximum Information Gain after T rounds:
γT = max

A⊂D:|A|=T
I(yA; fA)

• Mutual Information b/w function values and rewards at A
• Reduction in uncertainty about f after observing
rewards

• SE kernel: γT = O((lnT )d+1) → sublinear regret
•Regret of GP-UCB: O

(√
T (B√γT + γT ln3/2 T )

)
whp

and so we improve by O(ln3/2 T ) !

Regret Bound for GP-TS

Regret of GP-TS: O
(√

Td ln(BdT )(B√γT + γT )
)
whp

•First frequentist regret guarantee of TS in the
non-parametric setting of infinite action spaces

•
√
d ln(BdT ) ← Consequence of Discretization

•Open Question: Can the logarithmic dependency be
removed?

Recovering Linear Bandits
• Linear kernel: k(x, y) = xTy

• f (x) = θTx, θ ∈ Rd unknown parameter
• Maximum Information Gain: γT = O(d lnT )
•Regret of IGP-UCB: Õ(d

√
T ) and GP-TS:

Õ(d3/2
√
T )

•Exactly recovers regrets of OFUL (Abbasi-Yadkori et
al., 2013 ) and Linear TS (Agrawal and Goyal,
ICML 2013 )

• Lower Bound: Ω(d
√
T ) (Dani et al., COLT 2008 )

Conclusion

For Non-parametric Bandits, we have improved the existing
UCB based algorithm, introduced a new Thompson Sam-
pling based algorithm and developed a novel self-normalized
concentration inequality for RKHS-valued martingales.
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